On Test Scores (Part 1)

Structural Equation Modeling
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Today’s Class

- Scores

> Types of scores
+ Sum scores / test scores
+ Factor scores

» Score contents
> Relating sum scores to factor scores
> Score reliability

- Why using scores alone in separate analysis, while done
almost always, is not good practice
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The Big Picture

. Overall, the purpose of this class and the main message of
structural equation models is that multivariate analyses
with (and without) measurement error should be

conducted simultaneously
» Error propagates

- There are many instances when one cannot do a

simultaneous analysis

> This lecture is an attempt to get you as close to results from a simultaneous
analysis by getting you to understand the psychometric and statistical
properties of using scores
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WHAT’S IN A SUM SCORE?

. KUKANSAS
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The Purpose of this Lecture: Some Clarity on Score

- As I’ve been a student and a teacher | have found the topic of scores
to be incomplete and often contradictory

- Some things I've heard:

> “Sum scores are almost always okay”
> “Factor scores (think GRE) are okay if they are from some strange sounding model...”
> “...otherwise factor scores are the work of the devil”

- A question that | hearing: Why use Structural Equation Modeling (or

CFA/IRT) when | can just use a sum of the items?
> Sum of the items == sum score == total score == Add s**t up (ASU) model

- Sum score are used as:

> Observed variables in secondary analyses
> Results given to participants, patients, students, etc...

- Current practice in psychological/educational research seems to be:

> Use a sum score until some reviewer (#3?) says you cannot use one
> At that point, use a confirmatory factor model to verify that you have a one-factor scale
> ..then use a sum score
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Demonstration Data

- To demonstrate the concepts appearing throughout this
section, we will revisit the three-item GRI scale used in the

lecture on Structural Equation Models
> Items: GRI1, GRI3, and GRI 5

. As scores on each item ranged from 1 to 6 in integer units,
this means sum scores must fall within a range of 3 to 18

THE UNIVERSITY OF
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Distribution of GRI Sum Scores

Three-item GRI Sum Score
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Psychometric Properties of as Sum Score

- The use of sum scores brings about a discussion about the
psychometrics that underlie sum scores

- What you have learned about measurement so far likely
falls under the category of CTT:

> Writing items and building scales

> ltem analysis

» Score interpretation

> Evaluating reliability and construct validity

- Big picture: We will view CTT as model with a restrictive
set of assumptions within a more general family of latent

trait measurement models
> Confirmatory Factor Analysis is a measurement model IQJKAN@XS




Differences Among Measurement Models

- What is the name of the latent trait measured by a test?
> Classical Test Theory (CTT) = “True Score” (T)
> Confirmatory Factor Analysis (CFA) = “Factor Score” (F)
> Item Response Theory (IRT) = “Theta” (0)

- Fundamental difference in approach:

> CTT = unit of analysis is the WHOLE TEST (item sum or mean)
+ Sum = latent trait, and the sum doesn’t care how it was created
+ Only using the sum requires restrictive assumptions about the items

> CFA, IRT, and beyond =2 unit of analysis is the ITEM
+ Model of how item response relates to an estimated latent trait
+ Different models for differing item response formats
+ Provides a framework for testing adequacy of measurement models
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Classical Test Theory: Assumed Model

In CTT, the TEST is the unit of analysis:
Yrotal = T + €

> True score T:
+ Best estimate of ‘latent trait’: Mean over infinite replications
+ Scale of T is the same as the scale of Yrqta)
> Errore:
+ Expected value (mean) of 0, expected to be uncorrelated with T
+ Supposed to wash out over repeated observations

- So the expected value of Y, ¢q1is T

» Put another way: should the model fit, Y;,¢4; is an unbiased estimate of T

> The true score is why you created the sum in the first place=> your test purports to measure one
thing, bringing about one sum score per person

- No distributional assumptions made...yet

- Even if your data fit a one-factor model, when using a sum score, the error

portion is part of Yr,ra:
> But, itis only one part of the error that is in a sum score

- Because the CTT model does not include individual items,

items must be assumed exchangeable
> If the model fits, then more items means better reliability wmﬁéﬁg
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More CTT Basics

- A goal of CTT is to quantify reliability

> Reliability is the proportion of variance in the sum score that is due to variation in
the latent trait

- Reliability decomposition comes from Var(Y)
> Var() function comes from the expected value in mathematical statistics

> E(9(0) = [ g(0)f (x)dx
+ Over the sample space/support of x with probability density function f(x)
+ Replace integral with a sum for discrete x (and pdf for probability mass function)

> Mean: u = E(x) = [xf(x)dx
> Variance: Var(x) = E((x —w)?) = E [(x — E(x))zl = [(x — w)? f(x)dx

- For CTT:
Var(Yrorq1) = Var(T + e) = Var(T) + Var(e) + 2Cov(T, e)

. But, Cov(T,e) = 0 as T and e are assumed independent, so
Var(Yroiq:) = Var(T) + Var(e)
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Moving from Variance to Reliability

- Reliability, as a proportion of variance in sum score due to
the trait:
Var(T) Var(T)

P = Var(Y) Var(T) + Var(e)

> Var(Y) == variance of observed sum score

> Var(T) == variance of true score == variability in the unobserved latent trait
== individual differences

> Var(e) == variance of error == measurement error

- Key question: how does one quantify reliability?
> We will see that depends....

