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PRE 906, SEM: On Test Scores



Today’s Class

• Scores
 Types of scores

 Sum scores / test scores

 Factor scores

 Score contents

 Relating sum scores to factor scores

 Score reliability

• Why using scores alone in separate analysis, while done 
almost always, is not good practice
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The Big Picture

• Overall, the purpose of this class and the main message of 
structural equation models is that multivariate analyses 
with (and without) measurement error should be 
conducted simultaneously
 Error propagates

• There are many instances when one cannot do a 
simultaneous analysis
 This lecture is an attempt to get you as close to results from a simultaneous 

analysis by getting you to understand the psychometric and statistical 
properties of using scores 
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WHAT’S IN A SUM SCORE?
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The Purpose of this Lecture: Some Clarity on Score

• As I’ve been a student and a teacher I have found the topic of scores 
to be incomplete and often contradictory

• Some things I’ve heard:
 “Sum scores are almost always okay”
 “Factor scores (think GRE) are okay if they are from some strange sounding model…”
 “…otherwise factor scores are the work of the devil”

• A question that I hearing: Why use Structural Equation Modeling (or 
CFA/IRT) when I can just use a sum of the items?

 Sum of the items == sum score == total score == Add s**t up (ASU) model

• Sum score are used as:
 Observed variables in secondary analyses
 Results given to participants, patients, students, etc… 

• Current practice in psychological/educational research seems to be:
 Use a sum score until some reviewer (#3?) says you cannot use one
 At that point, use a confirmatory factor model to verify that you have a one-factor scale
 …then use a sum score
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Demonstration Data

• To demonstrate the concepts appearing throughout this 
section, we will revisit the three-item GRI scale used in the 
lecture on Structural Equation Models
 Items: GRI1, GRI3, and GRI 5

• As scores on each item ranged from 1 to 6 in integer units, 
this means sum scores must fall within a range of 3 to 18
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Distribution of GRI Sum Scores
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Psychometric Properties of as Sum Score

• The use of sum scores brings about a discussion about the 
psychometrics that underlie sum scores

• What you have learned about measurement so far likely 
falls under the category of CTT:
 Writing items and building scales

 Item analysis

 Score interpretation

 Evaluating reliability and construct validity

• Big picture: We will view CTT as model with a restrictive 
set of assumptions within a more general family of latent 
trait measurement models
 Confirmatory Factor Analysis is a measurement model
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Differences Among Measurement Models

• What is the name of the latent trait measured by a test?
 Classical Test Theory (CTT)  =  “True Score” (T)

 Confirmatory Factor Analysis (CFA)  =  “Factor Score” (F)

 Item Response Theory (IRT)  =  “Theta” (θ)

• Fundamental difference in approach:
 CTT  unit of analysis is the WHOLE TEST (item sum or mean)

 Sum = latent trait, and the sum doesn’t care how it was created

 Only using the sum requires restrictive assumptions about the items

 CFA, IRT, and beyond  unit of analysis is the ITEM
 Model of how item response relates to an estimated latent trait

 Different models for differing item response formats

 Provides a framework for testing adequacy of measurement models
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Classical Test Theory: Assumed Model

• In CTT, the TEST is the unit of analysis: 
𝑌Total = 𝑇 + 𝑒

 True score T:
 Best estimate of ‘latent trait’: Mean over infinite replications
 Scale of T is the same as the scale of 𝑌Total

 Error e:
 Expected value (mean) of 0, expected to be uncorrelated with T
 Supposed to wash out over repeated observations

• So the expected value of 𝒀𝒕𝒐𝒕𝒂𝒍 is 𝑻
 Put another way: should the model fit, 𝑌𝑡𝑜𝑡𝑎𝑙 is an unbiased estimate of 𝑇
 The true score is why you created the sum in the first place your test purports to measure one 

thing, bringing about one sum score per person

• No distributional assumptions made…yet

• Even if your data fit a one-factor model, when using a sum score, the error 
portion is part of 𝑌𝑇𝑜𝑡𝑎𝑙

 But, it is only one part of the error that is in a sum score

• Because the CTT model does not include individual items, 
items must be assumed exchangeable 

 If the model fits, then more items means better reliability
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More CTT Basics

• A goal of CTT is to quantify reliability
 Reliability is the proportion of variance in the sum score that is due to variation in 

the latent trait

• Reliability decomposition comes from Var(Y)
 Var() function comes from the expected value in mathematical statistics

