On Test Scores (Part 1)

Structural Equation Modeling Lecture #11 April 22, 2015

PRE 906, SEM: On Test Scores

Today's Class

- Scores
 - > Types of scores
 - Sum scores / test scores
 - Factor scores
 - Score contents
 - > Relating sum scores to factor scores
 - Score reliability
- Why using scores alone in separate analysis, while done almost always, is not good practice

The Big Picture

- Overall, the purpose of this class and the main message of structural equation models is that multivariate analyses with (and without) measurement error should be conducted simultaneously
 - > Error propagates
- There are many instances when one cannot do a simultaneous analysis
 - This lecture is an attempt to get you <u>as close to</u> results from a simultaneous analysis by getting you to understand the psychometric and statistical properties of using scores

WHAT'S IN A SUM SCORE?

PRE 906, SEM: On Test Scores

The Purpose of this Lecture: Some Clarity on Score

- As I've been a student and a teacher I have found the topic of scores to be incomplete and often contradictory
- Some things I've heard:
 - "Sum scores are almost always okay"
 - > "Factor scores (think GRE) are okay if they are from some strange sounding model..."
 - "...otherwise factor scores are the work of the devil"
- A question that I hearing: Why use Structural Equation Modeling (or CFA/IRT) when I can just use a sum of the items?
 - Sum of the items == sum score == total score == Add s**t up (ASU) model
- Sum score are used as:
 - > Observed variables in secondary analyses
 - > Results given to participants, patients, students, etc...
- Current practice in psychological/educational research seems to be:
 - > Use a sum score until some reviewer (#3?) says you cannot use one
 - > At that point, use a confirmatory factor model to verify that you have a one-factor scale
 - > ...then use a sum score

Demonstration Data

 To demonstrate the concepts appearing throughout this section, we will revisit the three-item GRI scale used in the lecture on Structural Equation Models

Items: GRI1, GRI3, and GRI 5

 As scores on each item ranged from 1 to 6 in integer units, this means sum scores must fall within a range of 3 to 18

Distribution of GRI Sum Scores

Three-item GRI Sum Score

Sum Score

Psychometric Properties of as Sum Score

- The use of sum scores brings about a discussion about the psychometrics that underlie sum scores
- What you have learned about measurement so far likely falls under the category of CTT:
 - > Writing items and building scales
 - Item analysis
 - Score interpretation
 - > Evaluating reliability and construct validity
- Big picture: We will view CTT as model with a restrictive set of assumptions within a more general family of latent trait measurement models

> Confirmatory Factor Analysis is a measurement model

Differences Among Measurement Models

- What is the name of the latent trait measured by a test?
 - > Classical Test Theory (CTT) = "True Score" (T)
 - Confirmatory Factor Analysis (CFA) = "Factor Score" (F)
 - > Item Response Theory (IRT) = "Theta" (θ)
- Fundamental difference in approach:
 - - Sum = latent trait, and the sum doesn't care how it was created
 - Only using the sum requires restrictive assumptions about the items
 - > CFA, IRT, and beyond \rightarrow unit of analysis is the ITEM
 - Model of how item response relates to an estimated latent trait
 - Different models for differing item response formats
 - Provides a framework for testing adequacy of measurement models

Classical Test Theory: Assumed Model

• In CTT, the TEST is the unit of analysis:

 $Y_{\text{Total}} = T + e$

- > True score T:
 - Best estimate of 'latent trait': Mean over infinite replications
 - Scale of T is the same as the scale of Y_{Total}
- > Error e:
 - Expected value (mean) of 0, expected to be uncorrelated with T
 - Supposed to wash out over repeated observations

• So the expected value of *Y*_{total} is *T*

- > Put another way: should the model fit, Y_{total} is an unbiased estimate of T
- ➤ <u>The true score is why you created the sum in the first place</u> your test purports to measure one thing, bringing about one sum score per person
- No distributional assumptions made...yet
- Even if your data fit a one-factor model, when using a sum score, the error portion is part of Y_{Total}
 - > But, it is only one part of the error that is in a sum score
- Because the CTT model does not include individual items, items must be assumed exchangeable

> If the model fits, then more items means better reliability

More CTT Basics

- A goal of CTT is to quantify reliability
 - Reliability is the proportion of variance in the sum score that is due to variation in the latent trait
- Reliability decomposition comes from Var(Y)
 - > Var() function comes from the expected value in mathematical statistics
 - > $E(g(x)) = \int g(x)f(x)dx$
 - Over the sample space/support of x with probability density function f(x)
 - Replace integral with a sum for discrete x (and pdf for probability mass function)

> Mean:
$$\mu = E(x) = \int x f(x) dx$$

> Variance:
$$Var(x) = E((x - \mu)^2) = E[(x - E(x))^2] = \int (x - \mu)^2 f(x) dx$$

• For CTT:

$$Var(Y_{Total}) = Var(T + e) = Var(T) + Var(e) + 2Cov(T, e)$$

• But, Cov(T, e) = 0 as T and e are assumed independent, so $Var(Y_{Total}) = Var(T) + Var(e)$

Moving from Variance to Reliability

 Reliability, as a proportion of variance in sum score due to the trait:

$$\rho = \frac{\operatorname{Var}(T)}{\operatorname{Var}(Y)} = \frac{\operatorname{Var}(T)}{\operatorname{Var}(T) + \operatorname{Var}(e)}$$

> Var(Y) == variance of <u>observed</u> sum score

- Var(T) == variance of true score == variability in the <u>unobserved</u> latent trait == individual differences
- > Var(e) == variance of error == measurement error
- Key question: how does one quantify reliability?
 > We will see that depends....