THE UNIVERSITY OF
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Draw Templin, Draw!

. Picture of distributions of Y, T, and e...
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Parceling: Creating Another Type of Sum Score

- Another type of sum score is a parcel (sometimes called an

item parcel or an item bundle)

> A parcel then takes the places of the summed variables in a larger structural
equation model

- There is some debate about what parceling assumes

> There are some who believe a parcel assumes a CTT model:
Yrotaa = T + €

> There are others who parceling makes no assumptions, which is
mathematically equivalent to:

Yrotal = €

. Either way:
> What we are saying about CTT scores applies to parcels and parceling
> Parceling is frequently done to hide model misfit, so it is like cheating
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Potential Sources of Error in a Sum Score

- Measurement error
> e.g.,theeinY =T+e

- Model misspecification error of various types:

> Dimensionality misspecification error
+ e.g., Assuming one dimension when there is more than one present
> Parameter constraint misspecification error
+ e.g., Assuming overly restrictive constraints (see next section and all of CTT)

> Linear model functional misspecification error
+ e.g., Assuming a linear relationship between the factor and the items when a non-linear one is
present

> Outcome distribution misspecification error
+ e.g., Assuming Likert-type data to be continuous and using a normal distribution

> Factor distribution misspecification error
+ e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

- Missing data error
> How you treat missing responses to items makes even more untenable assumptions

> (meaning error in parameters due to small n) is not a source of error in a sum score
> Note: measurement error is sampling error with respect to items instead of peoile B

PRE 906, SEM: On Test Scores 15



Why Error Matters

- Ignoring error will lead to inaccurate and potentially

misleading results

> Biased estimates (Type Il error)
> Biased standard errors of estimates (Type | error)

- Some sources of error matter more than others

- Measurement error is often thought of as the worst, but |
believe model misspecification error (of all five types from
last slide) to be even worse than measurement error

THE UNIVERSITY OF
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95% Confidence Intervals: Quantitative (GRE 2011 Guide)

SEM ranges from 9 to 55
http://www.ets.org/s/gre/pdf/gre_guide.pdf
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FACTOR SCORES
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- To describe a factor score, first remember the CFA model:
Ypi = Ui + /1in + epl-

. Simply put: A factor score is an estimated value for E,, or Fp

- There has long been a resistance to using factor scores in
psychological research with the most common objection cited being

the indeterminacy of factor scores
> Indeterminacy of factor scores == factor scores are not unique

- Why are factor scores not unique? Because factor models must fix

some parameters for identification

> The values may be indeterminate—but in CFA and in ML versions of EFA the rank order
of the factor scores is unique

THE UNIVERSITY OF
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A Depiction of Traditional Psychometric Estimates

Ordering provided by Daphne Templin
Latent Trait Score

Bieber Cyrus Swift

Factor scores provide a weak ordering of people
o (Weak because of error): like ordinal-level measurement KANSAS



Draw Templin, Draw!

Example factor scores and their distributions (discussed next)

(Posterior) Distributions of Factor Scores
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A different version of factor model identification would change
the numbers on the X-axis, but the shapes and order of the
distributions would not change

Factor scores provide a weak ordering of people
(weak because of error)
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Factor Scores and Testing

- These factor scores are found using the same methods as

are used in practice for finding test scores (like the GRE)

> The only difference between such test scores and factor scores in this class is
the distributional assumptions of the measurement model (IRT is CFA with
assumed Bernoulli/Multinomial distributed items)

> They behave the same

- That said, some in the testing industry don’t quite realize
how these work

See: http://images.pearsonassessments.com/images/tmrs/Responses Walter Stroup.pdf (p. 2)

¢ IRT does not rank order students or select test questions. IRT simply
measures students’ academic knowledge and skills on a scale (like a ruler)
and, just as a child gets taller, when students increase their knowledge and
skills, their test scores will increase. IRT provides a thorough and fair
measurement of growth and mastery.

THE UNIVERSITY OF
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http://images.pearsonassessments.com/images/tmrs/Responses_Walter_Stroup.pdf

More on Factor Scores

Factor scores (by other names) are used in many domains
> Item response theory (CFA with categorical items): GRE scores are factor scores

- Because the historical relationship between CFA and

exploratory factor analysis, factor scores are widely avoided
> In EFA factor meaning is unknown so rotations were used

. Further making the issue even more difficult, many crazy

methods for determining factor scores have been developed
> See http://www.ncbi.nIm.nih.gov/pmc/articles/PMC3773873/

- We will only focus on one method for estimating factor scores
that is used in nearly all fields based on the posterior

distribution of the factor score given the data

> |Identical to methods described by Lawley and Maxwell (1971) of Bartlett (1936)

