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Today’s Class

• Scores
 Types of scores

 Sum scores / test scores

 Factor scores

 Score contents

 Relating sum scores to factor scores

 Score reliability

• Why using scores alone in separate analysis, while done 
almost always, is not good practice
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The Big Picture

• Overall, the purpose of this class and the main message of 
structural equation models is that multivariate analyses 
with (and without) measurement error should be 
conducted simultaneously
 Error propagates

• There are many instances when one cannot do a 
simultaneous analysis
 This lecture is an attempt to get you as close to results from a simultaneous 

analysis by getting you to understand the psychometric and statistical 
properties of using scores 
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WHAT’S IN A SUM SCORE?
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The Purpose of this Lecture: Some Clarity on Score

• As I’ve been a student and a teacher I have found the topic of scores 
to be incomplete and often contradictory

• Some things I’ve heard:
 “Sum scores are almost always okay”
 “Factor scores (think GRE) are okay if they are from some strange sounding model…”
 “…otherwise factor scores are the work of the devil”

• A question that I hearing: Why use Structural Equation Modeling (or 
CFA/IRT) when I can just use a sum of the items?

 Sum of the items == sum score == total score == Add s**t up (ASU) model

• Sum score are used as:
 Observed variables in secondary analyses
 Results given to participants, patients, students, etc… 

• Current practice in psychological/educational research seems to be:
 Use a sum score until some reviewer (#3?) says you cannot use one
 At that point, use a confirmatory factor model to verify that you have a one-factor scale
 …then use a sum score
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Demonstration Data

• To demonstrate the concepts appearing throughout this 
section, we will revisit the three-item GRI scale used in the 
lecture on Structural Equation Models
 Items: GRI1, GRI3, and GRI 5

• As scores on each item ranged from 1 to 6 in integer units, 
this means sum scores must fall within a range of 3 to 18
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Distribution of GRI Sum Scores
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Psychometric Properties of as Sum Score

• The use of sum scores brings about a discussion about the 
psychometrics that underlie sum scores

• What you have learned about measurement so far likely 
falls under the category of CTT:
 Writing items and building scales

 Item analysis

 Score interpretation

 Evaluating reliability and construct validity

• Big picture: We will view CTT as model with a restrictive 
set of assumptions within a more general family of latent 
trait measurement models
 Confirmatory Factor Analysis is a measurement model
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Differences Among Measurement Models

• What is the name of the latent trait measured by a test?
 Classical Test Theory (CTT)  =  “True Score” (T)

 Confirmatory Factor Analysis (CFA)  =  “Factor Score” (F)

 Item Response Theory (IRT)  =  “Theta” (θ)

• Fundamental difference in approach:
 CTT  unit of analysis is the WHOLE TEST (item sum or mean)

 Sum = latent trait, and the sum doesn’t care how it was created

 Only using the sum requires restrictive assumptions about the items

 CFA, IRT, and beyond  unit of analysis is the ITEM
 Model of how item response relates to an estimated latent trait

 Different models for differing item response formats

 Provides a framework for testing adequacy of measurement models
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Classical Test Theory: Assumed Model

• In CTT, the TEST is the unit of analysis: 
𝑌Total = 𝑇 + 𝑒

 True score T:
 Best estimate of ‘latent trait’: Mean over infinite replications
 Scale of T is the same as the scale of 𝑌Total

 Error e:
 Expected value (mean) of 0, expected to be uncorrelated with T
 Supposed to wash out over repeated observations

• So the expected value of 𝒀𝒕𝒐𝒕𝒂𝒍 is 𝑻
 Put another way: should the model fit, 𝑌𝑡𝑜𝑡𝑎𝑙 is an unbiased estimate of 𝑇
 The true score is why you created the sum in the first place your test purports to measure one 

thing, bringing about one sum score per person

• No distributional assumptions made…yet

• Even if your data fit a one-factor model, when using a sum score, the error 
portion is part of 𝑌𝑇𝑜𝑡𝑎𝑙

 But, it is only one part of the error that is in a sum score

• Because the CTT model does not include individual items, 
items must be assumed exchangeable 

 If the model fits, then more items means better reliability
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More CTT Basics

