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Today’s Class

- Comparing classical test theory to CFA

> The use and misuse of sum scores
> Reliability for sum scores under CFA

- How to use CFA to test assumptions in CTT

- What to do when SEM isn’t an option

> Secondary analyses
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Data for Today’s Class

. Data were collected from two sources:

> 144 “experienced” gamblers
+ Many from an actual casino

> 1192 college students from a “rectangular” midwestern state
+ Many never gambled before

- Today, we will combine both samples and treat them as

homogenous — one sample of 1346 subjects

> Later we will test this assumption — measurement invariance (called differential item
functioning in item response theory literature)

- We will build a scale of gambling tendencies using the first 24 items
of the GRI

> Focused on long-term gambling tendencies
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Pathological Gambling: DSM Definition

To be diagnosed as a pathological gambler, an individual must meet 5 of 10 defined criteria:

1.  Is preoccupied with gambling 7. Lies to family members, therapist, or
2. Needs to gamble with increasing others to conceal the extent of
amounts of money in order to involvement with gambling
achieve the desired excitement 8.  Has committed illegal acts such as
3. Has repeated unsuccessful efforts to forgery, fraud, theft, or _
control, cut back, or stop gambling embezzlement to finance gambling
4. |s restless or irritable when 9.  Has jeopardized or lost a significant
attempting to cut down or stop relationship, Job{ educational, or
gambling career opportunity because of
5.  Gambles as a way of escaping from gamblmg _
problems or relieving a dysphoric 10. Relies on others to provide money
mood to relieve a desperate financial

6.  After losing money gambling, often situation caused by gambling

returns another day to get even
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Final 12 Items on the Scale

Item | Criterion Question
GRI1 3 | would like to cut back on my gambling.
If I lost a lot of money gambling one day, | would be more likely to want to play
GRI3 6 again the following day.
| find it necessary to gamble with larger amounts of money (than when | first
GRI5 2 gambled) for gambling to be exciting.
GRI6 8 | have gone to great lengths to obtain money for gambling.
GRI9 4 | feel restless when | try to cut down or stop gambling.
GRI10 1 It bothers me when | have no money to gamble.
GRI11 5 | gamble to take my mind off my worries.
GRI13 3 | find it difficult to stop gambling.
GRI14 2 | am drawn more by the thrill of gambling than by the money | could win.
GRI15 7 | am private about my gambling experiences.
GRI21 1 It is hard to get my mind off gambling.
GRI23 5 | gamble to improve my mood.
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GRI 12 Item Analysis

- The 12 item analysis gave this model fit information:

Chi-Square Test of Model Fit

Value 185.178~*

Degrees of Freedom 54

P-Value 0.0000

Scaling Correction Factor 1.6034
for MLR

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.043

90 Percent C.I. 0.036

Probability RMSEA <= .05 0.949
CFI/TLI

CFI 0.952

TLI 0.941

SRMR (Standardized Root Mean Square Residual)

Value 0.032
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0.050

The model y? indicated the model did not fit
better than the saturated model — but this
statistic can be overly sensitive

The model RMSEA indicated good model fit

(want this to be < .05)

The model CFl and TLI indicated the model fit
well (want these to be > .95)

The SRMR indicated the fit well (want this to
be < .08)




CLASSICAL TEST THEORY



Classical Test Theory (CTT)

- What you have learned about measurement so far likely falls under
the category of CTT:

» Writing items and building scales

> ltem analysis

» Score interpretation

> Evaluating reliability and construct validity

. Big picture: We will view CTT as model with a restrictive set of
assumptions within a more general family of latent trait

measurement models
> Confirmatory Factor Analysis is a measurement model
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Differences Among Measurement Models

- What is the name of the latent trait measured by a test?
> Classical Test Theory (CTT) = “True Score” (T)
> Confirmatory Factor Analysis (CFA) = “Factor Score” (F)
> Item Response Theory (IRT) = “Theta” (0)

- Fundamental difference in approach:
> CTT =2 unit of analysis is the WHOLE TEST (item sum or mean)
+ Sum = latent trait, and the sum doesn’t care how it was created
+ Only using the sum requires restrictive assumptions about the items
> CFA, IRT, and beyond - unit of analysis is the ITEM
+ Model of how item response relates to an estimated latent trait
+ Different models for differing item response formats
+ Provides a framework for testing adequacy of measurement models
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Classical Test Theory (CTT)

- In CTT, the TEST is the unit of analysis: Y, ,, = T + e

» True score T:
+ Best estimate of ‘latent trait’: Mean over infinite replications

» Errore:
+ Expected value (mean) of 0, expected to be uncorrelated with T
+ e’s are supposed to wash out over repeated observations

> So the expected value of Tis Y,

> In terms of observed variance of the test scores:
+ Observed variance = true variance + error variance

- Goal is to quantify reliability

+ Reliability = true variance / (true variance + error variance)

- Because the CTT model does not include individual items,
items must be assumed exchangeable (and more items is better)
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Classical Test Theory, continued

« CTT unit of analysis is the WHOLE TEST (sum of items)