> Also used in generalized linear mixed effects models where factor scores are called
Best Linear Unbiased Predictors (or BLUPs) ) IQJKAN%RS
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Factor Scores: The Big Picture

A factor score is the estimate of a subject’s unobserved latent trait

- Because this latent variable is not measured directly, it acts like it is
missing data: you really cannot know with certainty its true value

. It is difficult to pin down what the missing data value (factor score

value) should be precisely
> Each factor score has a posterior distribution of possible values

> Often, the mean of the posterior distribution is the “factor score”
+ In CFA, the mean is the most likely value
> Depending on the test, there may be a lot of error (variability) in the distribution

- Therefore, the use of factor scores must reflect that the score is not
known and is represented by a distribution

THE UNIVERSITY OF
PRE 906, SEM: On Test Scores 24 KANSAS



Draw Templin, Draw!

Example factor scores and their distributions (discussed next)

(Posterior) Distributions of Factor Scores
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A different version of factor model identification would change
the numbers on the X-axis, but the shapes and order of the
distributions would not change

Factor scores provide a weak ordering of people
(weak because of error)
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How Distributions get Summarized into Scores

- There are two ways of providing a score from the factor

score posterior distribution:

> Expected a posteriori (EAP): the mean of the distribution
> Maximum a posteriori (MAP): the most likely score from the distribution

. In CFA factor score distributions are normal (so EAP=MAP)
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Additional Information on Factor Scores

- For EAP factor scores:
- B, =E (f(Fp|Y))
. SE(R) = \/m (F(5 V)

- For MAP factor scores:
- Fp = arg rrll:gxf(Fp|Y)

1

~ 92 2 ) , . .
> SE(Fp) = [a_Fgf(FplY) ] (square root of Fisher’s information)

Fp

- For CFA (Normal Data/Normal Factor) measurement models:
> MAP = EAP
> Variance is identical across all people, regardless of score

. For non-CFA measurement models:

> MAP # EAP (but does with infinite items)
> Standard error is a function of the factor score

THE UNIVERSITY OF
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Tying Factor Scores to Classical Test Theory

Recall Classical Test Theory’s model:
Y=T+E

Var(T)
Var(T)+Var(E)

With reliability: p =

For factor scores:
> Var(T) = o#: the (possibly estimated) variance of the factor

> Var(E) = SE(F'p)Z: From the posterior distribution of the factor score

Therefore, reliability of factor scores can be computed

using model estimated parameters

» Caution: The factor model must fit to use these parameters!

> Caveat: We’'ll soon see reliability for sum scores can be estimated by
CFA model parameters

THE UNIVERSITY OF
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Factor Scores: Empirical Bayes Estimates

- For most (if not all) latent variable techniques, the factor scores
come from Empirical Bayes estimation—meaning there is a prior

distribution present

> Empirical = some or all of the parameters of the distribution of the latent variable are
estimated (i.e., factor mean and variance)

> Bayes = comes from the use of Bayes’ Theorem

. Prior == Assumed factor distribution with mean/variance

. This is true for all CFA, IRT, mixed/multilevel/hierarchical models
> And is true for models that don’t have a label (e.g., Poisson Factor Analysis?)

THE UNIVERSITY OF
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Bayes’ Theorem

- Bayes’ Theorem states the conditional distribution of a
variable A (soon to be our factor score) given values of a
variable B (soon to be our data) is:

For Categorical A, replace integral with sum

fBIAf(A) _ f(BlA)f(A)
f(B) J.caf(BIA=a)f(A = a)da

- f(A|B) is the distribution of A, conditional on B

> We will come to know this as the posterior distribution of the factor score,
conditional on the data observed or f(F|Y)

- f(B|A) is the distribution of B, conditional on A

> We will come to know this as our measurement model or f(Y|F)

- f(A) is the marginal distribution of A

> We will come to know this as the prior distribution of the factor or f (F)
30 wm?j&%

f(A|B) =




Putting Together the Pieces of Empirical Bayes Factor Scores

f(BlA)f(A) fYIF)f(F)

f(A|B) = = f(F|Y) =

f(B) f(Y)

- For f(Y|F), consider the measurement model (here CFA) for one item:
Ypi = Ui + }{in + epl-
Where: e,; ~ N(O,l/)iz)

- Using expected values, we can show the distribution for this one item is:
f(YpilBy) ~ N(p; + 4iF,,97)

- Therefore, for all I items, our conditional distribution is:
f(Y|F) ~ Ni(1 + AR, ¥)

- With multiple factors, this becomes:
f(Y|F) ~ N;(p + AF,¥)

THE UNIVERSITY OF
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Putting Together the Pieces of Empirical Bayes Factor Scores

f(BIAf(4) f(YIE)f(F)

f(A|B) = = f(FIY) =

f(B) f(Y)

- For f(F), consider the distribution assumed by the factor:

> For one factor

f(Fp) =~ N(.UF'O-FZ

> For multiple factors K

f(F) ~ Ng(pp, @)