Draw Templin, Draw!

• Picture of distributions of Y, T, and e...

Parceling: Creating Another Type of Sum Score

- Another type of sum score is a parcel (sometimes called an item parcel or an item bundle)
 - A parcel then takes the places of the summed variables in a larger structural equation model
- There is some debate about what parceling assumes
 - > There are some who believe a parcel assumes a CTT model:

$$Y_{\text{Total}} = T + e$$

> There are others who parceling makes no assumptions, which is mathematically equivalent to:

$$Y_{\text{Total}} = e$$

- Either way:
 - > What we are saying about CTT scores applies to parcels and parceling
 - > Parceling is frequently done to hide model misfit, so it is like cheating

Potential Sources of Error in a Sum Score

- Measurement error
 - > e.g., the e in Y = T + e

Model misspecification error of various types:

- > Dimensionality misspecification error
 - e.g., Assuming one dimension when there is more than one present
- > Parameter constraint misspecification error
 - e.g., Assuming overly restrictive constraints (see next section and all of CTT)
- > Linear model functional misspecification error
 - e.g., Assuming a linear relationship between the factor and the items when a non-linear one is present
- > Outcome distribution misspecification error
 - e.g., Assuming Likert-type data to be continuous and using a normal distribution
- Factor distribution misspecification error
 - e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

Missing data error

> How you treat missing responses to items makes even more untenable assumptions

Sampling error

- > (meaning error in parameters due to small n) is **not a source of error** in a sum score
- > Note: measurement error is sampling error with respect to items instead of people

Why Error Matters

- Ignoring error will lead to inaccurate and potentially misleading results
 - > Biased estimates (Type II error)
 - > Biased standard errors of estimates (Type I error)
- Some sources of error matter more than others
- Measurement error is often thought of as the worst, but I believe model misspecification error (of all five types from last slide) to be even worse than measurement error

95% Confidence Intervals: Quantitative (GRE 2011 Guide) SEM ranges from 9 to 55

http://www.ets.org/s/gre/pdf/gre_guide.pdf

17

FACTOR SCORES

PRE 906, SEM: On Test Scores

Factor Scores

- To describe a factor score, first remember the CFA model: $Y_{pi} = \mu_i + \lambda_i F_p + e_{pi}$
- Simply put: A factor score is an estimated value for F_p , or \hat{F}_p
- There has long been a resistance to using factor scores in psychological research with the most common objection cited being the indeterminacy of factor scores

Indeterminacy of factor scores == factor scores are not unique

- Why are factor scores not unique? Because factor models must fix some parameters for identification
 - The values may be indeterminate—but in CFA and in ML versions of EFA the rank order of the factor scores is unique

A Depiction of Traditional Psychometric Estimates

Factor scores provide a **weak ordering** of people

(weak because of error): like ordinal-level measurement PRE 906. SEM: On Test

Draw Templin, Draw!

Example factor scores and their distributions (discussed next) (Posterior) Distributions of Factor Scores

Gambling Tendency

A different version of factor model identification would change the numbers on the X-axis, but the shapes and order of the distributions would not change

Factor scores provide a **weak ordering** of people (weak because of error)

Factor Scores and Testing

- These factor scores are found using the same methods as are used in practice for finding test scores (like the GRE)
 - The only difference between such test scores and factor scores in this class is the distributional assumptions of the measurement model (IRT is CFA with assumed Bernoulli/Multinomial distributed items)
 - > They behave the same
- That said, some in the testing industry don't quite realize how these work

See: <u>http://images.pearsonassessments.com/images/tmrs/Responses_Walter_Stroup.pdf</u> (p. 2)

IRT does not rank order students or select test questions. IRT simply
measures students' academic knowledge and skills on a scale (like a ruler)
and, just as a child gets taller, when students increase their knowledge and
skills, their test scores will increase. IRT provides a thorough and fair
measurement of growth and mastery.