» Want to ascertain how much of observed test score variance
is due to ‘true score’ variance versus ‘error’ variance

» Quantify ‘error variance’ in various ways
> ‘Error’ is a unitary construct in CTT (and error is ‘bad’)

» Goal is then to reduce ‘error’ variance as much as possible
+ Standardization of testing conditions (make confounds constants)
+ Aggregation = more items are better (errors should cancel out)

> ltems are exchangeable; properties are not taken into account

- Followed by generalizability theory to decompose error
» e.g., rater variance, person variance, time variance

PSYC 948: Lecture #8

11



Advantages of CFA over CTT

- More reasonable assumptions about items

> CTT assumes tau-equivalent items
+ Tau — equivalent items: equal factor loadings
> CFA allows a test of whether each item relates to the factor, as well as whether
different factor loadings across items are needed
+ Would indicate some items are better than others

- Comparability across samples, groups, and time

> CTT: No separation of observed item responses from true score

+ Sum across items = true score; item properties are for that sample only
> CFA: Latent trait is estimated separately from item responses

+ Separates person traits from specific items given

+ Separates item properties from specific persons in sample

- Advantages apply to any latent trait model
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Reliability Measured by Alpha

. For quantitative items (items with a scale — although used on

categorical items), this is Cronbach’s Alpha...
> Or ‘Guttman-Cronbach alpha’ (Guttman 1945 > Cronbach 1951)
> Another reduced form of alpha for binary items: KR 20

. Alpha is described in multiple ways:
> Is the mean of all possible split-half correlations

> |s expected correlation with hypothetical alternative form of the
same length

> |s lower-bound estimate of reliability under assumption that all items are tau-
equivalent (more about that later)

> As an index of “internal consistency”
+ Although nothing about the index indicates consistency!
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Where Alpha Comes From

- The sum of the item variances is given by:
> Var(l,) + Var(l,) + Var(l,).... + Var(l,) (just the item variances)

- The variance of the sum of the items is given by the sum of ALL the

item variances and covariances:
> Var(l, + 1, + 13) = Var(l,) + Var(l,) + Var(l;) ...
+ 2Cov(l,1,) + 2Cov(l,,I5) + 2Cov(l,,15) ...
> Where does the 2’ come from?

+ Covariance matrix is symmetric | | |
+ Sum the whole thing to get to the 1 2 3
variance of the sum of the items |1 0,2 040 O43
2
l, O21 | 02" | Op
2
5 O31 | O3 | O3
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Guttman-Cronbach Alpha for Reliability

Covariance . . :
, k wvariance of total Y - sum of item variances
Version: alpha=—-+ :
. k-1 variance of total Y
k=4#items

- Numerator reduces to just the covariance among items
> Sum of the item variances...
« Var(X) + Var(Y) = Var(X) + Var(Y) = just the item variances
> Variance of total Y (the sum of the items)...
» Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) = PLUS covariances
> So, if the items are related to each other, the variance of the total Y item sum
should be bigger than the sum of the item variances

+ How much bigger depends on how much covariance among the items — the
primary index of relationship
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Assessing Reliability in Our 12 Item Gambling Scale

- To get the Guttman-Chronbach Alpha of our 12 item scale, we need
the covariance matrix

> This can be found by the SAMPSTAT option under the
OUTPUT statement

> Sum of item variances = 11.834
> Sum of item covariances = 21.575
» Variance of Total Y = 11.834+42%21.575 = 54.984

- Alpha reliability: p, = (12131) (54'9;3:;;'834) = .852
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16



Reliability...for what?

- The alpha reliability is the reliability for:

> The total test score

» Under the assumption that the items are tau-equivalent
+ Tau-equivalent means each item contributes equally
+ In a few slides, we will see how this translates to CFA

- What alpha is not:

> An index of model fit (unidimensionality)
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Measurement Language: Don’t Say These

- Often, people refer to items as “tapping” some latent trait
> | think this makes the process less transparent — items measure the trait

- When alpha is used, you can sometimes hear people say something

about how well the items “hang together”
> This is certainly not true...
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How to Get Alpha UP
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TABLE
Values of Cronbach’s Alpha for Various Combinations of Different
Number of Items and Different Average Interitem Correlations

Number Average Interitem Correlation

of ltems 0 2 A B B8 1.0
2 L0000 333 572 760 889 1.000
4 000 500 727 B57 R ) 1.000
6 000 600 B00 900 960 1.000
8 000 666 542 924 970 1.000

10 000 714 870 938 976 1.000

— —
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Alpha as Reliability... What could go wrong?