- We must pick an identification method which determines if

certain parameters of uy and ® are fixed or are estimated
» Any method identification works, so we keep ur and ® throughout

THE UNIVERSITY OF
906, SEM: On Test Scores 32 wKANSAS




Putting Together the Pieces of Empirical Bayes Factor Scores

f(B|A)f(A) f(Y|F)f (F)

f(A|B) = = f(FIY) =

f(B) f(Y)

- For f(Y), we return to the model-implied mean vector and
covariance matrix:

fQOY) ~ Ni(u+ A"pp, AQA" + W)

THE UNIVERSITY OF
. KUKANSAS




A Quick Reminder About Types of Distributions

- For two random variables x and z, a conditional
distribution is written as: f(z|x)

- The conditional distribution is also equal to the joint
distribution divided by the marginal distribution of the
conditioning random variable

f(z x)
f(zlx) =
f(x)
- Therefore, the joint distribution can be found by the
product of the conditional and marginal distributions:

f(z,x) = f(z|x)f (x)

- We can use this result in our analysis:

fYIF)f(F) = f(Y,F) . KUKARNSAS




A Quick Reminder about Multivariate Normal Distributions

. If X is distributed multivariate normally:
Conditional distributions of X are multivariate normal

- We can show that f(Y, F), the joint distribution of the
data and the factors, is multivariate normal

- We can then use the result above (shown on the next
slides) to show that our posterior distribution of the

factor scores is also multivariate normal

> This result only applies for measurement models assuming normally
distributed data and normally distributed factors: CFA

> For IRT (and other measurement models), this result will not hold—but this
distribution is asymptotically normal as the number of items gets large

THE UNIVERSITY OF
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Conditional Distributions of MVN Variables are Multivariate Normal

- The conditional distribution of sets of variables from a
MVN is also MVN

- If we were interested in the distribution of the first g
variables, we partition three matrices:

>The data:[X1:(1vx q) : XZ:(pr—q)]

> The mean vector: |- —-= -~

» The covariance matrix: [Z_ saininte 'y i
21:(p—qxq) , “22:(p—q xp—q)
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Conditional Distributions of MVN Variables

- The, f(X{|X,), conditional distribution of X; given the
values of X, = X, is then:

X1|Xz~Ng(p*, E7)

Where (using our partitioned matrices):

pr= 25250 (x5 — o)

And:
L' =Xy —Z15255 2y
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Derive, Templin, Derive!

- The joint distribution of all I items and K factor scores is

o = ()
_ NI+K( u+ATup]’ APAT + ¥ 1 AD )

_______ r——

PdAT , P

. Using the conditional distributions of MVNs result:

f(F,|Y,) is MVN:

With mean: pp + @AT(APAT + W)1(Y] — )

And Covariance: ® — ®AT (APAT + ¥)~ 1 Ad
H#WTFTemplin
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What All That Math Means for Factor Scores

- When using measurement models assuming normally
distributed data and normally distributed factors (CFA):

> The posterior distribution of the factor scores is MVN

> Therefore, the most likely factor score (MAP) and the expected factor score
(EAP) is given by the mean from the previous slides

> The factor score is a function of the model parameter estimates and the data

THE UNIVERSITY OF
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LINKING SUM SCORES AND CTTTO
MEASUREMENT MODELS VIA FACTOR SCORES
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Connecting Sum Scores and Factor Scores

. Sum scores have a correlation of 1.0 with factor scores

from a parallel items CFA model
> Parallel items model: all factor loadings equal + all unique variances equal

- For example, here are the parallel items model equations
for our three-item GRI example data:

GRI1, = p; + AF, + e,; ep1 ~ N(0,9?)
GRI3, = uy + AE, + e,3; ey ~ N(0,9?)
GRI5, = uy + AFE, + eps; eps ~ N(0,9?)

- With a common loading estimated, we will use a
standardized factor identification (but we don’t have to)

E, ~ N(0,1
p (0,1) . KURKARSAS




Comparing a Pl Model Factor Score to a Sum Score

model0l. lavaan =

GAMBLING =~ (LOADING)*GRI1+{LOADING)*GRI3+{LOADING)*GRIS
GRI1 — {(UVAR)*GRI1
GRIZ — (UVAR)*GRIZ
GRI5 ~— (UVAR)®GRIS

GAMBLING ~~ GAMBLING

model01l.fit = sem{model0l. lavaan, data=datall, estimator = "MLR", mimic="Mplus", fixed.x=FaALSE, std.lv=TRUE)
summary (model01l.fit, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE)

#get factor score estimates from the predict function:
model0l. factorscores = predict(modeldl.fit)

#compare both on plot:
par (mfrow = c(1,1))
plot(model0l. factorscores, datalliGRIsum, type ="o", Twd=3)

#compare with correlation
cor (model01. factorscores, datalliGRIsum)

> cor(hode1D1.factor5core5, datall$cRIsum)
[:1] =
GAMEBLING 1

data013GRIsum

T T T T T
0 1 2 3 4

model01 factorscores
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Comparing for Specific Scores