More on Factor Scores

- Factor scores (by other names) are used in many domains
 > Item response theory (CFA with categorical items): GRE scores are factor scores
- Because the historical relationship between CFA and exploratory factor analysis, factor scores are widely avoided
 In EFA factor meaning is unknown so rotations were used
- Further making the issue even more difficult, many crazy methods for determining factor scores have been developed

See <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773873/</u>

- We will only focus on one method for estimating factor scores that is used in nearly all fields based on the posterior distribution of the factor score given the data
 - Identical to methods described by Lawley and Maxwell (1971) of Bartlett (1936)
 - Also used in generalized linear mixed effects models where factor scores are called Best Linear Unbiased Predictors (or BLUPs)

Factor Scores: The Big Picture

- A factor score is the estimate of a subject's unobserved latent trait
- Because this latent variable is not measured directly, it acts like it is missing data: you really cannot know with certainty its true value
- It is difficult to pin down what the missing data value (factor score value) should be precisely
 - > Each factor score has a posterior distribution of possible values
 - > Often, the mean of the posterior distribution is the "factor score"
 - In CFA, the mean is the most likely value
 - > Depending on the test, there may be a lot of error (variability) in the distribution
- Therefore, the use of factor scores must reflect that the score is not known and is represented by a distribution

Draw Templin, Draw!

Example factor scores and their distributions (discussed next) (Posterior) Distributions of Factor Scores

Gambling Tendency

A different version of factor model identification would change the numbers on the X-axis, but the shapes and order of the distributions would not change

Factor scores provide a **weak ordering** of people (weak because of error)

How Distributions get Summarized into Scores

- There are two ways of providing a score from the factor score posterior distribution:
 - > Expected a posteriori (EAP): the mean of the distribution
 - > Maximum a posteriori (MAP): the most likely score from the distribution
- In CFA factor score distributions are normal (so EAP=MAP)

Additional Information on Factor Scores

For EAP factor scores:

$$\widehat{F}_{p} = E\left(f(F_{p}|\mathbf{Y})\right)$$

$$F_{p} = \sum_{k} SE(\widehat{F}_{p}) = \sqrt{Var\left(f(F_{p}|\mathbf{Y})\right)}$$

For MAP factor scores:

$$\hat{F}_{p} = \arg \max_{F_{p}} f(F_{p} | \mathbf{Y})$$

$$\hat{F}_{p} = \left[\frac{\partial^{2}}{\partial F_{p}^{2}} f(F_{p} | \mathbf{Y}) \Big|_{\hat{F}_{p}} \right]^{-\frac{1}{2}}$$
(square root of Fisher's information)

• For CFA (Normal Data/Normal Factor) measurement models:

> MAP = EAP

- > Variance is identical across all people, regardless of score
- For non-CFA measurement models:
 - > MAP \neq EAP (but does with infinite items)
 - Standard error is a function of the factor score

Tying Factor Scores to Classical Test Theory

• Recall Classical Test Theory's model: Y = T + E

- With reliability: $\rho = \frac{Var(T)}{Var(T) + Var(E)}$
- For factor scores:
 - > $Var(T) = \sigma_F^2$: the (possibly estimated) variance of the factor
 - > $Var(E) = SE(\hat{F}_p)^2$: From the posterior distribution of the factor score
- Therefore, reliability of factor scores can be computed using model estimated parameters
 - Caution: The factor model must fit to use these parameters!
 - Caveat: We'll soon see reliability for sum scores can be estimated by CFA model parameters

Factor Scores: Empirical Bayes Estimates

- For most (if not all) latent variable techniques, the factor scores come from Empirical Bayes estimation—meaning there is a prior distribution present
 - Empirical = some or all of the parameters of the distribution of the latent variable are estimated (i.e., factor mean and variance)
 - Bayes = comes from the use of Bayes' Theorem
- Prior == Assumed factor distribution with mean/variance
- This is true for all CFA, IRT, mixed/multilevel/hierarchical models
 - > And is true for models that don't have a label (e.g., Poisson Factor Analysis?)

Bayes' Theorem

 Bayes' Theorem states the conditional distribution of a variable A (soon to be our factor score) given values of a variable B (soon to be our data) is:

For Categorical A, replace integral with sum

$$f(A|B) = \frac{f(B|A)f(A)}{f(B)} = \frac{f(B|A)f(A)}{\int_{a \in A} f(B|A = a)f(A = a)da}$$

- f(A|B) is the **distribution** of A, conditional on B
 - > We will come to know this as the posterior distribution of the factor score, conditional on the data observed or $f(\mathbf{F}|\mathbf{Y})$
- f(B|A) is the **distribution** of B, conditional on A
 - > We will come to know this as our measurement model or $f(\mathbf{Y}|\mathbf{F})$
- f(A) is the marginal distribution of A
 - > We will come to know this as the prior distribution of the factor or $f(\mathbf{F})$

Putting Together the Pieces of Empirical Bayes Factor Scores

$$f(A|B) = \frac{f(B|A)f(A)}{f(B)} = f(\mathbf{F}|\mathbf{Y}) = \frac{f(\mathbf{Y}|\mathbf{F})f(\mathbf{F})}{f(\mathbf{Y})}$$

- For $f(\mathbf{Y}|\mathbf{F})$, consider the measurement model (here CFA) for one item: $Y_{pi} = \mu_i + \lambda_i F_p + e_{pi}$ Where: $e_{pi} \sim N(0, \psi_i^2)$
- Using expected values, we can show the distribution for this one item is: $f(Y_{pi}|F_p) \sim N(\mu_i + \lambda_i F_p, \psi_i^2)$
- Therefore, for all *I* items, our conditional distribution is: $f(\mathbf{Y}|F_p) \sim N_I(\boldsymbol{\mu} + \boldsymbol{\Lambda} F_p, \boldsymbol{\Psi})$
- With multiple factors, this becomes:

 $f(\mathbf{Y}|\mathbf{F}) \sim N_I(\boldsymbol{\mu} + \boldsymbol{\Lambda}\mathbf{F}, \boldsymbol{\Psi})$

Putting Together the Pieces of Empirical Bayes Factor Scores

$$f(A|B) = \frac{f(B|A)f(A)}{f(B)} = f(\mathbf{F}|\mathbf{Y}) = \frac{f(\mathbf{Y}|\mathbf{F})f(\mathbf{F})}{f(\mathbf{Y})}$$

- For $f(\mathbf{F})$, consider the distribution assumed by the factor:
 - For one factor

$$f(F_p) \sim N(\mu_F, \sigma_F^2)$$

For multiple factors K

$$f(\mathbf{F}) \sim N_K(\mathbf{\mu}_F, \mathbf{\Phi})$$

- We must pick an identification method which determines if certain parameters of μ_F and Φ are fixed or are estimated
 - > Any method identification works, so we keep μ_F and Φ throughout

Putting Together the Pieces of Empirical Bayes Factor Scores

$$f(A|B) = \frac{f(B|A)f(A)}{f(B)} = f(\mathbf{F}|\mathbf{Y}) = \frac{f(\mathbf{Y}|\mathbf{F})f(\mathbf{F})}{f(\mathbf{Y})}$$

 For f(Y), we return to the model-implied mean vector and covariance matrix:

 $f(\mathbf{Y}) \sim N_I(\boldsymbol{\mu} + \boldsymbol{\Lambda}^T \boldsymbol{\mu}_F, \boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{\Lambda}^T + \boldsymbol{\Psi})$

A Quick Reminder About Types of Distributions

- For two random variables x and z, a conditional distribution is written as: f(z|x)
- The conditional distribution is also equal to the joint distribution divided by the marginal distribution of the conditioning random variable

$$f(z|x) = \frac{f(z,x)}{f(x)}$$

 $f(\mathbf{Y}|\mathbf{F})f(\mathbf{F}) = f(\mathbf{Y},\mathbf{F})$

- Therefore, the joint distribution can be found by the product of the conditional and marginal distributions: f(z,x) = f(z|x)f(x)
- We can use this result in our analysis:

A Quick Reminder about Multivariate Normal Distributions

- If **X** is distributed multivariate normally:
- Conditional distributions of X are multivariate normal
- We can show that f(Y, F), the joint distribution of the data and the factors, is multivariate normal
- We can then use the result above (shown on the next slides) to show that our posterior distribution of the factor scores is also multivariate normal
 - This result <u>only</u> applies for measurement models assuming normally distributed data and normally distributed factors: CFA
 - For IRT (and other measurement models), this result will not hold—but this distribution is asymptotically normal as the number of items gets large

- The conditional distribution of sets of variables from a MVN is also MVN

> The data: $[\mathbf{X}_{1:(N \times q)} \mid \mathbf{X}_{2:(N \times p-q)}]$

> The mean vector:
$$\begin{bmatrix} \boldsymbol{\mu}_{1:(q \ x \ 1)} \\ \boldsymbol{\mu}_{2:(p-q \ x \ 1)} \end{bmatrix}$$

$$\succ \text{ The covariance matrix:} \begin{bmatrix} \Sigma_{11:}(q \times q) & \Sigma_{12:}(q \times p-q) \\ \Sigma_{21:}(p-q \times q) & \Sigma_{22:}(p-q \times p-q) \end{bmatrix}$$

Conditional Distributions of MVN Variables

 The, f(X₁|X₂), conditional distribution of X₁ given the values of X₂ = x₂ is then: X₁|X₂~N_q(μ*,Σ*)

Where (using our partitioned matrices):

$$\boldsymbol{\mu}^* = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_2^T - \boldsymbol{\mu}_2)$$

And:

$$\boldsymbol{\Sigma}^* = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$$

Derive, Templin, Derive!

- The joint distribution of all *I* items and *K* factor scores is $f(\mathbf{Y}, \mathbf{F}) = f\left(\begin{bmatrix}\mathbf{Y}\\ \mathbf{F}\end{bmatrix}\right)$ $= N_{I+K}\left(\begin{bmatrix}\boldsymbol{\mu} + \boldsymbol{\Lambda}^{T}\boldsymbol{\mu}_{F}\\ -\boldsymbol{\mu}_{F}\end{bmatrix}, \begin{bmatrix}\boldsymbol{\Lambda}\boldsymbol{\Phi}\boldsymbol{\Lambda}^{T} + \boldsymbol{\Psi} & \boldsymbol{\Lambda}\boldsymbol{\Phi}\\ -\boldsymbol{\Phi}\boldsymbol{\Lambda}^{T} & \boldsymbol{\Phi}\end{bmatrix}\right)$
- Using the conditional distributions of MVNs result: $f(\mathbf{F}_p | \mathbf{Y}_p)$ is MVN:
- With mean: $\mu_F + \Phi \Lambda^T (\Lambda \Phi \Lambda^T + \Psi)^{-1} (Y_p^T \mu)$ And Covariance: $\Phi - \Phi \Lambda^T (\Lambda \Phi \Lambda^T + \Psi)^{-1} \Lambda \Phi$ #WTFTemplin

