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Today’s Class

« Scale building with confirmatory factor analysis
> Item information
> Use of factor scores

> Reliability for factor scores
+ General concept of reliability

- Additional Psychometric Issues:
Construct Maps

ltem Design

Model Fit

Model Modification

Scale Interpretation

ltem Information

Factor Scores

Reliability for Factor Scores
Test Information

Validity
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Data for Today’s Class

. Data were collected from two sources:

> 144 “experienced” gamblers
+ Many from an actual casino

> 1192 college students from a “rectangular” midwestern state
+ Many never gambled before

- Today, we will combine both samples and treat them as homogenous — one sample of 1346

subjects
> Later we will test this assumption — measurement invariance (called differential item functioning in item

response
theory literature)

- We will build a scale of gambling tendencies using the first 24 items of the GRI
> Focused on long-term gambling tendencies
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Pathological Gambling: DSM Definition

To be diagnosed as a pathological gambler, an individual must meet 5 of 10 defined criteria:

1.  Is preoccupied with gambling 7. Lies to family members, therapist, or
2. Needs to gamble with increasing others to conceal the extent of
amounts of money in order to involvement with gambling
achieve the desired excitement 8.  Has committed illegal acts such as
3. Has repeated unsuccessful efforts to forgery, fraud, theft, or _
control, cut back, or stop gambling embezzlement to finance gambling
4. |s restless or irritable when 9.  Has jeopardized or lost a significant
attempting to cut down or stop relationship, Job{ educational, or
gambling career opportunity because of
5.  Gambles as a way of escaping from gamblmg _
problems or relieving a dysphoric ~ 10.  Relies on others to provide money
mood to relieve a desperate financial

6.  After losing money gambling, often situation caused by gambling

returns another day to get even
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Our 24 GRI Items

The first 24 items of the GRI were written to represent the 10 DSM criteria in the gambling
tendencies construct:

Criterion Item Count
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BUILDING OUR GAMBLING SCALE



Building our Gambling Scale

The 41 items of the GRI represent the full set of items generated to study the tendency to

gamble as a construct
> The 10 DSM criteria were the basis for the items of the GRI
> We will use the first 24 items as our item pool (the remaining 17 you will use in your homework
assignment)

Our goal: to create a scale that accurately measures one overall gambling factor

The key: make sure the one-factor model fits the data
> If the model does not fit, inferences cannot be made

The problem: balancing model fit with the nature of the construct
> Not all items will be retained — so the final construct will likely be different from the original construct
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First Step: Analysis of 24 Items

« The first step in our analysis is to examine how the one-factor model fits the entire
item pool

TITLE:
Gambling Research Instrument Items
Data from 1192 College Students/144 Gamblers
41 Likert Items (1-6): GRI1-GRI41
12 SOGS items (S0GS54-50GS15), mostly dichotomous

Identification: Marker Item Factor Variance, Zero Factor Mean

One-Factor GAMBLING tendencies model with first 24 GRI items

DATA:
FILE = gamblingdata.csv;

ANALYSIS:
ESTIMATOR = MLR;

VARIABLE:
NAMES = GRI1-GRI41 S0OGS4-50GS515 Student ID;
USEVARIABLES = GRI1-GRI24;
IDVARIABLE = ID;
MISSING = ALL(99):

MODEL:
GAMBLING by GRI1-GRI24;

OUTPUT:
STANDARDIZED MODINDICES (ALL O) RESIDUAL SAMPSTAT:;
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Step #1: Assessment of Model Fit

Our assessment of model fit begins with our global indices of model fit:
> Model y2, RMSEA, CFl, TLI, and SRMR

Chi-Square Test of Model Fit

The model y? indicated the model did not fit
Value 2697 .,493~* .
Degrees of Freedom 252 better than the saturated model — but this
BP-Value 0.0000 . . b | ey e
Scallng Correction Factor 1.3825 StatIStIC Can e Over y SenSItlve
for MLR

RMSEA (Root Mean Square Erro

H

Of Approximation)

The model RMSEA indicated the model did not
Estimate 0.08 . .
90 Percent C.I. 0.083 o.0ss fit well (want this to be < .05)
Probability RMSEA <= .05 0.000
CFI/TLI
et o ese The model CFl and TLI indicated the model did
TLI 0.654 not fit well (want these to be > .95)

SRMR (Standardized Root Mean Square Residual)

The SRMR indicated the model did not fit well
Value (want this to be < .08)
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Assessment of Global Model Fit

- Assessment of global model fit:

>
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Recall that item intercepts, factor means, and variances are just-identified
. Therefore, misfit comes from inaccurately modeled covariances

X2 is sensitive to large sample size

Pick at least one global fit index from each class;
hope they agree (e.g., CFl, RMSEA)

If model fit is not good, you should NOT be interpreting the model estimates
+ They will change as the model changes

+ All models are approximations — close approximations are best

If model fit is not good, it’s your job to find out WHY

If model fit is good, it does not mean you are done, however...
. You can have good fit and poorly functioning items
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Step #2: Assessment of Model Misfit

« Our one-factor model ended up not fitting well

> We must make modifications before we can conclude we have built a good scale to measure gambling
tendencies

- Because the model did not fit well, we cannot look at any model-based parameters to give

us indications of misfit
> These are likely to be biased ( = wrong or misleading)

- What we must examine is the residual covariance matrix using the

normalized residual covariances
> Normalized residual covariances are like z-scores (bigger than +/- 2 indicate significant misfit)
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Normalized Residual Covariances

. Normalized residual covariances are like z-scores

> Values bigger than +/- 2 indicate significant misfit

Positive residuals: items are more related than your model predicts them to be
> Something other than the factor created the relationship