- To look more closely at factor scores versus sum scores,
consider the following five people in the data set

> #Factor score of a person with GRI1==1, GRI3==1, & GRIS==1 ---- 5um 5core = 3
= personlll_id = datall[datallicRIl==1 &datallicRI3==1 & datall$GRIS==1,]3%ID[1]
= model0l. factorscores [personlll_-id]

[1] -0.7151343

>

= #Factor score of a person with GRI1==1, GRI3==1, & GRIS==2 ---- 5um 5core = 4
= personll2_id = datall[datall$GRIl==1 &datall$GRI3==1 & datall3$GRI5>==2,]%ID[1]
= model0l.factorscores [personll2_id]

[1] -0.3508875

=

> #Factor score of a person with GRI1==1, GRI3==2, & GRIS==1 ---- 5Sum Score = 4
= personl2l_id = datall [datall3cGRI1==1 &datall3GRI3==2 & datall$GRIS==1,]3%ID[1]
> model0l.factorscores [personl2l_id]

[1] -0.350B8B75

=

= #Factor score of a person with GRI1==2, GRI3==1, & GRIS==1 ---- 5um 5core = 4
= personz2ll_id = datadl[datallicRI1l==2 &datall$cGRI3==1 & data0l$cRIS==1,]3%ID[1]
= model0l.factorscores [person2ll_qid]

[1] -0.3508875

=

= #Difference between factor scores for sum score 3 ws. sum score 4:

= model0l.factorscores [personll2_id] - model0l.factorscores[personlll_id]

[1] O.3642468

=

= #Factor score of a person with GRI1==1, GRI3==1, & GRIS==3 ---- 5um 5core = 5
= personll3_id = datall[datallicRIl==1 &datallicRI3==1 & datall$GRIS==3,]3%ID[1]
= model0l. factorscores [personll3_id]

[1] 0.01235935

>

= #Difference between factor scores for sum score 3 ws. sum score 4:

= model0l.factorscores[personll3_id] - model0l.factorscores[personll2_id]

[1] O.3p42468

THE UNIVERSITY OF
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Before We Get Too Far...Did The Model Fit?

. Estimator ML Robust
° GOOd mOdeI flt". Minimum Function Test Statistic 49, 386 19.176
Degrees of freedom 4 4
P-value (Chi-square) 0.000 0.001
scaling correction factor 2.575
for the vuan-Bentler correction (Mplus variant)
Mode]l test baseline model:
Minimum Function Test Statistic 480. 988 199, 641
Degrees of freedom 3 3
P-value 0. 000 0. 000
- We could use the
User model wversus baseline model:
|| |C)(j€3| Comparative Fit Index (CFI) 0,905 0.923
Tucker-Lewis Index (TLI) 0.929 0.942
Loglikelihood and Information Criteria:
Loglikelihood user model (HO) -5279, 302 -5279, 302
scaling correction factor 1.001
] SO’ We COUld farl thlIE MLR cnrrect‘!nn
Loglikelihood unrestricted model (H1) -5254, 609 -5254, 609
Scaling correction factor 2.236
use the factor for the MLR correction
Mumber of free parameters 5 5
Scores or the Akaike (AIC) 10568.605  10568.605
Bayesian (BIC) 10594, 592 10594, 592
Su Scores sample-size adjusted Bayesian (BIC) 10578.709  10578.709
Root Mean Square Error of Approximation:
RMSEA 0.092 0.053
90 pPercent Confidence Interval 0.070 0.118 0.039 0.069
F-value RMSEA <= 0.05 0.001 0.331
V4 . .
° But We Won t! standardized Root Mean square Residual:
SRMR 0.115 0.115
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And...About Reliability

. Factor score reliability is:

- lavaan does not compute the factor score standard errors
(Mplus does)...but that’s okay, because we can grab them
from the matrix algebra on p. 35
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R Syntax for Computing SE of Factor Scores

e T

= #getting more decimal places from model estimates estimates
> parameterestimates(modeldl. fit)fest
[1] 0.5759246 0.5759246 0.5759246 0. 5860709 0.5860709 0.5860709 1.0000000 1.8226048 1.5479042 1.5928144 0.0000000 0.3614116

#saving into matrices:

Tambda = matrix{. 5759246, nrow=3, ncol=1)

psi = diag(rep(.5860709,times=3))

mu = matrix(c(l.8226048, 1.5479042, 1.5928144),nrow=3, ncol = 1)
phi = matrix(1l, nrow=l, ncol=1)

mu_f = matrix{0, nrow=1l, ncol=1)

sigma = lambda%*%t{lambda) + psi
¥ = matrix{chind(data0l$crI1, datal0l$GRI3, datall$GRIS5), ncol=3)

#getting mean and wvariance of factor scores from slide 35:
scores = t{phi %*% t{lambda) %*% solve(sigma)®*%(t(x) - mu%*Ematrix(l,nrow=1l, ncol=dim(x)[1])})
varscores = phi - phi %%% t{lambda) %*% solve(sigma) %*% lambda %*% phi