• A goal of CTT is to quantify reliability
 Reliability is the proportion of variance in the sum score that is due to variation in 

the latent trait

• Reliability decomposition comes from Var(Y)
 Var() function comes from the expected value in mathematical statistics

 𝐸 𝑔 𝑥 =  𝑔 𝑥 𝑓 𝑥 𝑑𝑥
 Over the sample space/support of x with probability density function f(x)
 Replace integral with a sum for discrete x (and pdf for probability mass function)

 Mean: 𝜇 = 𝐸 𝑥 =  𝑥 𝑓 𝑥 𝑑𝑥

 Variance: 𝑉𝑎𝑟 𝑥 = 𝐸 𝑥 − 𝜇 2 = 𝐸 𝑥 − 𝐸 𝑥
2

=  𝑥 − 𝜇 2 𝑓 𝑥 𝑑𝑥

• For CTT: 
Var 𝑌𝑇𝑜𝑡𝑎𝑙 = Var 𝑇 + 𝑒 = Var 𝑇 + 𝑉𝑎𝑟 𝑒 + 2𝐶𝑜𝑣 𝑇, 𝑒

• But, 𝐶𝑜𝑣 𝑇, 𝑒 = 0 as T and e are assumed independent, so
Var 𝑌𝑇𝑜𝑡𝑎𝑙 = Var 𝑇 + 𝑉𝑎𝑟 𝑒
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Moving from Variance to Reliability

• Reliability, as a proportion of variance in sum score due to 
the trait:

𝜌 =
Var 𝑇

Var 𝑌
=

Var 𝑇

Var 𝑇 + Var(𝑒)
 Var 𝑌 == variance of observed sum score

 Var 𝑇 == variance of true score == variability in the unobserved latent trait 
== individual differences

 Var 𝑒 == variance of error == measurement error

• Key question: how does one quantify reliability?
 We will see that depends….
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Draw Templin, Draw!

• Picture of distributions of Y, T, and e…
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Parceling: Creating Another Type of Sum Score

• Another type of sum score is a parcel (sometimes called an 
item parcel or an item bundle)
 A parcel then takes the places of the summed variables in a larger structural 

equation model

• There is some debate about what parceling assumes
 There are some who believe a parcel assumes a CTT model:

𝑌Total = 𝑇 + 𝑒

 There are others who parceling makes no assumptions, which is 
mathematically equivalent to:

𝑌Total = 𝑒

• Either way:
 What we are saying about CTT scores applies to parcels and parceling

 Parceling is frequently done to hide model misfit, so it is like cheating
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Potential Sources of Error in a Sum Score

• Measurement error 
 e.g., the 𝑒 in 𝑌 = 𝑇 + 𝑒

• Model misspecification error of various types:
 Dimensionality misspecification error

 e.g., Assuming one dimension when there is more than one present
 Parameter constraint misspecification error

 e.g., Assuming overly restrictive constraints (see next section and all of CTT)
 Linear model functional misspecification error

 e.g., Assuming a linear relationship between the factor and the items when a non-linear one is 
present

 Outcome distribution misspecification error
 e.g., Assuming Likert-type data to be continuous and using a normal distribution

 Factor distribution misspecification error
 e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

• Missing data error
 How you treat missing responses to items makes even more untenable assumptions

• Sampling error 
 (meaning error in parameters due to small n) is not a source of error in a sum score
 Note: measurement error is sampling error with respect to items instead of people
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Why Error Matters

• Ignoring error will lead to inaccurate and potentially 
misleading results
 Biased estimates (Type II error)

 Biased standard errors of estimates (Type I error)

• Some sources of error matter more than others

• Measurement error is often thought of as the worst, but I 
believe model misspecification error (of all five types from 
last slide) to be even worse than measurement error
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95% Confidence Intervals: Quantitative (GRE 2011 Guide)
SEM ranges from 9 to 55
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FACTOR SCORES
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Factor Scores

• To describe a factor score, first remember the CFA model:
𝑌𝑝𝑖 = 𝜇𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

• Simply put: A factor score is an estimated value for 𝐹𝑝, or  𝐹𝑝

• There has long been a resistance to using factor scores in 
psychological research with the most common objection cited being 
the indeterminacy of factor scores
 Indeterminacy of factor scores == factor scores are not unique

• Why are factor scores not unique? Because factor models must fix 
some parameters for identification