- Alpha does not index dimensionality = it does not index the extent to which items
measure the same construct

TABLE 13.2. Interitem Correlation Matrices for Two Hypothetical Tests with the Same
Cocfficient Alpha Reliability of .81

Test A with 10 tems Test B with 6 Items

Variable 1 2 3 4 5 66 7 B8 9 10 Yariable 1 2 Y 4 5 &

. — 1 —
2. I T 2. b -
3., 03 3 — 3, 6 6 —
. 3 03 3 - 1. 3 03 03 —
oo 5. 3 03 3 3 — 5. 3 3 3 6 —
. The variabi 6. 3 3 3 3 3 — 6. 3 3 3 6 6 —
_ 7. 03 3 3 3 3 3 —
. \We use itel 8. 303 3 3 3 3 -
9. 3 3 a3 3 3 " | 3 3 -
0. 3 3 3 3 3 3 3 3 3 -
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Case In Point: All 24 Items

. Last class we showed that the 24 items of the GRI did not fit a one-
factor model — what would happen if we neglected to check model
fit and used the total score as our estimate of gambling tendency?

- The reliability estimate — from the covariance matrix of all the items
(the saturated model H1) was p, = .861

> We would have concluded we had a “good” scale for gambling

- But, from CFA last week, we found that one factor didn’t describe all

the items
> Any subsequent analysis will have the misfit bias the results
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Testing CTT Assumptions in CFA

. Alpha is reliability assuming two things:
> All factor loadings (discriminations) are equal, or that the items are
“true-score equivalent” or “tau-equivalent”

> Local independence (dimensionality now tested within factor models)

- We can test the assumption of tau-equivalence too via nested model
comparisons in which the loadings are constrained to be equal —
does model fit get worse?

> If so, don’t use alpha — use model-based reliability (omega) instead. Omega assumes
unidimensionality, but not tau-equivalence

> Research has shown alpha can be an over-estimate or an under-estimate depending on
particular data characteristics

- The assumption of ‘Parallel items’ is then testable by constraining

item error variances to be equal, too — does model fit get worse?
> ‘Parallel items’ will hardly ever hold in real data
> Note that if tau-equivalence doesn’t hold, then neither does ‘parallel’
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Another Blast from the Past: Parallel Items

Another CTT “model” that exists that of parallel items
> All items have the same covariance and variance
> Goes one step further than tau equivalence (equal covariances but unequal variances)

Under the parallel items model, the alpha reliability for the total test score is called the
Spearman-Brown reliability
» Used to “prophesy” the number of items needed to increase reliability to a desired level

- Spearman-Brown Prophesy Formula
> Reliabilityyg,, = ratio*rel 4 / [(ratio-1)*rel 4 + 1]
+ Ratio = ratio of new #items to old #items
» For example:
+ Old reliability = .40
+ Ratio =5 times as many items (had 10, what if we had 50)
+ New reliability = .77

PSYC 948: Lecture #8
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Reliability vs. Validity “Paradox”

Given the assumptions of CTT, it can be shown that the correlation between a test
and an outside criterion cannot exceed the reliability of the test (see Lord &
Novick 1968)

> Reliability of .81? No observed correlations possible > .9,
because that’s all the ‘true’ variance there to be relatable!

> In practice, this may be false because it assumes that the errors are uncorrelated with
the criterion (and they could be)

Selecting items with the strongest discriminations (or the strongest inter-
correlations) can help to ‘purify’ or homogenize a test, but potentially at the
expense of construct validity

> Can end up with a ‘bloated specific’

> ltems that are least inter-related may be most useful in keeping the construct well-
defined and thus relatable to other things
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Using CTT Reliability Coefficients: Back to the Score Estimates

Reliability coefficients are useful for describing the behavior of the test in the
overall sample... Var(Y) = Var(T) + Var(e)

But reliability is a means to an end in interpreting a score for a given individual —
we use it to get the error variance

> Var(T) = Var(Y)*reliability; so Var(e) = Var(Y) — Var(T)
> 95% ClI for individual score =Y + 1.96*SD(e)

> Gives an indication of how precise the true score estimate is on the metric of the
original variable

> Example: Y =100, Var(e)=9 > 95% Cl =94 to 106
Y =100, Var(e) =25 2> 95% Cl =90 to 110

> Note this assumes a symmetric distribution, and thus will go out of bounds of the scale
for extreme scores

> Note this assumes the SD(e) or the SE for each person is the same
> Cue mind-blowing GRE example
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95% Confidence Intervals: Quantitative
SEM ranges from 9 to 55
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REVISITING CTT FROM A
CFA PERSPECTIVE



Classical Test Theory from a CFA Perspective

. In CTT the unit of analysis is the test score:
YS,Total =T; + E;

. In CFA the unit of analysis is the item:
Yoi =y, + AiFs + eg;

- To map CFA onto CTT, we must put these together:

I
Ys,Total — Z Ysi
=1



Further Unpacking of the Total Score Forumla

- Because CFA is an item-based model, we can then substitute each

item’s model into the sum:
I

I
Ys,Total — z Yoi = Z(“li + A Fs + esi)
=1

= i=1
I I I
= Z My + 2 Ai |Fs+ ) e
=1 =1 =1

- Mapping this onto true score and error from CTT:

I I I
T=Zu,i+ 2/11- FSandE=ZeSl-
i=1 1 i=1

=
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29



Familiar Terms

. The tau-equivalent model assumes:
> All items measure the factor the same: 4; = 1
» Each item has its own unique variance: eg; ~ N(O, 1/)?)