 𝐸 𝑔 𝑥 =  𝑔 𝑥 𝑓 𝑥 𝑑𝑥
 Over the sample space/support of x with probability density function f(x)
 Replace integral with a sum for discrete x (and pdf for probability mass function)

 Mean: 𝜇 = 𝐸 𝑥 =  𝑥 𝑓 𝑥 𝑑𝑥

 Variance: 𝑉𝑎𝑟 𝑥 = 𝐸 𝑥 − 𝜇 2 = 𝐸 𝑥 − 𝐸 𝑥
2

=  𝑥 − 𝜇 2 𝑓 𝑥 𝑑𝑥

• For CTT: 
Var 𝑌𝑇𝑜𝑡𝑎𝑙 = Var 𝑇 + 𝑒 = Var 𝑇 + 𝑉𝑎𝑟 𝑒 + 2𝐶𝑜𝑣 𝑇, 𝑒

• But, 𝐶𝑜𝑣 𝑇, 𝑒 = 0 as T and e are assumed independent, so
Var 𝑌𝑇𝑜𝑡𝑎𝑙 = Var 𝑇 + 𝑉𝑎𝑟 𝑒
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Moving from Variance to Reliability

• Reliability, as a proportion of variance in sum score due to 
the trait:

𝜌 =
Var 𝑇

Var 𝑌
=

Var 𝑇

Var 𝑇 + Var(𝑒)
 Var 𝑌 == variance of observed sum score

 Var 𝑇 == variance of true score == variability in the unobserved latent trait 
== individual differences

 Var 𝑒 == variance of error == measurement error

• Key question: how does one quantify reliability?
 We will see that depends….
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Draw Templin, Draw!

• Picture of distributions of Y, T, and e…
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Parceling: Creating Another Type of Sum Score

• Another type of sum score is a parcel (sometimes called an 
item parcel or an item bundle)
 A parcel then takes the places of the summed variables in a larger structural 

equation model

• There is some debate about what parceling assumes
 There are some who believe a parcel assumes a CTT model:

𝑌Total = 𝑇 + 𝑒

 There are others who parceling makes no assumptions, which is 
mathematically equivalent to:

𝑌Total = 𝑒

• Either way:
 What we are saying about CTT scores applies to parcels and parceling

 Parceling is frequently done to hide model misfit, so it is like cheating
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Potential Sources of Error in a Sum Score

• Measurement error 
 e.g., the 𝑒 in 𝑌 = 𝑇 + 𝑒

• Model misspecification error of various types:
 Dimensionality misspecification error

 e.g., Assuming one dimension when there is more than one present
 Parameter constraint misspecification error

 e.g., Assuming overly restrictive constraints (see next section and all of CTT)
 Linear model functional misspecification error

 e.g., Assuming a linear relationship between the factor and the items when a non-linear one is 
present

 Outcome distribution misspecification error
 e.g., Assuming Likert-type data to be continuous and using a normal distribution

 Factor distribution misspecification error
 e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

• Missing data error
 How you treat missing responses to items makes even more untenable assumptions

• Sampling error 
 (meaning error in parameters due to small n) is not a source of error in a sum score
 Note: measurement error is sampling error with respect to items instead of people
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Why Error Matters

• Ignoring error will lead to inaccurate and potentially 
misleading results
 Biased estimates (Type II error)

 Biased standard errors of estimates (Type I error)

• Some sources of error matter more than others

• Measurement error is often thought of as the worst, but I 
believe model misspecification error (of all five types from 
last slide) to be even worse than measurement error
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95% Confidence Intervals: Quantitative (GRE 2011 Guide)
SEM ranges from 9 to 55

PRE 906, SEM: On Test Scores 17

http://www.ets.org/s/gre/pdf/gre_guide.pdf



FACTOR SCORES
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Factor Scores

• To describe a factor score, first remember the CFA model:
𝑌𝑝𝑖 = 𝜇𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

• Simply put: A factor score is an estimated value for 𝐹𝑝, or  𝐹𝑝

• There has long been a resistance to using factor scores in 
psychological research with the most common objection cited being 
the indeterminacy of factor scores
 Indeterminacy of factor scores == factor scores are not unique

• Why are factor scores not unique? Because factor models must fix 
some parameters for identification

 The values may be indeterminate—but in CFA and in ML versions of EFA the rank order 
of the factor scores is unique