#the standard error of the factor score:
sqrr(varscores)

[,1]
[1,] 0.6088217

¥ Y Y Y Y Y Y YYYYVYYYYYYY

#showing they match with lavaan's estimated scores
plot{scores, modelOl.factorscores)

#factor score reliability
1/{1+varscores)

[,1]
[13] 0.7295735

¥ ¥ VY Y Y

Reliability of Factor Score =.73

What about the reliability of our sum scores?
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Classical Test Theory from a CFA Perspective

. In CTT the unit of analysis is the test score:
Yp,Total — Tp + Ep

+ In CFA the unit of analysis is the item:
Ypi = ,Llli + /1in + epl-

- To map CFA onto CTT, we must put these together:

I
Yp,Total — z Ypi
=1
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Further Unpacking of the Total Score Formula

- Because CFA is an item-based model, we can then substitute each
item’s model into the sum:

I I
Yp,Total — z Ypi — Z(.uli + /1in + epi)
=1 =1

=
I

I
=2[J1i+ ZAL Fp+ epl-
=1

I
=1 =1

- Mapping this onto true score and error from CTT:

I I
T=zu,i+ zli FpandE=Zepi
i=1 i=1

I
i=1
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CFA-Model Estimated Reliability of Sum Scores

« From:

I I I
T=Zu,i+ ZAi FpandE=Zepi
i=1 1 i=1

=

. Var(T) =Var(Xi—,py,) + (Ti=1 A7 )Var(F,) =

1 2
S ) o
i=1

. Var(E) = Var(2{=1 epi) =

I

> i
=1

For models with correlated residuals, those add to Var(E! e
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CFA-Model Estimated Reliability of Sum Scores

- From the previous slide:

Ve (Zak) o
- Var(T) +Var(E) (Zl':l/li )2013 + 3L p?

p

- And...we can do this in lavaan syntax:

model101. Tavaan = "

GAMELING =~ (LOADING)*GRI1+{LOADING)*GRI3+{(LOADING)*GRIS
GRI1 ~~ {(UVAR)*GRI1
GRII ~— (UVAR)*GRIZ
GRIS5 ~— (UVAR)*GRIS
GAMBLING ~~ GAMBLING
rho 1= { (3*L0ADING)AZ2 )/ ({(3*LOADING)A2)+3I*UVAR)
model01l.fit = sem{model0l.lavaan, data=datall, estimator = "MLR", mimic="Mplus", fixed.x=FALSE, std.lv=TRUE)

summary(model0l.fit, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE)

- The estimated reliability is....

Defined parameters:
rho 0.629 0.025 24,968 0.000 0.629 0.629
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Notes on CFA-Estimated Reliabilities

- The CFA-Estimated reliability is for the sum score, not the
factor score

- The sum score’s reliability is .629 (SE = .025);

the factor score’s reliability is .73

> The difference comes from additional sources of error in the factor score:
+ Sampling error
+ Error from the prior distribution (squishing the variance of the factor/error)

- The sum score’s reliability is equal to the

Spearman Brown reliability estimate
> Therefore, CTT reliability estimates can come from CFA....
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Comparing Other CFA Models with Sum Scores

- Another model to consider is the Tau-equivalent items
model, which, for CFA, means equal loadings but different
unique variances:

- For example, here are the parallel items model equations
for our three-item GRI example data:

GRI1, = pi; + AE, + e,;; ep1 ~ N(0,¥7)
GRI3, = u; + AF, + ey3; eps ~ N(0,13)
GRIS, = p1; + AF, + es; eps ~ N(0,92)

- With a common loading estimated, we will use a
standardized factor identification (but we don’t have to)
FE, ~N(0,1)
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The Tau Equivalent Model in lavaan

- Note: shown for didactic purposes (don’t use this model)

#Tau Equivalent Model--——————--———
model02. Tavaan = "

GAMBLING =~ (LOADING)*GRI1+(LOADING)*GRI3+(LOADING)*GRIS
GRI1 ~~ (UVARL)*GRI1
GRI3 ~ (UVAR3)*GRI3
GRI5 ~— (UVARS)*GRIS

GAMBLING ~— GAMBLIMG

rho 1= ( (3*LOADING)A2 )/ (((3*LOADING)A2)+UVARL+UVARI+UVARS)

- Yielding model fit indices of:

Estimator ML Robust
Minimum Function Test Statistic 18 897 8.482
Degrees of freedom 2 2
F-value (Chi-square) 0. 000 0.014
scaling correction factor 2.228

for the yvuan-Bentler correction (Mplus variant) ysar model versus baseline model:

Comparative Fit Index (CFI) 0.965 0.967
Tucker-Lewis Index (TLI) 0.947 0.951
Root Mean Square Error of Approximation:
RMSEA 0. 080 0.049
90 pPercent Confidence Interval 0.049 0.114 0.028 0.073
P-value RMSEA <= 0.05 0.053 0.475

standardized Root Mean Square Residual:

SRR 0.040 0.040 THE UNIVERSITY OF
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Parameter Estimates vs.