- The parallel items models assumes:
> All items measure the factor the same: 4; = 1
> All items have the same unique variance: e;; ~ N(O,l/)2 )

- As such, each of these models can be tested by using the CFA
approach —each are nested within the full CFA model

PSYC 948: Lecture #8
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Tau-Equivalence: Model Implied Covariance Matrix

- The CFA model implies a very specific form for the covariance matrix
of the observed items:
Y=APAT + P

- The variance of an item i was: al-z = /1?0,3 + l/Jl-2

- The covariance of a pair of items i and j was:o;; = Ailjaﬁ

- Under Tau-Equivalence, all loadings are the same, meaning:

> The item variances can be different (because of wiz)
> All item covariances are the same (120

. This is called the compound symmetry heterogeneous model
> We can actually achieve the same model without the factor
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Tau-Equivalence Model for 12 Item Gambling Scale

- The following two pieces of Mplus syntax result in the same equivalent model:
- Tau-Equivalence as a Factor Model:

MODEL:
'LABELS FOR FACTCR LOADINGS IN PARENTHESES (SAME LABEL = SBAME ESTIMATE)
GAMBLING by GRI1* (loading)

GRI3 (loading) MODEL FIT INFORMATION
GRIS (loading)
GRI& (loading) Number of Free Parameters 25
GRIS (loading)
GRI10 (loading) Loglikelihood
GRI11l (loading)
GRI13 (loading) HO Value -19051.350
GRI14 (loading) HO Scaling Correction Factor 2.5172
GRI1S (loading) for MLR
GRIZ21 (loading)
GRI23 (loading):

IQUE VARIANCE LABELS:
GRI1 (Ul); GRI3 (U3); GRIS (US5); GRI6&6 (Use); GRI9 (U9):
GRI10 (Ul10):; GRI11 (Ul11l); GRI13 (U13); GRI14(U14):; GRI1S5(U15):

GRI21 (U21); GRI23 (U23):

.::Io,-.-~-_~ TTADTANMAT TADDT O

IR TAD TIADTANMAT ODT TA

SfACLIOR VARIANCLE OL1 10 13

GAMBLING@1 ;|

- Tau-Equivalence as a Compund-Symmetry Heterogeneous Variances Model:

MODEL FIT INFORMATICN

MODEL: Number of Free Parameters 25
GRI1 GRI3 GRIS5-GRI6 GRI9-GRI11 GRI13-GRI15 GRI21 GRI23 WITH 7
GRI1 GRI3 GRIS5-GRI6 GRI9-GRI11 GRI13-GRI15 GRI21 GRI23 (cov): Loglikelihood
HO Value -19051.350
HO Scaling Correction Factor 2.5172
for MLR
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Model Implied Covariance Matrix

- All covariances equal/all variances different

PSYC 948: Lecture #8

GRI1
GRI3
GRIS
GRI®6
GRIS
GRI1O
GRI11
GRI13
GRI14
GRI1S
GRI21
GRIZ23

GRI1O0
GRI11
GRI13
GRI14
GRI1S
GRI21
GRIZ23

GRI21
GRI23

Model Estimated Covariances/Correlations/Residual Correlations

GRI1

1.016

0.319
0.319
0.319
0.319
0.319
0.319
0.319
0.319
0.319
0.319
0.319

GRI3

0.861
0.319
0.319
0.319
0.319
0.319%
0.319
0.319
0.319
0.319
0.319

GRIS

0.835
0.319
0.319
0.319
0.319
0.319
0.319
0.319
0.319
0.319

GRI6

0.623
0.319
0.319
0.319
0.319
0.319
0.319
0.319
0.319

GRI9

0.532
0.319
0.319%
0.319
0.319
0.319
0.319
0.319

Model Estimated Covariances/Correlations/Residual Correlations

GRI10

0.694

0.319
0.319
0.319
0.319
0.319
0.319

GRI11

1.176
0.319
0.319
0.319
0.319
0.319

GRI13

0.810
0.319
0.319
0.319
0.319

GRI14

2.161
0.319
0.319
0.319

GRI1S

1.538
0.319
0.319

Model Estimated Covariances/Correlations/Residual Correlations

GRI21

0.698

0.319

GRI23

33



Testing for Tau Equivalence

The Tau-Equivalence model (assumed when you sum items) can be tested against
the full CFA model

> The models are nested, so we can use a likelihood ratio test

Log-likelihood from CFA model: -18,988.425; SCF = 2.4309

> 36 parameters (12 item intercepts, 11 factor loadings, 1 factor variance, 12 unique variances)

Log-likelihood from TE model: -19,051.350; SCF = 2.5172

> 25 parameters (12 item intercepts, 1 factor loading, 12 unique variances)

MLR Likelihood ratio test: y* = 56.315,p < .001

Therefore, we reject the tau-equivalent model in favor of the CFA model — this
means the simple sum of the items is not sufficient
> We should use the CFA model factor score instead of a sum score
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Parallel Items: Model Implied Covariance Matrix

- The CFA model implies a very specific form for the covariance matrix of the
observed items:
Y=APA" + ¥

The variance of an item i was: 67 = A70# + 7

The covariance of a pair of items i and j was:g;; = /11-/1]-0,?