 The values may be indeterminate—but in CFA and in ML versions of EFA the rank order 
of the factor scores is unique
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PRE 906, SEM: On Test Scores

A Depiction of Traditional Psychometric Estimates

Latent Trait Score

Low High

Bieber Cyrus Swift

Ordering provided by Daphne Templin
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Factor scores provide a weak ordering of people 
(weak because of error): like ordinal-level measurement



Draw Templin, Draw!
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Example factor scores and their distributions (discussed next)

A different version of factor model identification would change 
the numbers on the X-axis, but the shapes and order of the 
distributions would not change

Factor scores provide a weak ordering of people 
(weak because of error)
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Factor Scores and Testing

• These factor scores are found using the same methods as 
are used in practice for finding test scores (like the GRE)
 The only difference between such test scores and factor scores in this class is 

the distributional assumptions of the measurement model (IRT is CFA with 
assumed Bernoulli/Multinomial distributed items)

 They behave the same

• That said, some in the testing industry don’t quite realize 
how these work

See: http://images.pearsonassessments.com/images/tmrs/Responses_Walter_Stroup.pdf (p. 2)
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More on Factor Scores

• Factor scores (by other names) are used in many domains
 Item response theory (CFA with categorical items): GRE scores are factor scores

• Because the historical relationship between CFA and 
exploratory factor analysis, factor scores are widely avoided
 In EFA factor meaning is unknown so rotations were used 

• Further making the issue even more difficult, many crazy 
methods for determining factor scores have been developed
 See http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773873/

• We will only focus on one method for estimating factor scores 
that is used in nearly all fields based on the posterior 
distribution of the factor score given the data
 Identical to methods described by Lawley and Maxwell (1971) of Bartlett (1936)
 Also used in generalized linear mixed effects models where factor scores are called 

Best Linear Unbiased Predictors (or BLUPs)
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Factor Scores: The Big Picture

• A factor score is the estimate of a subject’s unobserved latent trait

• Because this latent variable is not measured directly, it acts like it is 
missing data: you really cannot know with certainty its true value

• It is difficult to pin down what the missing data value (factor score 
value) should be precisely

 Each factor score has a posterior distribution of possible values

 Often, the mean of the posterior distribution is the “factor score” 
 In CFA, the mean is the most likely value

 Depending on the test, there may be a lot of error (variability) in the distribution

• Therefore, the use of factor scores must reflect that the score is not 
known and is represented by a distribution
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Draw Templin, Draw!
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Example factor scores and their distributions (discussed next)

A different version of factor model identification would change 
the numbers on the X-axis, but the shapes and order of the 
distributions would not change

Factor scores provide a weak ordering of people 
(weak because of error)
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How Distributions get Summarized into Scores

• There are two ways of providing a score from the factor 
score posterior distribution:
 Expected a posteriori (EAP): the mean of the distribution

 Maximum a posteriori (MAP): the most likely score from the distribution

• In CFA factor score distributions are normal (so EAP=MAP)
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MAP
MAP

EAP

EAP

26



Additional Information on Factor Scores

• For EAP factor scores:


 𝐹𝑝 = 𝐸 𝑓 𝐹𝑝 𝐘

 𝑆𝐸  𝐹𝑝 = 𝑉𝑎𝑟 𝑓 𝐹𝑝 𝐘

• For MAP factor scores:


 𝐹𝑝 = arg max
𝐹𝑝

𝑓 𝐹𝑝 𝐘

 𝑆𝐸  𝐹𝑝 =  
𝜕2

𝜕𝐹𝑝
2 𝑓 𝐹𝑝 𝐘

 𝐹𝑝

−
1

2
(square root of Fisher’s information)

• For CFA (Normal Data/Normal Factor) measurement models:
 MAP = EAP
 Variance is identical across all people, regardless of score

• For non-CFA measurement models:
 MAP ≠ EAP (but does with infinite items)
 Standard error is a function of the factor score

PRE 906, SEM: On Test Scores 27



Tying Factor Scores to Classical Test Theory

• Recall Classical Test Theory’s model:
𝑌 = 𝑇 + 𝐸

• With reliability: 𝜌 =
𝑉𝑎𝑟 𝑇

𝑉𝑎𝑟 𝑇 +𝑉𝑎𝑟(𝐸)