Factor Score vs. Sum Score

> cor(model02.factorscores, datall$GRIsum)

Estimate std.err Z-value P(=|z]|) std. v std.all
Latent variables: [,1]
GAMBLING =~
GRI1 (LOAD) 0. 567 0.027 20.821 0.000 0. 567 0.560 GAMBELING 0.9945267
GRIZ (LOAD) 0. 567 0.027 20. 821 0. 000 0. 567 0.638
GRIS (LOAD) 0. 567 0.027 20.821 0.000 0. 567 0.589
© 1 1Intercepts: o
GRI1 1.823 0.028 64. 871 0.000 1.823 1.801
GRIZ 1.548 0.024 65. 365 0. 000 1.548 1.743
GRIS 1.593 0.027 58.749 0.000 1.593 1.8656 co
GAMBLING 0.000 0. 000 0.000
=
- variances: so000 o
GRI1 (UVARL) 0.703 0.063 11.116 0. 000 0.703 0.686
GRIZ (UVAR3) 0.468 0.043 10.903 0.000 0.468 0.593 o o oo
GRI5 (UVARS) 0.603 0.054 11.148 0.000 0.603 0.653
GAMBL 1.000 1.000 1.000
o o o coooo
o G000 00
E
?
r 2 4 o 0 0 0000
[0
I3
o CO00 C0OO0CO
B
[
o
w — 00000000000 o
CO000O000 GO O
w — CO0000O0 O
Coo00 O
< - oo o
o
I I I I I
0 1 2 3 4

model02 factorscores
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Factor vs. Sum Score...by item

- Now what matters is which item had a higher score...

> Items with higher information (loading”2/unique variance) result in bigger
jumps in factor score relative to items with lower information

> 5COoremat

GRI1 GRIZ GRIS SUMSC F5-FI F5-TE
1 3 -0.71513425 -0.704060532
2 4 -0.35088745 -0.353082562
1 4 -0.35088745 -0.251461804
1 4 -0.35088745 -0.402560941
3 5 0.01335935 -0.002104592

N STy S
R

-

variances:
GRI1 (uvarl) 0. 703
GRI3 (UVARZ) 0.468
GRI5 (UvARS) 0. 603
S~ ARSI T AAS
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Tau Equivalent Reliability for Factor and Sum Scores

. Factor score reliability estimate: .73

= 1/{1+varscores)

[,1]
[1,] 0.7279126

- Sum score reliability estimate: .62

Defined parameters:
rho 0.620 0.027 23.220 0. 000 0.620 0.594

- The sum score reliability is actually coefficient alpha
> Cronbach’s alpha (1951) /Guttman’s Lambda 6 (1945)

- HUGE NOTE: THIS IS WHY RELIABILTY IS NOT AN INDEX OF
MODEL FIT

> IT CAN BE SHOWN TO DEPEND ON PARAMETERS THAT WILL BE BIASED UNDER
MISFITTING MODELS
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Finally...the Unrestricted CFA Model

. All of the previous slides were to get us to see the

relationship between sum scores and CFA models

> We would never estimate either...we would use an unrestricted CFA model
> Here is what happens with an that unrestricted CFA model

model103. Tavaan = "

GAMBLING =- (LOADINGL)*GRI1+{(LOADING3)*GRI3+(LOADINGS)*GRIS

GRI1 ~~ (UVAR1)*GRI1

GRI3 ~—~ (UVARI)I*GRI3

GRI5 ~—~ (UVARS)®*GRIS

GAMBLING ~—~ GAMBLING

rho := { (LOADINGL+LOADING3+LOADINGS)A2 )/ (({(LOADINGL+LOADING3I+LOADINGS)AZ2)+UVARL+UVARI+UVARS)

- This model fits perfectly—so no need to check model fit
- Compared to the other two models (we reject CTT)

= anova(modal0l. fit, model02.fit, model03.fit)
Scaled chi square Difference Test (method = "satorra.bentler.2001")

of AIC BIC chisg chisqg diff of diff pr(>chisq)
model03.fit O 10527 10574 0.000
model02.fit 2 10%42 10578 18. 897 8.4825 2 0.014390 *
model0l.fit 4 10569 10595 49, 384 10.4306 2 0.005433 == mJ'THEUNIVERSITYOE
57 E
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Parameter Estimates vs.