Under Parallel Items, all loadings and unique variances are the same:

> All item variances are the same (120# + ?)
> All item covariances are the same (120

This is called the compound symmetry model
> We can actually achieve the same model without the factor

Because parallel items are nested within tau-equivalent items, we do not have to
test this model as we know it will not fit when compared to the CFA model
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Test Score Reliability Under the CFA Model

. Coefficient alpha gave reliability for the total test score under the

Tau-Equivalent Items Model

> We rejected that model in favor of the CFA model

> Therefore, coefficient alpha will not be correct for our total test score (if we were to
still sum up the items)

- The notions of test score reliability under the CFA model now involve

the factor loadings

> But still come back to classical notion of reliability being the proportion of variance due

of

2 2
O'T+O'E

to true score: p =
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Deriving Reliability For Sum Scores Under the CFA Model

- To show where total-score reliability under the CFA model comes

from, recall our CFA-model for the total score:
I

I
YS,Total — z Hi; T+ 2 Ai Fs + €si
=1

I
=1 =1

- Mapping this onto true score and error from CTT:

I I I
T=Zu,i+ z/li FSandE=Zesi
i=1 1 i=1

1=

- We now must derive the variance for Tand E

PSYC 948: Lecture #8
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True Score Variance Under the CFA Model

. The variance for the true score:

_|_

I
z/li F;

=1
I 2

Var ZAi F, | = ZAL oF

I
oz =Var(T) = Var z Uy,
i=1

I
=1 =1
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Error Variance Under the CFA Model

- Because the CFA model allows for the estimation of error
covariances (although you shouldn’t do that), the error

variance under the CFA model becomes:
I

o7 =Var(E) = Var z e
i=1
I_

=
~

=

A |

= zzpf + 2cov(i,j)

I
i=1 i=1 j=i+1

[
[

- When error covariances are not estimated, the last term is
zero, leaving Var(E) = Yi_, Y7



Reliability for Total Score Under CFA

- The reliability of the total score from CFA, is then:
2
_ of (Z{=1/1i) of;
Pw

= 2 2 = 2 _ ..
or + 0g (Z{:l/li) of +Xi Wi+ 2020 §'=i+1 2cov(i, )

. This reliability coefficient is called coefficient Omega (w)

- If the tau-equivalent model does not hold p,, is the reliability of a

total test score (sum score)

> Typically is higher than Alpha
> If unidimensional model holds, coefficients will be close
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Calculating Omega for Our Test

- We can use Mplus to calculate Omega for our test:

MODEL:

g T e e e S
'LABELS FOR FACTOR LOADINGS IN PARENTHESES (SAME LABEL = SAME ES

GAMBLING by GRI1l

GRI3 (L3)
GRIS (LS)
GRI6&6 (Le)
GRIS (L9)

GRI10 (L10)
GRI11 (L11)
GRI13 (L13)
GRI14 (L14)
GRI15 (L15)
GRI21 (L21)
GRI23 (L23):

ITINTATTE YYADT?I F TAREFTC

'UNIQUE VARIANCE LABELS:
GRI1 (Ul); GRI3 (U3); GRIS (US):; GRI& (Us); GRIS (U9);
GRI10 (U10); GRI1l1 (Ull); GRI13 (Ul1l3); GRI14(Ul4); GRI1S5(UlS):;
GRI21 (U21):; GRI23 (U23):

IR TAD TTADTANMAT o

'FACTOR VARIANCE S

GAMBLING (G_VAR):;

=T TN
1 1V

MODEL CONSTRAINT:
NEW (OMEGA):;

OMEGA = ( G_VAR*(1+L3+LS+L6+L9+L10+L11+L13+L14+L15+L21+L23)"2)/
((G_VAR* (1+L3+L5+L6+L9+L10+L11+L13+L14+L15+L21+L23) "2 +
(U1+U3+U5+U6+U9+U10+Ull+Ul3+Ul4+UlS+U21+U23)))4

New/Additional Parameters
OMEGA 0.855 0.009 91.688 0.000

Here, Omega is .855
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Omega Under Tau-Equivalent Items

- Omega equal to Alpha when you use the tau-equivalent items model

> Omega is the Spearman Brown reliability under parallel items

MCDEL:

ITADET & TAD TAATADR TAADTAAS T
LABELS FOR FACTOR LOADINGS IN P

GAMBLING by GRI1* (loading)
GRI3 (loading)
GRIS (loading)
GRI& (loading)
GRIS (loading)
GRI10 (loading)
GRI11 (loading)
GRI13 (loading)
GRI14 (loading)
GRI1S (loading)
GRI21 (loading)
GRI23 (loading):

ATT ATTE TTR TS T CF T.ARFI.S -

-WINAQGUL VARIANCLD LADLLO.