• For factor scores:
 𝑉𝑎𝑟 𝑇 = 𝜎𝐹

2: the (possibly estimated) variance of the factor

 𝑉𝑎𝑟 𝐸 = 𝑆𝐸  𝐹𝑝
2

: From the posterior distribution of the factor score

• Therefore, reliability of factor scores can be computed 
using model estimated parameters
 Caution: The factor model must fit to use these parameters!
 Caveat: We’ll soon see reliability for sum scores can be estimated by 

CFA model parameters
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Factor Scores: Empirical Bayes Estimates

• For most (if not all) latent variable techniques, the factor scores 
come from Empirical Bayes estimation—meaning there is a prior 
distribution present 

 Empirical = some or all of the parameters of the distribution of the latent variable are 
estimated (i.e., factor mean and variance)

 Bayes = comes from the use of Bayes’ Theorem

• Prior == Assumed factor distribution with mean/variance

• This is true for all CFA, IRT, mixed/multilevel/hierarchical models
 And is true for models that don’t have a label (e.g., Poisson Factor Analysis?)
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Bayes’ Theorem

• Bayes’ Theorem states the conditional distribution of a 
variable A (soon to be our factor score) given values of a 
variable B (soon to be our data) is:

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
=

𝑓 𝐵 𝐴 𝑓(𝐴)

 𝑎∈𝐴
𝑓 𝐵 𝐴 = 𝑎 𝑓 𝐴 = 𝑎 𝑑𝑎

• 𝑓 𝐴 𝐵 is the distribution of A, conditional on B
 We will come to know this as the posterior distribution of the factor score, 

conditional on the data observed or 𝑓 𝐅 𝐘

• 𝑓 𝐵 𝐴 is the distribution of B, conditional on A
 We will come to know this as our measurement model or 𝑓 𝐘 𝐅

• 𝑓 𝐴 is the marginal distribution of A
 We will come to know this as the prior distribution of the factor or 𝑓(𝐅)
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For Categorical A, replace integral with sum
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Putting Together the Pieces of Empirical Bayes Factor Scores

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐘 𝐅 , consider the measurement model (here CFA) for one item:
𝑌𝑝𝑖 = 𝜇𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

Where: 𝑒𝑝𝑖 ∼ 𝑁 0, 𝜓𝑖
2

• Using expected values, we can show the distribution for this one item is:

𝑓 𝑌𝑝𝑖|𝐹𝑝 ∼ 𝑁 𝜇𝑖 + 𝜆𝑖𝐹𝑝, 𝜓𝑖
2

• Therefore, for all 𝐼 items, our conditional distribution is:

𝑓 𝐘 𝐹𝑝 ∼ 𝑁𝐼 𝝁 + 𝚲𝐹𝑝, 𝚿

• With multiple factors, this becomes: 
𝑓 𝐘 𝐅 ∼ 𝑁𝐼 𝝁 + 𝚲𝐅, 𝚿
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Putting Together the Pieces of Empirical Bayes Factor Scores

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐅 , consider the distribution assumed by the factor:
 For one factor

𝑓 𝐹𝑝 ∼ 𝑁 𝜇𝐹 , 𝜎𝐹
2

 For multiple factors K

𝑓 𝐅 ∼ 𝑁𝐾 𝛍𝐹, 𝚽

• We must pick an identification method which determines if 
certain parameters of 𝛍𝐹 and 𝚽 are fixed or are estimated
 Any method identification works, so we keep 𝛍𝐹 and 𝚽 throughout
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Putting Together the Pieces of Empirical Bayes Factor Scores

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐘 , we return to the model-implied mean vector and 
covariance matrix:

𝑓 𝐘 ∼ 𝑁𝐼 𝛍 + 𝚲𝑇𝛍𝐹 , 𝚲𝚽𝚲𝑇 + 𝚿
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A Quick Reminder About Types of Distributions

• For two random variables 𝑥 and 𝑧, a conditional 
distribution is written as: 𝑓 𝑧 𝑥

• The conditional distribution is also equal to the joint 
distribution divided by the marginal distribution of the 
conditioning random variable

𝑓 𝑧 𝑥 =
𝑓(𝑧, 𝑥)

𝑓(𝑥)