Factor Score vs. Sum Score

. Estimate std.err Z-value P(>|z|) std. v std.all = COr (deE-l D;.faEtDFSEDrES, data[}1$GR15um:|
Latent variables: [ 1]
GAMBLING =- 1
GR (LOADINGL) 0.638 0.052 12.249 0. 000 0.638 0.621 GAMBLING 0.9975023
GR (LOADING3) 0.463 0.048 10.124 0.000 0.463 0.535 ) T o - - - -
GR (LOADINGS) 0.635 0.052 12.137 0. 000 0.635 0.652
Intercepts: o
GRI1 1.823 0.028 64,871 0.000 1.823 1.775
GRI3 1.548 0.024 65. 365 0.000 1.548 1.788
GRIS 1.593 0.027 59.749 0.000 1.593 1.635 c o
GAMBLING 0.000 0. 000 0.000
. Qi 00 O
Variances:
GRI1 (UVAR1) 0.647 0.076 8.481 0. 000 0.647 0.614
GRIZ (UVARZ) 0.535 0.047  11.449 0. 000 0. 535 0.714 oo o o
GRIS (UVARS) 0. 546 0.061 §.953 0.000 0. 546 0.575
GAMBL 1.000 1.000 1.000
(o3 e FTs) [s) =)
Q00 Q00 a0
E
B
r 2 4 oS a an
U]
L==3
% [ RanunlanrnelNs sha syl
@
el
oo — I COnno0O00D Q0 O
[sfelanuusslesesleiye]
w — [sleRannnlanyeiye]
QoD O
=5 — Loyl
[s]
T T T T T
0 1 2 3 4
model03 factorscores
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Factor Scores by Sum Score...by item

- Now what matters is which item had a higher score...

> Items with higher information (loading”2/unique variance) result in bigger

jumps in factor score relative to items with lower information

= SCOoremat

GRI1 GRIZ GRIS5 SUMSC F5-PI F5-TE F5-CFA
3 -0.71513425 -0.704060532 -0.7132409
4 -0.35088745 -0.353082562 -0.2931139
4 -0.35088745 -0.251461804 -0.4003987
4 -0.35088745 -0.402560941 -0.3573275
3 0.01335935 -0,002104592 0.1270130

(RO ey
R ey
W R

Estimate std.err Z-value P(|z|) std. v std.all
Latent variables:
GAMBLING =~

GR {LOADINGL) 0.638 0.052 12,249 0. 000 0,038 0,621
GR (LOADING3) 0.463 0.046 10.124 0. 000 0.463 0.535
GR {LOADINGS) 0.635 0.052 12,137 0. 000 0.635 0.a52
Intercepts:
GRI1 1.823 0.028 od4. 871 0. 000 1.823 1.775
GRI3 1.548 0.024 65. 365 0. 000 1.548 1.788
GRIS 1.593 0.027 59.749 0. 000 1.593 1.635
GAMBLING 0. 000 0. 000 0. 000
variances:
GRI1 (UVARL) 0.047 0.076 8.481 0. 000 0,047 0,614
GRI3 (UvVAR3) 0.535 0.047 11.449 0. 000 0.535 0.714
GRIS (UVARS) 0. 546 0.061 §.953 0. 000 0. 546 0.575
GAMBL 1. 000 1. 000 1. 000
infol 0.629 0.157 4,015 0. 000 0.629 0.629
info3 0.401 0. 094 4,265 0. 000 0.401 0.401

infos 0.739  0.173  4.268 0.000  0.739  0.739 Iq ]THEUNIVERSIWOE
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CFA Equivalent Reliability for Factor and Sum Scores

- Factor score reliability estimate: .734

= 1/{1+varscores)

[.1]
[1,] 0.7346829

- Sum score reliability estimate: .636

Defined parameters:
rho 0.630 0.025 25. 248 0. 000 0.630 0.632

- The sum score reliability is sometimes called coefficient
omega (see McDonald, 1999)

- If all three models fit the data then
Omega > Alpha > Spearman Brown
But...the differences are very small
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Potential Sources of Error in a Factor Score

Measurement error
> e.g., the SE(F)

- Model misspecification error of various types:

>—Dimensionality-misspecification-error

» Outcome distribution misspecification error

+ e.g., Assuming Likert-type data to be continuous and using a normal distribution
> Factor distribution misspecification error

+ e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

- Sampling error

Prior Distribution Error
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So....?

- Up to this point we have seen

> Assumptions underlying sum scores
> Definitions of factor scores
> How sum scores imply a very specific CFA model

- We have also seen a history of reliability:
> Spearman Brown (1910): Parallel items model
+ Equal loadings/unique variances
> Guttman/Cronbch Alpha (1945,1953): Tau equivalent items model
+ Equal loadings
> Coefficient omega (source unknown): Unrestricted CFA model
Reliability for factor scores
> Also note: the next step is conditional reliability (IRT models)

Y

- The point is that if you are ever reporting scores but not using them
in subsequent analyses, then use a factor score

- But what we haven’t seen is what to do when we cannot use a

simultaneous analysis/SEM
> And that answer will have to come during the next lecture...
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WRAPPING UP
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Wrapping Up

- Today was our first pass at trying to show how SEM and
CFA relate to what is frequently done in most analyses

- Next time we will start again with factor scores and work
to make the sources of error minimized

- To do so, we’ll have to learn a little about missing data,

multiple imputation, and Bayesian analyses
> Hence needing two lectures on the topic!

- These are the most important lectures this semester

> It provides a WHY and HOW for doing science with errors of measurement

> Take this information and compare it to how people use scores...like:
http://www.ets.org/s/gre/pdf/gre guide.pdf
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http://www.ets.org/s/gre/pdf/gre_guide.pdf