PRE 906, SEM: On Test Scores 19



PRE 906, SEM: On Test Scores

A Depiction of Traditional Psychometric Estimates

Latent Trait Score

Low High

Bieber Cyrus Swift

Ordering provided by Daphne Templin

20

Factor scores provide a weak ordering of people 
(weak because of error): like ordinal-level measurement



Draw Templin, Draw!
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Example factor scores and their distributions (discussed next)

A different version of factor model identification would change 
the numbers on the X-axis, but the shapes and order of the 
distributions would not change

Factor scores provide a weak ordering of people 
(weak because of error)
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Factor Scores and Testing

• These factor scores are found using the same methods as 
are used in practice for finding test scores (like the GRE)
 The only difference between such test scores and factor scores in this class is 

the distributional assumptions of the measurement model (IRT is CFA with 
assumed Bernoulli/Multinomial distributed items)

 They behave the same

• That said, some in the testing industry don’t quite realize 
how these work

See: http://images.pearsonassessments.com/images/tmrs/Responses_Walter_Stroup.pdf (p. 2)
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More on Factor Scores

• Factor scores (by other names) are used in many domains
 Item response theory (CFA with categorical items): GRE scores are factor scores

• Because the historical relationship between CFA and 
exploratory factor analysis, factor scores are widely avoided
 In EFA factor meaning is unknown so rotations were used 

• Further making the issue even more difficult, many crazy 
methods for determining factor scores have been developed
 See http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773873/

• We will only focus on one method for estimating factor scores 
that is used in nearly all fields based on the posterior 
distribution of the factor score given the data
 Identical to methods described by Lawley and Maxwell (1971) of Bartlett (1936)
 Also used in generalized linear mixed effects models where factor scores are called 

Best Linear Unbiased Predictors (or BLUPs)
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Factor Scores: The Big Picture

• A factor score is the estimate of a subject’s unobserved latent trait

• Because this latent variable is not measured directly, it acts like it is 
missing data: you really cannot know with certainty its true value

• It is difficult to pin down what the missing data value (factor score 
value) should be precisely

 Each factor score has a posterior distribution of possible values

 Often, the mean of the posterior distribution is the “factor score” 
 In CFA, the mean is the most likely value

 Depending on the test, there may be a lot of error (variability) in the distribution

• Therefore, the use of factor scores must reflect that the score is not 
known and is represented by a distribution
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Draw Templin, Draw!

PRE 906, SEM: On Test Scores

Example factor scores and their distributions (discussed next)

A different version of factor model identification would change 
the numbers on the X-axis, but the shapes and order of the 
distributions would not change

Factor scores provide a weak ordering of people 
(weak because of error)
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How Distributions get Summarized into Scores

• There are two ways of providing a score from the factor 
score posterior distribution:
 Expected a posteriori (EAP): the mean of the distribution

 Maximum a posteriori (MAP): the most likely score from the distribution

• In CFA factor score distributions are normal (so EAP=MAP)
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MAP
MAP

EAP

EAP
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Additional Information on Factor Scores

• For EAP factor scores:


 𝐹𝑝 = 𝐸 𝑓 𝐹𝑝 𝐘

 𝑆𝐸  𝐹𝑝 = 𝑉𝑎𝑟 𝑓 𝐹𝑝 𝐘

• For MAP factor scores:


 𝐹𝑝 = arg max
𝐹𝑝

𝑓 𝐹𝑝 𝐘

 𝑆𝐸  𝐹𝑝 =  
𝜕2

𝜕𝐹𝑝
2 𝑓 𝐹𝑝 𝐘

 𝐹𝑝

−
1

2
(square root of Fisher’s information)

• For CFA (Normal Data/Normal Factor) measurement models:
 MAP = EAP
 Variance is identical across all people, regardless of score

• For non-CFA measurement models:
 MAP ≠ EAP (but does with infinite items)
 Standard error is a function of the factor score
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Tying Factor Scores to Classical Test Theory

• Recall Classical Test Theory’s model:
𝑌 = 𝑇 + 𝐸

• With reliability: 𝜌 =
𝑉𝑎𝑟 𝑇

𝑉𝑎𝑟 𝑇 +𝑉𝑎𝑟(𝐸)