What All That Math Means for Factor Scores

- When using measurement models assuming normally distributed data and normally distributed factors (CFA):
 - > The posterior distribution of the factor scores is MVN
 - > Therefore, the most likely factor score (MAP) and the expected factor score (EAP) is given by the mean from the previous slides
 - > The factor score is a function of the model parameter estimates and the data

LINKING SUM SCORES AND CTT TO MEASUREMENT MODELS VIA FACTOR SCORES

Connecting Sum Scores and Factor Scores

- Sum scores have a correlation of 1.0 with factor scores from a parallel items CFA model
 - Parallel items model: all factor loadings equal + all unique variances equal
- For example, here are the parallel items model equations for our three-item GRI example data:

 $\begin{aligned} GRI1_{p} &= \mu_{1} + \lambda F_{p} + e_{p1}; & e_{p1} \sim N(0, \psi^{2}) \\ GRI3_{p} &= \mu_{1} + \lambda F_{p} + e_{p3}; & e_{p3} \sim N(0, \psi^{2}) \\ GRI5_{p} &= \mu_{1} + \lambda F_{p} + e_{p5}; & e_{p5} \sim N(0, \psi^{2}) \end{aligned}$

• With a common loading estimated, we will use a standardized factor identification (but we don't have to) $F_p \sim N(0, 1)$

Comparing a PI Model Factor Score to a Sum Score

```
model01.lavaan = "
  GAMBLING =~ (LOADING)*GRI1+(LOADING)*GRI3+(LOADING)*GRI5
  GRI1 ~~ (UVAR)*GRI1
  GRI3 ~~ (UVAR)*GRI3
  GRI5 ~~ (UVAR)*GRI5
  GAMBLING ~~ GAMBLING
model01.fit = sem(model01.lavaan, data=data01, estimator = "MLR", mimic="Mplus", fixed.x=FALSE, std.lv=TRUE)
summary(model01.fit, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE)
#get factor score estimates from the predict function:
model01.factorscores = predict(model01.fit)
#compare both on plot:
par(mfrow = c(1,1))
plot(model01.factorscores, data01$GRIsum, type ="o", lwd=3)
#compare with correlation
cor(model01.factorscores, data01$GRIsum)
                                                           9
                                                           4
    > cor(model01.factorscores, data01$GRIsum)
             [,1]
                                                           GAMBLING
                1
                                                         data01$GRIsum
                                                           9
                                                           6
                                                                       0
                                                                                             2
```

model01.factorscores

42

Comparing for Specific Scores

 To look more closely at factor scores versus sum scores, consider the following five people in the data set

```
> #Factor score of a person with GRI1==1, GRI3==1, & GRI5==1 ---- Sum Score = 3
> person111_id = data01[data01$GRI1==1 &data01$GRI3==1 & data01$GRI5==1,]$ID[1]
> model01.factorscores[person111_id]
[1] -0.7151343
>
> #Factor score of a person with GRI1==1, GRI3==1, & GRI5==2 ---- Sum Score = 4
> person112_id = data01[data01$GRI1==1 &data01$GRI3==1 & data01$GRI5==2,]$ID[1]
> model01.factorscores[person112_id]
[1] -0.3508875
> #Factor score of a person with GRI1==1, GRI3==2, & GRI5==1 ---- Sum Score = 4
> person121_id = data01[data01$GRI1==1 &data01$GRI3==2 & data01$GRI5==1,]$ID[1]
> model01.factorscores[person121_id]
[1] -0.3508875
>
> #Factor score of a person with GRI1==2, GRI3==1, & GRI5==1 ---- Sum Score = 4
> person211_id = data01[data01$GRI1==2 &data01$GRI3==1 & data01$GRI5==1,]$ID[1]
> model01.factorscores[person211_id]
[1] -0.3508875
>
> #Difference between factor scores for sum score 3 vs. sum score 4:
> mode]01.factorscores[person112_id] - mode]01.factorscores[person111_id]
[1] 0.3642468
>
> #Factor score of a person with GRI1==1, GRI3==1, & GRI5==3 ---- Sum Score = 5
> person113_id = data01[data01$GRI1==1 &data01$GRI3==1 & data01$GRI5==3,]$ID[1]
> model01.factorscores[person113_id]
[1] 0.01335935
>
> #Difference between factor scores for sum score 3 vs. sum score 4:
> mode]01.factorscores[person113_id] - mode]01.factorscores[person112_id]
[1] 0.3642468
```


Before We Get Too Far...Did The Model Fit?