GRI1 (Ul):; GRI3 (U3),; GRIS (US); GRI6é (U6); GRIS (U9):

GRI10 (U10):; GRI1l1 (Ul1l); GRI13 (U13); GRI14(U14):; GRI1S5(U1S5):

GRI21 (U21):; GRI23 (U23):;

' FACTOR VARIANCE SET TO

LAHAUIUVN vaRAaRilAaNCOL P} PP § A\ -

GAMBLINGR1;

MCDEL CONSTRAINT:

NEW (CMEGA) :;

OMEGA = ( 1% (12*LOADING)"2)/
((1* (12*LOADING) "2 +
(Ul+U3+US+UG+UQ+Ul0+Ull+Ul3+Ulq+015+Uzl+023)))4

New/Additional Parameters
OMEGA 0.852 0.011 80.427 0.000
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Here, Omega is .852 —
which is equal to the
Alpha we calculated using
the covariance matrix

42



Recapping: CTT using CFA

. Classical test theory — and more specifically, total test scores, is the

dominant way to assess subjects
> This is true even under CFA

- The key is to be sure to check if a one-factor model fits the data

before using any type of reliability coefficient
> If not, do not use a test score

. |f the one factor model fits — then a single score can represent
the test

- The next worry is about representing the error in the test score

(related to reliability)

> If reliability is “high” (? How high, standard of .8), then using the test score in a
subsequent analysis is accepted practice
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Secondary Analyses with Factor Scores

. |f you want to use results from a survey in a new analysis
> Best: Use SEM — error in factor scores is already partitioned variance

> Similarly good: Use “plausible values” (repeated draws from posterior
distribution of each person’s factor score) — essentially what SEM does — but
with factor scores that vary within a person
+ Can be done in Mplus — not described

> Slightly Less Good: Use SEM with “single indicator” factors using sum scores
+ The focus of the next section
+ Make error variance = (1-reliability)*Variance (Sum score); factor loading = 1

> Okay (but widespread): for scales that are unidimensional (and verified in
CFA), use sum scores
+ Assumes unidimensionality and “high” reliability

» Not Cool: Use factor scores only
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What about Using Factor Scores?

. Although CFA factor scores have fewer problems than EFA factor

scores (because there is no rotation in CFA), they still have issues:

> They will be shrunken (i.e., pushed towards the mean, such that the observed variance
of the factor scores will be less than the original factor variance)

> Can get estimates of “factor determinacy” = how correlated estimated factor scores
are with true factor scores (basically how much error is introduced by estimating the
factor scores as observed variables)

> They are just estimates of central tendency from a distribution for each person, not
known values — and using estimates as known values in another model makes the
relationships within that model look more precise than they are (like SE = 0)

> You CANNOT create factor scores by using the loadings as such:
* F=A; ¥, + A1y, + Ay 5. > Thisisa COMPONENT model, not a FACTOR model.

PSYC 948: Lecture #8 45



SINGLE INDICATOR MODELS



Single Indicator Models

Single indicator models are CFA-like models where a “factor” is measured by a
single indicator:
> Shown here for the gambling factor

Gambling
Tendencies
F

Sum of 10
GRI Items

YS,TOTAL

t

(1- ,00))0'1;
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Identification in Single Indicator Models

- How is this possible? Isn’t a single indicator factor model unidentified?
> We fix the factor variance, factor loading, and unique variance
> Factor variance represents “reliable” portion

- Single indicator model parameters:

> of - factor variance; 1y - factor loading; 12 - item unique variance (assume factor mean fixed to
zero and item intercept is set to it mean)

« Our constraints are:
> Ay =1
> O0f = p,, * 07 (the portion of Y that is “reliable”)
> Yz = (1 —p,) * o (the portion of Y that is left over)
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Assumptions in a Single Indicator Analysis

- To use a single indicator you must assume:

> The indicator is unidimensional (only one factor)
+ This is testable in CFA (but if you have a small sample is hard to do)

+ If not possible to test, you must assume you have one factor
— This is an assumption that the test is *as* dimensional in your sample/population

» The reliability of the indicator is known
+ Also obtainable from CFA

+ If not possible to obtain, then you must use a previously reported reliability

coefficient
— This is an assumption that the test is *as* reliable in your sample/population
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Single Indicator Example Analysis

To demonstrate a single indicator example analysis, we will use the

12-item GRI to predict the SOGS score

> SOGS = South Oak Gambling Screen (we collected this)
+ Note: we assume this has reliability of 1.0

> The 12-item GRI is the single indicator of the gambling factor

Step #1: determine that the single indicator is unidimensional
> The 1-factor CFA model fit the 12-item GRI

Step #2: get the single indicator reliability
> From the CFA analysis we found that the reliability of the 12-item GRI was .855

Step #3: estimate the variance of the 12-item GRI total score
> We can do this in Mplus — found the variance to be 55.050
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Single Indicator Analysis

- Now that we have our reliability of the GRI and the variance of the GRI, we can put these

into the single indicator model:

VARIABLE:
NAMES = GRI1-GRI41l S0OGS4-SOGS1S5S Student ID;
USEVARIABLES = GRI12sum SOGSsum;
IDVARIABLE = ID;
MISSING = ALL(99):