• Therefore, the joint distribution can be found by the 
product of the conditional and marginal distributions:

𝑓 𝑧, 𝑥 = 𝑓 𝑧 𝑥 𝑓 𝑥

• We can use this result in our analysis:
𝑓 𝐘 𝐅 𝑓 𝐅 = 𝑓(𝐘, 𝐅)
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A Quick Reminder about Multivariate Normal Distributions

• If 𝐗 is distributed multivariate normally: 

Conditional distributions of 𝐗 are multivariate normal

• We can show that 𝑓 𝐘, 𝐅 , the joint distribution of the 
data and the factors, is multivariate normal

• We can then use the result above (shown on the next 
slides) to show that our posterior distribution of the 
factor scores is also multivariate normal
 This result only applies for measurement models assuming normally 

distributed data and normally distributed factors: CFA

 For IRT (and other measurement models), this result will not hold—but this 
distribution is asymptotically normal as the number of items gets large
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Conditional Distributions of MVN Variables are Multivariate Normal 

• The conditional distribution of sets of variables from a 
MVN is also MVN

• If we were interested in the distribution of the first q
variables, we partition three matrices:

The data: 𝐗1:(𝑁 𝑥 𝑞) 𝐗2:(𝑁 𝑥 𝑝−𝑞)

The mean vector: 
𝝁1:(𝑞 𝑥 1)

𝝁2:(𝑝−𝑞 𝑥 1)

The covariance matrix: 
𝚺11:(𝑞 𝑥 𝑞) 𝚺12:(𝑞 𝑥 𝑝−𝑞)

𝚺21:(𝑝−𝑞 𝑥 𝑞) 𝚺22:(𝑝−𝑞 𝑥 𝑝−𝑞)
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Conditional Distributions of MVN Variables

• The, 𝑓 𝐗1 𝐗2 , conditional distribution of 𝐗1 given the 
values of 𝐗2 = 𝐱2 is then:

𝐗1|𝐗2~𝑁𝑞 𝝁∗, 𝚺∗

Where (using our partitioned matrices):

𝝁∗ = 𝝁1 + 𝚺12𝚺22
−1 𝐱2

𝑇 − 𝝁𝟐

And:
𝚺∗ = 𝚺11 − 𝚺12𝚺22

−1𝚺21
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Derive, Templin, Derive!

• The joint distribution of all 𝐼 items and 𝐾 factor scores is

𝑓 𝐘, 𝐅 = 𝑓
𝐘
𝐅

= 𝑁𝐼+𝐾
𝝁 + 𝚲𝑇𝝁𝐹

𝝁𝐹
, 𝚲𝚽𝚲𝑇 + 𝚿 𝚲𝚽

𝚽𝚲𝑇 𝚽

• Using the conditional distributions of MVNs result:

𝑓 𝐅𝑝 𝐘𝑝 is MVN:

With mean: 𝝁𝐹 + 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝐘𝑝
𝑇 − 𝝁

And Covariance: 𝚽 − 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝚲𝚽

#WTFTemplin
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What All That Math Means for Factor Scores

• When using measurement models assuming normally 
distributed data and normally distributed factors (CFA):
 The posterior distribution of the factor scores is MVN

 Therefore, the most likely factor score (MAP) and the expected factor score 
(EAP) is given by the mean from the previous slides

 The factor score is a function of the model parameter estimates and the data
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LINKING SUM SCORES AND CTT TO 
MEASUREMENT MODELS VIA FACTOR SCORES 
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Connecting Sum Scores and Factor Scores

• Sum scores have a correlation of 1.0 with factor scores 
from a parallel items CFA model
 Parallel items model: all factor loadings equal + all unique variances equal

• For example, here are the parallel items model equations 
for our three-item GRI example data:

𝐺𝑅𝐼1𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝1; 𝑒𝑝1 ∼ 𝑁 0, 𝜓2

𝐺𝑅𝐼3𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝3; 𝑒𝑝3 ∼ 𝑁 0, 𝜓2

𝐺𝑅𝐼5𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝5; 𝑒𝑝5 ∼ 𝑁 0, 𝜓2

• With a common loading estimated, we will use a 
standardized factor identification (but we don’t have to)

𝐹𝑝 ∼ 𝑁 0, 1
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Comparing a PI Model Factor Score to a Sum Score
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Comparing for Specific Scores

• To look more closely at factor scores versus sum scores, 
consider the following five people in the data set
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Before We Get Too Far…Did The Model Fit?