 Good model fit 	Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor for the Yuan-Bentler correction (Mplu	ML 49.386 4 0.000 us variant)	Robust 19.176 4 0.001 2.575	
	Model test baseline model:			
• We could use the	Minimum Function Test Statistic Degrees of freedom P-value	480.988 3 0.000	199.641 3 0.000	
	User model versus baseline model:			
model	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.905 0.929	0.923 0.942	
	Loglikelihood and Information Criteria:			
 So, we could use the factor 	Loglikelihood user model (HO) Scaling correction factor for the MLR correction Loglikelihood unrestricted model (H1) Scaling correction factor for the MLR correction	-5279.302 -5254.609	-5279.302 1.091 -5254.609 2.236	
scores or the	Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	5 10568.605 10594.592 10578.709	5 10568.605 10594.592 10578.709	
sum scores	Root Mean Square Error of Approximation:			
	RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.092 0.070 0.116 0.001	0.053 0.039 0.331	0.069
 But we won't! 	Standardized Root Mean Square Residual:			
PRE 906, SEM: On Test Scores	SRMR	0.115	0.115	

And...About Reliability

• Factor score reliability is:

$$\rho = \frac{\sigma_F^2}{\sigma_F^2 + SE(F_p)^2}$$

 lavaan does not compute the factor score standard errors (Mplus does)...but that's okay, because we can grab them from the matrix algebra on p. 35

R Syntax for Computing SE of Factor Scores

```
> #getting more decimal places from model estimates estimates
> parameterEstimates(model01.fit)$est
 [1] 0.5759246 0.5759246 0.5759246 0.5860709 0.5860709 0.5860709 1.0000000 1.8226048 1.5479042 1.5928144 0.0000000 0.3614116
> #saving into matrices:
> lambda = matrix(.5759246, nrow=3, ncol=1)
> psi = diag(rep(.5860709,times=3))
> mu = matrix(c(1.8226048, 1.5479042, 1.5928144), nrow=3, ncol = 1)
> phi = matrix(1, nrow=1, ncol=1)
> mu_f = matrix(0, nrow=1, ncol=1)
> sigma = lambda%*%t(lambda) + psi
> x = matrix(cbind(data01$GRI1, data01$GRI3, data01$GRI5), ncol=3)
> #getting mean and variance of factor scores from slide 35:
> scores = t(phi %*% t(lambda) %*% solve(sigma)%*%(t(x) - mu%*%matrix(1,nrow=1, ncol=dim(x)[1])))
> varscores = phi - phi %*% t(lambda) %*% solve(sigma) %*% lambda %*% phi
> #the standard error of the factor score:
> sqrt(varscores)
          [,1]
[1,] 0.6088217
> #showing they match with lavaan's estimated scores
> plot(scores, model01.factorscores)
> #factor score reliability
> 1/(1+varscores)
          [,1]
[1,] 0.7295735
```

Reliability of Factor Score = .73

What about the reliability of our sum scores?

Classical Test Theory from a CFA Perspective

- In CTT the unit of analysis is the test score: $Y_{p,Total} = T_p + E_p$
- In CFA the unit of analysis is the item:

$$Y_{pi} = \mu_{I_i} + \lambda_i F_p + e_{pi}$$

• To map CFA onto CTT, we must put these together: $Y_{p,Total} = \sum_{i=1}^{I} Y_{pi}$

Further Unpacking of the Total Score Formula

 Because CFA is an item-based model, we can then substitute each item's model into the sum:

$$Y_{p,Total} = \sum_{i=1}^{I} Y_{pi} = \sum_{i=1}^{I} (\mu_{I_i} + \lambda_i F_p + e_{pi})$$
$$= \sum_{i=1}^{I} \mu_{I_i} + \left(\sum_{i=1}^{I} \lambda_i\right) F_p + \sum_{i=1}^{I} e_{pi}$$

• Mapping this onto true score and error from CTT:

$$T = \sum_{i=1}^{I} \mu_{I_i} + \left(\sum_{i=1}^{I} \lambda_i\right) F_p \text{ and } E = \sum_{i=1}^{I} e_{pi}$$

CFA-Model Estimated Reliability of Sum Scores

• From:

$$T = \sum_{i=1}^{I} \mu_{I_i} + \left(\sum_{i=1}^{I} \lambda_i\right) F_p \text{ and } E = \sum_{i=1}^{I} e_{pi}$$

$$\cdot Var(T) = Var\left(\sum_{i=1}^{I} \mu_{I_i}\right) + \left(\sum_{i=1}^{I} \lambda_i^2\right) Var(F_p) = \left(\sum_{i=1}^{I} \lambda_i\right)^2 \sigma_F^2$$

$$\cdot Var(E) = Var\left(\sum_{i=1}^{I} e_{pi}\right) = \sum_{i=1}^{I} \psi_i^2$$

For models with correlated residuals, those add to Var(E)

CFA-Model Estimated Reliability of Sum Scores

• From the previous slide:

$$\rho = \frac{Var(T)}{Var(T) + Var(E)} = \frac{\left(\sum_{i=1}^{I} \lambda_i\right)^2 \sigma_F^2}{\left(\sum_{i=1}^{I} \lambda_i\right)^2 \sigma_F^2 + \sum_{i=1}^{I} \psi_i^2}$$