DEFINE:
S0GSsum =
GRI1Z2sum =

SUM (S50G54-50G515) ;

MODEL:

'DEFINE GAMBLING FACTOR

AlIDL AL TALCIUN

GAMBLING BY GRI12sum@l;

LOADING TO

1 T TR e
'FIX FACTOR LOA 3
-

GRI1lZ2sum (si wvar):; 'LABEL
SOGSsum ON GAMBLING; MAKE PREDICTION OF SOG
GAMBLING "LATENT"™ VARI

MODEL CONSTRAINT:

'HERE THE SINGLE INDICATOR VARIANCE IS SET
!THIS IS THE VARIANCE OF THE SUM (54.858) TIMES
si var = 55.050*(1-.855);
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A L& -\ -

ST TT
=10)ut

-

L

SUM(GRI1 GRI3 GRIS-GRI6 GRIS-GRI1l1l GRI13-GRI1S GRI21 GRIZ23):

UNIQUE VARIANCE TO CONSTRAIN IT LATER

IN

)]
l’.)
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Single Indicator Model Results:

- Note: 47.067 + 7.982 = 55.05 (the variance of the GRI)

2.440 (.213) =—>

MODEL RESULTS

GAMBLING BY
GRI125UM

SO0GSSUM ON
GAMBLING

Intercepts
GRI125UM
SOGSSUM

Variances
GAMBLING

Residual Variances

GRI125UM
SOGS5UM
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Estimate

000

.167

19.869

47

.983

.067

7.982
2.440

SOGS Score |€

167 (.011)

47.067

& (3 459)

Gambling

S.E.

0.000

0.204
0.056

3.459

Est./S.E.

999.

000

7.574
. 647

13.608

.000
»445

Two-Tailed
P-Value

999

999.

.000

.000

.000
.000

.000

000

.000

Tendencies
Es

Sum of 10
GRI Items

YS,TOTAL

t

7.982
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Single Indicator Model Interpretation

- The standardized regression slope for the gambling “factor”, predicting the SOGS was .591

—as gambling went up 1 SD, the SOGS score went up .591 SD

> Correlation between
gambling and SOGS

STDYX Standardization

Estimate
. “ ”
- The gambling “factor GAMBLING BY
GRI125UM 0.925
accounted for 35.0% of the
: : SOGSSUM O©ON
variance in the SOGS score i, 5 s
Intercepts
GRI125UM 2.678
S0GSSUM 2.572
Variances
GAMBLING 1.000
Residual Variances
GRI125UM 0.145
S50GssUM 0.650
R-5SQUARE
Observed
Variable Estimate
GRI125UM 0.855
S0GSSUM 0.350
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0.005

0.035

0.069
0.092

0.000

0.009
0.041

0.009
0.041

Est./S.E.

999.

7.698

.730
7.967

000

Est./S.E.

93.849
8.505

Two-Tailed
P-Value

0.000

0.000

0.000
0.000

999.000

0.000
0.000

Two-Tailed
P-Value

0.000
0.000
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Comparison with Non-Single Indicator

- Without using the single indicator:

MODEL RESULTS

S0G5SUM O©N
GRI125UM

Means
GRI125UM

Intercepts
S0GSsSUM

Variances
GRI125UM

Residual Variances
S0GS5UM
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Estimate S.E.

0.143 0.010

19.869 0.204

2.145 0.183

55.050 3.459

2.630 0.218
R-SQUARE

Cbserved

Variable

SOGSSUM

Estimate

0.547

2.678

1.107

1.000

0.701

Two-Tailed

Two-Tailed
Est./S.E. P-Value STDYX Standardization
13.877 0.000
S0GSSUM ON
GRI125UM
97.574 0.000
Means
GRI125UM
11.733 0.000 Intercepts
SOGSsUM
Variances
15.916 0.000 GRI12SUM
Residual Variances
12.071 0.000 S0GSsSUM
Estimate S.E. Est./S.E.

0.299

0.037 8

E-Value

0.000

S.E.

0.034

0.069

0.131

0.000

0.037

Est./S.E. P-Value
16.173 0.000
38.730 0.000

8.428 0.000
999.000 999.000
18.946 0.000

Iwo-Tailed
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ITEM PARCELING



Item Parceling

Frequently, sum-scores are used in SEM under a different label: as

item “parcels”
> Evidently parcel sounds more polite “stuff that didn’t fit”

. |tem parcels are sums of sets of items that are inserted into a SEM
without any further inspection

- Frequently, item parcels will hide bad fit of model
> Blind parceling = cheating

. As parcels are sums — and today’s class is about using sums, we can
now discuss parcels under CTT with CFA
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Applying Our Understanding of Total/Sum Scores to Parcels

- As we have seen today, a total score is a statistical model
> Tau-equivalent items

. As with any statistical model, if the model does not fit (adequately
represent the data), misleading results occur

. Parceling items makes an implicit assumption about their structure —

that they too are tau-equivalent
> If that assumption is not valid, results cannot be believed