• For factor scores:
 𝑉𝑎𝑟 𝑇 = 𝜎𝐹

2: the (possibly estimated) variance of the factor

 𝑉𝑎𝑟 𝐸 = 𝑆𝐸  𝐹𝑝
2

: From the posterior distribution of the factor score

• Therefore, reliability of factor scores can be computed 
using model estimated parameters
 Caution: The factor model must fit to use these parameters!
 Caveat: We’ll soon see reliability for sum scores can be estimated by 

CFA model parameters
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Factor Scores: Empirical Bayes Estimates

• For most (if not all) latent variable techniques, the factor scores 
come from Empirical Bayes estimation—meaning there is a prior 
distribution present 

 Empirical = some or all of the parameters of the distribution of the latent variable are 
estimated (i.e., factor mean and variance)

 Bayes = comes from the use of Bayes’ Theorem

• Prior == Assumed factor distribution with mean/variance

• This is true for all CFA, IRT, mixed/multilevel/hierarchical models
 And is true for models that don’t have a label (e.g., Poisson Factor Analysis?)
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Bayes’ Theorem

• Bayes’ Theorem states the conditional distribution of a 
variable A (soon to be our factor score) given values of a 
variable B (soon to be our data) is:

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
=

𝑓 𝐵 𝐴 𝑓(𝐴)

 𝑎∈𝐴
𝑓 𝐵 𝐴 = 𝑎 𝑓 𝐴 = 𝑎 𝑑𝑎

• 𝑓 𝐴 𝐵 is the distribution of A, conditional on B
 We will come to know this as the posterior distribution of the factor score, 

conditional on the data observed or 𝑓 𝐅 𝐘

• 𝑓 𝐵 𝐴 is the distribution of B, conditional on A
 We will come to know this as our measurement model or 𝑓 𝐘 𝐅

• 𝑓 𝐴 is the marginal distribution of A
 We will come to know this as the prior distribution of the factor or 𝑓(𝐅)
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For Categorical A, replace integral with sum
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Putting Together the Pieces of Empirical Bayes Factor Scores

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐘 𝐅 , consider the measurement model (here CFA) for one item:
𝑌𝑝𝑖 = 𝜇𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

Where: 𝑒𝑝𝑖 ∼ 𝑁 0, 𝜓𝑖
2

• Using expected values, we can show the distribution for this one item is:

𝑓 𝑌𝑝𝑖|𝐹𝑝 ∼ 𝑁 𝜇𝑖 + 𝜆𝑖𝐹𝑝, 𝜓𝑖
2

• Therefore, for all 𝐼 items, our conditional distribution is:

𝑓 𝐘 𝐹𝑝 ∼ 𝑁𝐼 𝝁 + 𝚲𝐹𝑝, 𝚿

• With multiple factors, this becomes: 
𝑓 𝐘 𝐅 ∼ 𝑁𝐼 𝝁 + 𝚲𝐅, 𝚿
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Putting Together the Pieces of Empirical Bayes Factor Scores

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐅 , consider the distribution assumed by the factor:
 For one factor

𝑓 𝐹𝑝 ∼ 𝑁 𝜇𝐹 , 𝜎𝐹
2

 For multiple factors K

𝑓 𝐅 ∼ 𝑁𝐾 𝛍𝐹, 𝚽

• We must pick an identification method which determines if 
certain parameters of 𝛍𝐹 and 𝚽 are fixed or are estimated
 Any method identification works, so we keep 𝛍𝐹 and 𝚽 throughout
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Putting Together the Pieces of Empirical Bayes Factor Scores

𝑓 𝐴 𝐵 =
𝑓 𝐵 𝐴 𝑓(𝐴)

𝑓(𝐵)
= 𝑓 𝐅 𝐘 =

𝑓 𝐘 𝐅 𝑓(𝐅)

𝑓(𝐘)

• For 𝑓 𝐘 , we return to the model-implied mean vector and 
covariance matrix:

𝑓 𝐘 ∼ 𝑁𝐼 𝛍 + 𝚲𝑇𝛍𝐹 , 𝚲𝚽𝚲𝑇 + 𝚿
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A Quick Reminder About Types of Distributions

• For two random variables 𝑥 and 𝑧, a conditional 
distribution is written as: 𝑓 𝑧 𝑥

• The conditional distribution is also equal to the joint 
distribution divided by the marginal distribution of the 
conditioning random variable

𝑓 𝑧 𝑥 =
𝑓(𝑧, 𝑥)

𝑓(𝑥)