• Good model fit…

• We could use the 
model

• So, we could
use the factor
scores or the
sum scores

• But we won’t!
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And…About Reliability

• Factor score reliability is:

𝜌 =
𝜎𝐹

2

𝜎𝐹
2 + 𝑆𝐸 𝐹𝑝

2

• lavaan does not compute the factor score standard errors 
(Mplus does)…but that’s okay, because we can grab them 
from the matrix algebra on p. 35
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R Syntax for Computing SE of Factor Scores

PRE 906, SEM: On Test Scores

Reliability of Factor Score = .73

What about the reliability of our sum scores?
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Classical Test Theory from a CFA Perspective

• In CTT the unit of analysis is the test score:
𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑝 + 𝐸𝑝

• In CFA the unit of analysis is the item:
𝑌𝑝𝑖 = 𝜇𝐼𝑖

+ 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

• To map CFA onto CTT, we must put these together:

𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 =  

𝑖=1

𝐼

𝑌𝑝𝑖
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Further Unpacking of the Total Score Formula

• Because CFA is an item-based model, we can then substitute each 
item’s model into the sum:

𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 =  

𝑖=1

𝐼

𝑌𝑝𝑖 =  

𝑖=1

𝐼

𝜇𝐼𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

=  

𝑖=1

𝐼

𝜇𝐼𝑖 +  

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 +  

𝑖=1

𝐼

𝑒𝑝𝑖

• Mapping this onto true score and error from CTT:

𝑇 =  

𝑖=1

𝐼

𝜇𝐼𝑖 +  

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 and 𝐸 =  

𝑖=1

𝐼

𝑒𝑝𝑖

PRE 906, SEM: On Test Scores 48



CFA-Model Estimated Reliability of Sum Scores

• From:

𝑇 =  

𝑖=1

𝐼

𝜇𝐼𝑖 +  

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 and 𝐸 =  

𝑖=1

𝐼

𝑒𝑝𝑖

• 𝑉𝑎𝑟 𝑇 = 𝑉𝑎𝑟  𝑖=1
𝐼 𝜇𝐼𝑖 +  𝑖=1

𝐼 𝜆𝑖
2 𝑉𝑎𝑟 𝐹𝑝 =

 

𝑖=1

𝐼

𝜆𝑖

2

𝜎𝐹
2

• 𝑉𝑎𝑟 𝐸 = 𝑉𝑎𝑟  𝑖=1
𝐼 𝑒𝑝𝑖 =

 

𝑖=1

𝐼

𝜓𝑖
2

For models with correlated residuals, those add to Var(E)
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CFA-Model Estimated Reliability of Sum Scores

• From the previous slide:

𝜌 =
𝑉𝑎𝑟 𝑇

𝑉𝑎𝑟 𝑇 + 𝑉𝑎𝑟 𝐸
=

 𝑖=1
𝐼 𝜆𝑖

2
𝜎𝐹

2

 𝑖=1
𝐼 𝜆𝑖

2
𝜎𝐹

2 +  𝑖=1
𝐼 𝜓𝑖

2

• And…we can do this in lavaan syntax:

• The estimated reliability is….
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Notes on CFA-Estimated Reliabilities

• The CFA-Estimated reliability is for the sum score, not the 
factor score

• The sum score’s reliability is .629 (SE = .025); 
the factor score’s reliability is .73
 The difference comes from additional sources of error in the factor score:

 Sampling error

 Error from the prior distribution (squishing the variance of the factor/error)

• The sum score’s reliability is equal to the 
Spearman Brown reliability estimate
 Therefore, CTT reliability estimates can come from CFA….
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Comparing Other CFA Models with Sum Scores

• Another model to consider is the Tau-equivalent items 
model, which, for CFA, means equal loadings but different 
unique variances:

• For example, here are the parallel items model equations 
for our three-item GRI example data:

𝐺𝑅𝐼1𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝1; 𝑒𝑝1 ∼ 𝑁 0, 𝜓1
2

𝐺𝑅𝐼3𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝3; 𝑒𝑝3 ∼ 𝑁 0, 𝜓3
2

𝐺𝑅𝐼5𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝5; 𝑒𝑝5 ∼ 𝑁 0, 𝜓5
2

• With a common loading estimated, we will use a 
standardized factor identification (but we don’t have to)

𝐹𝑝 ∼ 𝑁 0, 1
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The Tau Equivalent Model in lavaan

• Note: shown for didactic purposes (don’t use this model)

• Yielding model fit indices of:
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Parameter Estimates vs. Factor Score vs. Sum Score
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Factor vs. Sum Score…by item

• Now what matters is which item had a higher score…
 Items with higher information (loading^2/unique variance) result in bigger 

jumps in factor score relative to items with lower information
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Tau Equivalent Reliability for Factor and Sum Scores

• Factor score reliability estimate: .73

• Sum score reliability estimate: .62

• The sum score reliability is actually coefficient alpha
 Cronbach’s alpha (1951) /Guttman’s Lambda 6 (1945)

• HUGE NOTE: THIS IS WHY RELIABILTY IS NOT AN INDEX OF 
MODEL FIT
 IT CAN BE SHOWN TO DEPEND ON PARAMETERS THAT WILL BE BIASED UNDER 

MISFITTING MODELS
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Finally…the Unrestricted CFA Model

• All of the previous slides were to get us to see the 
relationship between sum scores and CFA models
 We would never estimate either…we would use an unrestricted CFA model

 Here is what happens with an that unrestricted CFA model

• This model fits perfectly—so no need to check model fit

• Compared to the other two models (we reject CTT)
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Parameter Estimates vs. Factor Score vs. Sum Score
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Factor Scores by Sum Score…by item

• Now what matters is which item had a higher score…
 Items with higher information (loading^2/unique variance) result in bigger 

jumps in factor score relative to items with lower information
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CFA Equivalent Reliability for Factor and Sum Scores

• Factor score reliability estimate: .734

• Sum score reliability estimate: .636

• The sum score reliability is sometimes called coefficient 
omega (see McDonald, 1999)

• If all three models fit the data then

Omega > Alpha > Spearman Brown

But…the differences are very small
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Potential Sources of Error in a Factor Score

• Measurement error 
 e.g., the 𝑆𝐸  𝐹

• Model misspecification error of various types:
 Dimensionality misspecification error

 e.g., Assuming one dimension when there is more than one present
 Parameter constraint misspecification error

 e.g., Assuming overly restrictive constraints (see next section and all of CTT)
 Linear model functional misspecification error

 e.g., Assuming a linear relationship between the factor and the items when a non-linear one is 
present

 Outcome distribution misspecification error
 e.g., Assuming Likert-type data to be continuous and using a normal distribution

 Factor distribution misspecification error
 e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

• Missing data error
 How you treat missing responses to items makes even more untenable assumptions

• Sampling error

• Prior Distribution Error
 e.g., factor scores are “shrunken estimates”
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So….?

• Up to this point we have seen
 Assumptions underlying sum scores
 Definitions of factor scores
 How sum scores imply a very specific CFA model

• We have also seen a history of reliability:
 Spearman Brown (1910): Parallel items model 

 Equal loadings/unique variances
 Guttman/Cronbch Alpha (1945,1953): Tau equivalent items model

 Equal loadings
 Coefficient omega (source unknown): Unrestricted CFA model
 Reliability for factor scores
 Also note: the next step is conditional reliability (IRT models)

• The point is that if you are ever reporting scores but not using them 
in subsequent analyses, then use a factor score

• But what we haven’t seen is what to do when we cannot use a 
simultaneous analysis/SEM 

 And that answer will have to come during the next lecture…
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WRAPPING UP
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Wrapping Up

• Today was our first pass at trying to show how SEM and 
CFA relate to what is frequently done in most analyses

• Next time we will start again with factor scores and work 
to make the sources of error minimized

• To do so, we’ll have to learn a little about missing data, 
multiple imputation, and Bayesian analyses
 Hence needing two lectures on the topic!

• These are the most important lectures this semester
 It provides a WHY and HOW for doing science with errors of measurement
 Take this information and compare it to how people use scores…like:

http://www.ets.org/s/gre/pdf/gre_guide.pdf
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