- Most uses of parceling make no attempt to determine if the tau-
equivalence assumption is correct
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Revisiting our 24 Iltem GRI

. As you will recall, our 24 item GRI did not fit the one-factor model

- To demonstrate parceling, we will take the 12 misfitting items and

create a parcel (sum their scores together)
> We will then add the parcel to a CFA model with the other 12 items

Chi-Square Test of Model Fit
Value 2697.493~*
Degrees of Freedom 252
P-Value 0.0000
Scaling Correction Factor 1.3825
for MLR

The model y? indicated the model did not fit
better than the saturated model — but this
statistic can be overly sensitive

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.086

90 Percent C.I. 0.083 0.089

Probability RMSEA <= .05 0.000
CFI/TLI

CFI 0.684

TLI 0.654

SRMR (Standardized Root Mean Sgquare Residual)

Value 0.087
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The model RMSEA indicated the model did not
fit well (want this to be < .05)

The model CFl and TLI indicated the model did
not fit well (want these to be > .95)

The SRMR indicated the model did not fit well
(want this to be < .08)
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The 12 Item GRI Plus the Parcel of Bad Items

r] « VARIABLE:
* T e Syntax' = GRI1-GRI41 S0G54-50GS15 Student ID:

NAMES =

USEVARIABLES = GRI1 GRI3 GRI5-GRI6 GRI9-GRI11 GRI13-GRI15 GRI21 GRI23
GRIrest;

IDVARIABLE = ID;

MISSING = ALL(99) ;|

DEFINE:
GRIrest = SUM(GRIZ2 GRI4 GRI7 GRIS8 GRI12 GRI16-GRI20 GRI22 GRI24):;

MODEL:

GAMBLING by GRI1 GRI3 GRIS5-GRI6& GRIS-GRI11 GRI13-GRI1S5 GRI21 GRI23 GRIrest;

- The model fit statistics (adequate model fit):

RMSEAZ (Root Mean Square Error Of Approximation)

Estimate 0.055

90 Percent C.I. 0.049 0.061

Probability RMSEA <= .05 0.082
CFI/TLI

CFI 0.929

TLI 0.915

- Note: 12 item GRI had RMSEA of .045

PSYC 948: Lecture #8
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How Parceling Hides Poor Model Fit

- The item parcel hides poor model fit by using a numbers game
to its advantage

- Model with 24 items had 300 elements in saturated covariance
matrix (but 48 parameters for that matrix)

- Model with 12 items plus parcel (12 “items”) had 91 elements in
saturated covariance matrix (and 26 parameters)

- The relative ratio of parameters to saturated covariances makes the
parcel hide the fit issues
> Especially when the remainder of the items fit well already
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Parceling Done Right

- To add a parcel you must first examine the fit of a one-factor model to the items

of the parcel: VARIABLE:

NAMES = GRI1-GRI41 S0OGS4-50GS15 Student ID;

USEVARIABLES = GRIZ2 GRI4 GRI7 GRI8 GRI12 GRI16-GRI20 GRI22 GRI24:;
IDVARIABLE = ID;
MISSING = ALL(99):

MODEL:
PARCEﬂ by GRI2 GRI4 GRI7 GRIZ GRI1l2 GRI16-GRI20 GRI22 GRI24;

- The model fit suggests a one-factor model doesn’t fit

“hi-Square Test of Model Fit

Value 1831.999~*

Degrees of Freedom 54

P-Value 0.0000

Scaling Correction Factor 1.0632
for MLR

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.157

90 Percent C.I. 0.151 0.163

Probability RMSEA <= .05 0.000
CFI/TLI

CFI 0.357

TLI 0.214
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Why Parceling is Cheating and Why You Shouldn’t Do It

. If you didn’t check the parcel before adding it to the 12 item GRI

model you would conclude 1-factor model fit the data well
> If a one-factor model fits, then what comes next is typically the use of its sum score

- The sum score from the 12 good + 1 bad (parcel) model is just the

sum score from the 24 item GRI — which didn’t fit a one-factor model

> The caveat: the 12+1 model sum score had an omega reliability of .516!
> Most of the lack of reliability comes from the estimated unique variance of the parcel

- You cannot make a good factor by cheating with a parcel!
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CONCLUDING REMARKS



Wrapping Up

- Today was spent on comparing classical test theory (synonymous
with sum scores) to CFA

- Understanding how CTT and CFA are related is important

> Many people believe that sum scores are A-OK
+ They only are if they fit a 1-factor model and have a high reliability

> Many people don’t think parceling involves sum scores
+ The label must be the problem...

. Single indicator models can be a good way to use sum scores if:
> The 1-factor model fits

> There is a high degree of reliability
> We will return to this once we discuss SEM more thoroughly

PSYC 948: Lecture #8 64



Coming Up...

- Next week’s lecture: multidimensional CFA models

> More than one factor
> Reliability for a total test score no longer applies (each factor is
where reliability is important)

> Time permitting: an introduction to Exploratory Factor Analysis
+ Followed by a comparison of CFA and EFA

+ And why you also shouldn’t be doing EFA
— But could explore the data better using CFA techniques
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