• Therefore, the joint distribution can be found by the 
product of the conditional and marginal distributions:

𝑓 𝑧, 𝑥 = 𝑓 𝑧 𝑥 𝑓 𝑥

• We can use this result in our analysis:
𝑓 𝐘 𝐅 𝑓 𝐅 = 𝑓(𝐘, 𝐅)
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A Quick Reminder about Multivariate Normal Distributions

• If 𝐗 is distributed multivariate normally: 

Conditional distributions of 𝐗 are multivariate normal

• We can show that 𝑓 𝐘, 𝐅 , the joint distribution of the 
data and the factors, is multivariate normal

• We can then use the result above (shown on the next 
slides) to show that our posterior distribution of the 
factor scores is also multivariate normal
 This result only applies for measurement models assuming normally 

distributed data and normally distributed factors: CFA

 For IRT (and other measurement models), this result will not hold—but this 
distribution is asymptotically normal as the number of items gets large
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Conditional Distributions of MVN Variables are Multivariate Normal 

• The conditional distribution of sets of variables from a 
MVN is also MVN

• If we were interested in the distribution of the first q
variables, we partition three matrices:

The data: 𝐗1:(𝑁 𝑥 𝑞) 𝐗2:(𝑁 𝑥 𝑝−𝑞)

The mean vector: 
𝝁1:(𝑞 𝑥 1)

𝝁2:(𝑝−𝑞 𝑥 1)

The covariance matrix: 
𝚺11:(𝑞 𝑥 𝑞) 𝚺12:(𝑞 𝑥 𝑝−𝑞)

𝚺21:(𝑝−𝑞 𝑥 𝑞) 𝚺22:(𝑝−𝑞 𝑥 𝑝−𝑞)
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Conditional Distributions of MVN Variables

• The, 𝑓 𝐗1 𝐗2 , conditional distribution of 𝐗1 given the 
values of 𝐗2 = 𝐱2 is then:

𝐗1|𝐗2~𝑁𝑞 𝝁∗, 𝚺∗

Where (using our partitioned matrices):

𝝁∗ = 𝝁1 + 𝚺12𝚺22
−1 𝐱2

𝑇 − 𝝁𝟐

And:
𝚺∗ = 𝚺11 − 𝚺12𝚺22

−1𝚺21
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Derive, Templin, Derive!

• The joint distribution of all 𝐼 items and 𝐾 factor scores is

𝑓 𝐘, 𝐅 = 𝑓
𝐘
𝐅

= 𝑁𝐼+𝐾
𝝁 + 𝚲𝑇𝝁𝐹

𝝁𝐹
, 𝚲𝚽𝚲𝑇 + 𝚿 𝚲𝚽

𝚽𝚲𝑇 𝚽

• Using the conditional distributions of MVNs result:

𝑓 𝐅𝑝 𝐘𝑝 is MVN:

With mean: 𝝁𝐹 + 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝐘𝑝
𝑇 − 𝝁

And Covariance: 𝚽 − 𝚽𝚲𝑇 𝚲𝚽𝚲𝑇 + 𝚿 −1 𝚲𝚽

#WTFTemplin
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What All That Math Means for Factor Scores

• When using measurement models assuming normally 
distributed data and normally distributed factors (CFA):
 The posterior distribution of the factor scores is MVN

 Therefore, the most likely factor score (MAP) and the expected factor score 
(EAP) is given by the mean from the previous slides

 The factor score is a function of the model parameter estimates and the data
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LINKING SUM SCORES AND CTT TO 
MEASUREMENT MODELS VIA FACTOR SCORES 
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Connecting Sum Scores and Factor Scores

• Sum scores have a correlation of 1.0 with factor scores 
from a parallel items CFA model
 Parallel items model: all factor loadings equal + all unique variances equal

• For example, here are the parallel items model equations 
for our three-item GRI example data:

𝐺𝑅𝐼1𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝1; 𝑒𝑝1 ∼ 𝑁 0, 𝜓2

𝐺𝑅𝐼3𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝3; 𝑒𝑝3 ∼ 𝑁 0, 𝜓2

𝐺𝑅𝐼5𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝5; 𝑒𝑝5 ∼ 𝑁 0, 𝜓2

• With a common loading estimated, we will use a 
standardized factor identification (but we don’t have to)

𝐹𝑝 ∼ 𝑁 0, 1
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Comparing a PI Model Factor Score to a Sum Score
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Comparing for Specific Scores

• To look more closely at factor scores versus sum scores, 
consider the following five people in the data set
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Before We Get Too Far…Did The Model Fit?