And...we can do this in lavaan syntax:

```
model01.lavaan = "
GAMBLING =~ (LOADING)*GRI1+(LOADING)*GRI3+(LOADING)*GRI5
GRI1 ~~ (UVAR)*GRI1
GRI3 ~~ (UVAR)*GRI3
GRI5 ~~ (UVAR)*GRI5
GAMBLING ~~ GAMBLING
" rho := ( (3*LOADING)^2 )/(((3*LOADING)^2)+3*UVAR)
"
model01.fit = sem(model01.lavaan, data=data01, estimator = "MLR", mimic="Mplus", fixed.x=FALSE, std.lv=TRUE)
summary(model01.fit, fit.measures=TRUE, rsquare=TRUE, standardized=TRUE)
```

• The estimated reliability is....

Defined parameters: rho 0.629 0.025 24.968 0.000 0.629 0.629

Notes on CFA-Estimated Reliabilities

- The CFA-Estimated reliability is for the sum score, not the factor score
- The sum score's reliability is .629 (SE = .025); the factor score's reliability is .73
 - > The difference comes from additional sources of error in the factor score:
 - Sampling error
 - Error from the prior distribution (squishing the variance of the factor/error)
- The sum score's reliability is equal to the Spearman Brown reliability estimate

> Therefore, CTT reliability estimates can come from CFA....

Comparing Other CFA Models with Sum Scores

- Another model to consider is the Tau-equivalent items model, which, for CFA, means equal loadings but different unique variances:
- For example, here are the parallel items model equations for our three-item GRI example data:

 $\begin{aligned} GRI1_p &= \mu_1 + \lambda F_p + e_{p1}; & e_{p1} \sim N(0, \psi_1^2) \\ GRI3_p &= \mu_1 + \lambda F_p + e_{p3}; & e_{p3} \sim N(0, \psi_3^2) \\ GRI5_p &= \mu_1 + \lambda F_p + e_{p5}; & e_{p5} \sim N(0, \psi_5^2) \end{aligned}$

• With a common loading estimated, we will use a standardized factor identification (but we don't have to) $F_p \sim N(0, 1)$

The Tau Equivalent Model in lavaan

• Note: shown for didactic purposes (don't use this model)

• Yielding model fit indices of:

Estimator	ML	Robust	
Minimum Function Test Statistic	18.897	8.482	
Degrees of freedom	2	2	
P-value (Chi-square)	0.000	0.014	
Scaling correction factor		2.228	
for the Yuan-Bentler correction (Mplus	variant) _{User}	model versus	baseline model:

Comparative Fit Index (CFI)	0.965	0.967
Tucker-Lewis Index (TLI)	0.947	0.951

Root Mean Square Error of Approximation:

RMSEA		0.080	0.049	
90 Percent Confidence Interval	0.049	0.114	0.028	0.073
P-value RMSEA <= 0.05		0.053	0.475	

Standardized Root Mean Square Residual:

SRMR	0.040	0.040
SRMR	0.040	0.040

Parameter Estimates vs. Factor Score vs. Sum Score

54 KUKAN

Factor vs. Sum Score...by item

- Now what matters is which item had a higher score...
 - Items with higher information (loading^2/unique variance) result in bigger jumps in factor score relative to items with lower information

Tau Equivalent Reliability for Factor and Sum Scores

• Factor score reliability estimate: .73

```
> 1/(1+varscores)
    [,1]
[1,] 0.7279126
```

• Sum score reliability estimate: .62

Defined parameters:						
rho	0.620	0.027	23.220	0.000	0.620	0.594

- The sum score reliability is actually coefficient alpha
 Cronbach's alpha (1951) /Guttman's Lambda 6 (1945)
- HUGE NOTE: THIS IS WHY RELIABILTY IS NOT AN INDEX OF MODEL FIT
 - IT CAN BE SHOWN TO DEPEND ON PARAMETERS THAT WILL BE BIASED UNDER MISFITTING MODELS

Finally...the Unrestricted CFA Model

- All of the previous slides were to get us to see the relationship between sum scores and CFA models
 - > We would never estimate either...we would use an unrestricted CFA model
 - > Here is what happens with an that unrestricted CFA model

```
model03.lavaan = "
GAMBLING =~ (LOADING1)*GRI1+(LOADING3)*GRI3+(LOADING5)*GRI5
GRI1 ~~ (UVAR1)*GRI1
GRI3 ~~ (UVAR3)*GRI3
GRI5 ~~ (UVAR5)*GRI5
GAMBLING ~~ GAMBLING
rho := ( (LOADING1+LOADING3+LOADING5)^2 )/(((LOADING1+LOADING5)^2)+UVAR1+UVAR3+UVAR5)
```

- This model fits perfectly—so no need to check model fit
- Compared to the other two models (we reject CTT)

> anova(model01.fit, model02.fit, model03.fit)
Scaled Chi Square Difference Test (method = "satorra.bentler.2001")