• Good model fit…

• We could use the 
model

• So, we could
use the factor
scores or the
sum scores

• But we won’t!
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And…About Reliability

• Factor score reliability is:

𝜌 =
𝜎𝐹

2

𝜎𝐹
2 + 𝑆𝐸 𝐹𝑝

2

• lavaan does not compute the factor score standard errors 
(Mplus does)…but that’s okay, because we can grab them 
from the matrix algebra on p. 35
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R Syntax for Computing SE of Factor Scores

PRE 906, SEM: On Test Scores

Reliability of Factor Score = .73

What about the reliability of our sum scores?
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Classical Test Theory from a CFA Perspective

• In CTT the unit of analysis is the test score:
𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑝 + 𝐸𝑝

• In CFA the unit of analysis is the item:
𝑌𝑝𝑖 = 𝜇𝐼𝑖

+ 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

• To map CFA onto CTT, we must put these together:

𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 =  

𝑖=1

𝐼

𝑌𝑝𝑖
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Further Unpacking of the Total Score Formula

• Because CFA is an item-based model, we can then substitute each 
item’s model into the sum:

𝑌𝑝,𝑇𝑜𝑡𝑎𝑙 =  

𝑖=1

𝐼

𝑌𝑝𝑖 =  

𝑖=1

𝐼

𝜇𝐼𝑖 + 𝜆𝑖𝐹𝑝 + 𝑒𝑝𝑖

=  

𝑖=1

𝐼

𝜇𝐼𝑖 +  

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 +  

𝑖=1

𝐼

𝑒𝑝𝑖

• Mapping this onto true score and error from CTT:

𝑇 =  

𝑖=1

𝐼

𝜇𝐼𝑖 +  

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 and 𝐸 =  

𝑖=1

𝐼

𝑒𝑝𝑖
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CFA-Model Estimated Reliability of Sum Scores

• From:

𝑇 =  

𝑖=1

𝐼

𝜇𝐼𝑖 +  

𝑖=1

𝐼

𝜆𝑖 𝐹𝑝 and 𝐸 =  

𝑖=1

𝐼

𝑒𝑝𝑖

• 𝑉𝑎𝑟 𝑇 = 𝑉𝑎𝑟  𝑖=1
𝐼 𝜇𝐼𝑖 +  𝑖=1

𝐼 𝜆𝑖
2 𝑉𝑎𝑟 𝐹𝑝 =

 

𝑖=1

𝐼

𝜆𝑖

2

𝜎𝐹
2

• 𝑉𝑎𝑟 𝐸 = 𝑉𝑎𝑟  𝑖=1
𝐼 𝑒𝑝𝑖 =

 

𝑖=1

𝐼

𝜓𝑖
2

For models with correlated residuals, those add to Var(E)
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CFA-Model Estimated Reliability of Sum Scores

• From the previous slide:

𝜌 =
𝑉𝑎𝑟 𝑇

𝑉𝑎𝑟 𝑇 + 𝑉𝑎𝑟 𝐸
=

 𝑖=1
𝐼 𝜆𝑖

2
𝜎𝐹

2

 𝑖=1
𝐼 𝜆𝑖

2
𝜎𝐹

2 +  𝑖=1
𝐼 𝜓𝑖

2

• And…we can do this in lavaan syntax:

• The estimated reliability is….
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Notes on CFA-Estimated Reliabilities

• The CFA-Estimated reliability is for the sum score, not the 
factor score

• The sum score’s reliability is .629 (SE = .025); 
the factor score’s reliability is .73
 The difference comes from additional sources of error in the factor score:

 Sampling error

 Error from the prior distribution (squishing the variance of the factor/error)

• The sum score’s reliability is equal to the 
Spearman Brown reliability estimate
 Therefore, CTT reliability estimates can come from CFA….
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Comparing Other CFA Models with Sum Scores

• Another model to consider is the Tau-equivalent items 
model, which, for CFA, means equal loadings but different 
unique variances:

• For example, here are the parallel items model equations 
for our three-item GRI example data:

𝐺𝑅𝐼1𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝1; 𝑒𝑝1 ∼ 𝑁 0, 𝜓1
2

𝐺𝑅𝐼3𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝3; 𝑒𝑝3 ∼ 𝑁 0, 𝜓3
2

𝐺𝑅𝐼5𝑝 = 𝜇1 + 𝜆𝐹𝑝 + 𝑒𝑝5; 𝑒𝑝5 ∼ 𝑁 0, 𝜓5
2

• With a common loading estimated, we will use a 
standardized factor identification (but we don’t have to)

𝐹𝑝 ∼ 𝑁 0, 1
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The Tau Equivalent Model in lavaan

• Note: shown for didactic purposes (don’t use this model)

• Yielding model fit indices of:
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Parameter Estimates vs. Factor Score vs. Sum Score
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Factor vs. Sum Score…by item

• Now what matters is which item had a higher score…
 Items with higher information (loading^2/unique variance) result in bigger 

jumps in factor score relative to items with lower information
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Tau Equivalent Reliability for Factor and Sum Scores

• Factor score reliability estimate: .73

• Sum score reliability estimate: .62

• The sum score reliability is actually coefficient alpha
 Cronbach’s alpha (1951) /Guttman’s Lambda 6 (1945)

• HUGE NOTE: THIS IS WHY RELIABILTY IS NOT AN INDEX OF 
MODEL FIT
 IT CAN BE SHOWN TO DEPEND ON PARAMETERS THAT WILL BE BIASED UNDER 

MISFITTING MODELS
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Finally…the Unrestricted CFA Model

• All of the previous slides were to get us to see the 
relationship between sum scores and CFA models
 We would never estimate either…we would use an unrestricted CFA model

 Here is what happens with an that unrestricted CFA model

• This model fits perfectly—so no need to check model fit

• Compared to the other two models (we reject CTT)
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Parameter Estimates vs. Factor Score vs. Sum Score
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Factor Scores by Sum Score…by item

• Now what matters is which item had a higher score…
 Items with higher information (loading^2/unique variance) result in bigger 

jumps in factor score relative to items with lower information
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CFA Equivalent Reliability for Factor and Sum Scores

• Factor score reliability estimate: .734

• Sum score reliability estimate: .636

• The sum score reliability is sometimes called coefficient 
omega (see McDonald, 1999)

• If all three models fit the data then

Omega > Alpha > Spearman Brown

But…the differences are very small
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Potential Sources of Error in a Factor Score

• Measurement error 
 e.g., the 𝑆𝐸  𝐹

• Model misspecification error of various types:
 Dimensionality misspecification error

 e.g., Assuming one dimension when there is more than one present
 Parameter constraint misspecification error

 e.g., Assuming overly restrictive constraints (see next section and all of CTT)
 Linear model functional misspecification error

 e.g., Assuming a linear relationship between the factor and the items when a non-linear one is 
present

 Outcome distribution misspecification error
 e.g., Assuming Likert-type data to be continuous and using a normal distribution

 Factor distribution misspecification error
 e.g., Assuming your trait is normally distributed when it is categorical or a mixture distribution

• Missing data error
 How you treat missing responses to items makes even more untenable assumptions

• Sampling error

• Prior Distribution Error
 e.g., factor scores are “shrunken estimates”
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So….?

• Up to this point we have seen
 Assumptions underlying sum scores
 Definitions of factor scores
 How sum scores imply a very specific CFA model

• We have also seen a history of reliability:
 Spearman Brown (1910): Parallel items model 

 Equal loadings/unique variances
 Guttman/Cronbch Alpha (1945,1953): Tau equivalent items model

 Equal loadings
 Coefficient omega (source unknown): Unrestricted CFA model
 Reliability for factor scores
 Also note: the next step is conditional reliability (IRT models)

• The point is that if you are ever reporting scores but not using them 
in subsequent analyses, then use a factor score

• But what we haven’t seen is what to do when we cannot use a 
simultaneous analysis/SEM 

 And that answer will have to come during the next lecture…
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WRAPPING UP
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Wrapping Up

• Today was our first pass at trying to show how SEM and 
CFA relate to what is frequently done in most analyses

• Next time we will start again with factor scores and work 
to make the sources of error minimized

• To do so, we’ll have to learn a little about missing data, 
multiple imputation, and Bayesian analyses
 Hence needing two lectures on the topic!

• These are the most important lectures this semester
 It provides a WHY and HOW for doing science with errors of measurement
 Take this information and compare it to how people use scores…like:

http://www.ets.org/s/gre/pdf/gre_guide.pdf
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