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) model03.fit 0 10527 10574 0.000 model02.fit 2 10542 10578 18.897 8.4825 2 0.014390 * model01.fit 4 10569 10595 49.386 10.4306 2 0.005433 **

Parameter Estimates vs. Factor Score vs. Sum Score

58

Factor Scores by Sum Score...by item

- Now what matters is which item had a higher score...
 - Items with higher information (loading^2/unique variance) result in bigger jumps in factor score relative to items with lower information

> scor	ema	t						
GRI1	GRI	3 GRI5	SUMSC	FS	-PI	FS-T	E I	FS-CFA
1		1 1	3 -	-0.71513	425 -0.	70406053	2 -0.7	132409
1	-	1 2	4 -	-0.35088	745 -0.	35308256	2 -0.2	931139
1		2 1		-0 35088	745 -0	25146180	4 _0 40	003087
		с <u>т</u> 1 1	4	0.35088	745 -0.	40256004	1 0 7	573375
2		L 1	4 -	-0.35088	745 -0.	40256094	1 -0.3	5/32/5
1		1 3	5	0.01335	935 -0.	00210459	2 0.1	2/0130
-								
			Estimate	Std.err	z-value	P(> z)	Std.lv	Std.all
Laten	t var	iables:						
GAM	BLING	=~						
G	R (LO	ADING1)	0.638	0.052	12.249	0.000	0.638	0.621
G	R (LO	ADING3)	0.463	0.046	10.124	0.000	0.463	0.535
G	R (LO	ADING5)	0.635	0.052	12.137	0.000	0.635	0.652
Inter	cepts	:						
G	RII	-	1.823	0.028	64.871	0.000	1.823	1.775
G	RI3		1.548	0.024	65.365	0.000	1.548	1.788
G	RI5		1.593	0.027	59.749	0.000	1.593	1.635
G	AMBLI	NG	0.000				0.000	0.000
Vania								
Varia	DT1		0 647	0.076	8 / 81	0.000	0 647	0 614
G	DT 2		0.535	0.070	11 //0	0.000	0.535	0.014
G		(UVAR5)	0.535	0.047	8 953	0.000	0.546	0.575
G	AMBL	(UVARJ)	1.000	0.001	0.933	0.000	1.000	1.000
	of o1		0.620	0 157	4 015	0.000	0 620	0 620
	nfo3		0.029	0.13/	4.015	0.000	0.029	0.029
	nfo5		0.720	0.172	4.205	0.000	0.739	0.739
			0.755	0.1/5	4.200	0.000	0.735	0.735

CFA Equivalent Reliability for Factor and Sum Scores

• Factor score reliability estimate: .734

> 1/(1+varscores) [,1] [1,] 0.7346829

• Sum score reliability estimate: .636

Defined parameters:						
rho	0.636	0.025	25.248	0.000	0.636	0.632

- The sum score reliability is sometimes called coefficient omega (see McDonald, 1999)
- If all three models fit the data then
 Omega > Alpha > Spearman Brown
 But...the differences are very small

Potential Sources of Error in a Factor Score

- Measurement error
 > e.g., the SE(F̂)
- Model misspecification error of various types:
 - Dimensionality misspecification error
 - ← e.g., Assuming one dimension when there is more than one present
 - Parameter constraint misspecification error
 - + e.g., Assuming overly restrictive constraints (see next section and all of CTT)
 - Linear model functional misspecification error
 - e.g., Assuming a linear relationship between the factor and the items when a non-linear one is present
 - > Outcome distribution misspecification error
 - e.g., Assuming Likert-type data to be continuous and using a normal distribution
 - > Factor distribution misspecification error
 - e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

Missing data error

> How you treat missing responses to items makes even more untenable assumptions

- Sampling error
- Prior Distribution Error
 - e.g., factor scores are "shrunken estimates"

So....?

- Up to this point we have seen
 - > Assumptions underlying sum scores
 - Definitions of factor scores
 - > How sum scores imply a very specific CFA model
- We have also seen a history of reliability:
 - > Spearman Brown (1910): Parallel items model
 - Equal loadings/unique variances
 - > Guttman/Cronbch Alpha (1945,1953): Tau equivalent items model
 - Equal loadings
 - > Coefficient omega (source unknown): Unrestricted CFA model
 - Reliability for factor scores
 - > Also note: the next step is conditional reliability (IRT models)
- The point is that if you are ever reporting scores but not using them in subsequent analyses, then use a factor score
- But what we haven't seen is what to do when we cannot use a simultaneous analysis/SEM
 - > And that answer will have to come during the next lecture...

WRAPPING UP

Wrapping Up

- Today was our first pass at trying to show how SEM and CFA relate to what is frequently done in most analyses
- Next time we will start again with factor scores and work to make the sources of error minimized
- To do so, we'll have to learn a little about missing data, multiple imputation, and Bayesian analyses

> Hence needing two lectures on the topic!

- These are the most important lectures this semester
 - > It provides a WHY and HOW for doing science with errors of measurement
 - Take this information and compare it to how people use scores...like: <u>http://www.ets.org/s/gre/pdf/gre_guide.pdf</u>