Negative residuals: items are less related than your model predicts them to be
> The overall model causes these to be off

Evidence of model misfit tells you where the problems with the model lie, but not what to
do about fixing them

PSYC 948: Lecture #7 12



GRI 24 Item Analysis Normalized Residuals

« The largest normalized residuals:

> -15.947 (Covariance of Item 20 and Item 22)
+ Negative value: model causes misfit
> 14.643 (Covariance of Item 20 and ltem 12)
+ Positive value: additional features causing extra item covariances

> 14.083 (Covariance of Item 20 and Item 4)
+ Positive value: additional features causing extra item covariances

- Often, we examine the wording and content of the items for clues as to why they do not fit
the model:

> ltem 20: When gambling, | have an amount of money in mind that | am willing to lose, and | stop if |
reach that point. (6R)

> Item 22: Gambling has hurt my financial situation. (10)
> Item 4: | enjoy talking with my family and friends about my past gambling experiences. (7R)
> Item 12: When | lose money gambling, it is a long time before | gamble again. (6R)
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Ways of Fixing The Model #1.:
Adding Parameters — Increasing Complexity

- A common source of misfit is due to items that have a significant residual covariance
> Said another way: items are still correlated after accounting for the common factor
> For a one-factor model — this indicates that one factor does not fit data (so theory of one-factor is
incorrect)

« Solutions that increase model complexity:

> Add additional factors (recommended solution)
+ Factors are additional dimensions (constructs) that are measured by the items

> Add a residual covariance between items (dangerous solution)
+ Use modification indices to determine which to add

+ Error covariances are unaccounted for multi-dimensionality
— This means you have measured your factor and something else that those items have in common (e.g. stem, valence, specific content,
additional factors)

PSYC 948: Lecture #7 14



Solution #1: Adding Factors

Adding a factor is equivalent to stating that the hypothesized one-factor model does not fit
the data
> The evidence suggests a one-factor model is not adequate

- The GRI was created to measure each of the 10 criteria of the DSM, not one general

gambling factor
> Likely, gambling tendencies have more than one factor

- We will revisit adding an additional factor in a future class
> When we look at multidimensional factor models

- For now, our focus will be on building a one-factor scale
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Solution #2: Examining Modification Indices
for Residual Covariances

- Note: this solution is not recommended as it weakens the argument that a single factor

underlies a scale
> Italsois seen as a trick to improve model fit

- The largest modification indices for residual covariances:
> Item 20 with Item 4; Ml = 294.968
> ltem 22 with Item 20; Ml = 247.625
> Item 20 with Item 12; M| = 226.539

. Each of these items is reverse coded
> Indication that wording of items elicits different response
> Potential for a reverse-worded method factor

- We will not add these to our model — we want our single factor to be only thing that
“explains” items

PSYC 948: Lecture #7
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Error Covariances Actually
Represent Multidimensionality

A ﬁ‘ L1
s 2 L] S4 {M‘ 56
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From Brown (2006)
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Here there is a general factor of “Social
Interaction Anxiety” that includes two items
dealing with public speaking specifically.

The extra relationship between the two public
speaking items can be modeled in many different,
yet statistically equivalent ways... error
covariances really represent another factor
(which is why you should be able to explain and
predict them if you include them).
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Ways of Fixing The Model #2:
Removing Terms — Decreasing Complexity

« Solution #1: When multiple factors are correlated > .85 may suggest a simpler
structure — remove factors

> Nested model comparison: fix factor variances to 1 so factor covariance becomes
factor correlation, then test correlation #1 at p < .10

 Solution #2: Dropping Items; Drop items with:
> Non-significant loadings: If the item isn’t related, it isn’t measuring the construct, and
you most likely don’t need it

> Negative loadings: Make sure to reverse-coded as needed ahead of time — otherwise,
this indicates a big problem!

> Problematic leftover positive covariances between two items — such redundancy
implies you may not need both items

- However — models with differing items are NOT COMPARABLE AT ALL because
their Log-Likelihood values are based on different data!
> No model comparisons of any kind (including AIC and BIC)

> To do a true comparison, you’d need to leave the item in the model but remove its
loading (= original test of its loading)
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List of Items to Remove

Because our model fit is terrible we will modify our model by dropping items that do not
fit well
> This will change our gambling construct but will allow us to (hopefully) have one factor
measured by the test

There are 9 items with 10 or more significant normalized residual covariances:

GRI22 16
GRI4 15
GRI20 15
GRI2 13
GRI8 13
GRI19 13
GRI24 13
GRI12 12
GRI17 12
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Item Removal Logic and Details

- By dropping items with a number of significant normalized residual covariances we will
reduce the number of items in our analysis thereby reducing the number of terms in the
saturated covariance matrix

- This can make it easier to achieve a reasonable approximation as the number of
covariances increases exponentially with each additional item, but the number of statistical

parameters increases by two (factor loading and unique variance)
> We would be trying to approximate a lot of covariances terms with only a few parameters

- We will remove the 9 items from the list on the previous page, leaving us with a
15-item analysis

PSYC 948: Lecture #7
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GRI 15 Item Analysis

« The 15 item analysis gave this model fit information:

Chi-Square Test of Model Fit

Value

420.480*

Degrees of Freedom 90

P-Value 0.0000

Scaling Correction Factor 1.6453
for MLR

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.053

80 Percent C.I. 0.048 0.058

Probability RMSEA <= .05 0.157
CFI/TLI

CFI 0.909

TLI 0.894
SRMR (Standardized Root Mean Square Residual)

Value 0.042
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The model y? indicated the model did not fit
better than the saturated model — but this
statistic can be overly sensitive

The model RMSEA indicated acceptable model
fit (want this to be < .05; .06-.08 is acceptable)

The model CFl and TLI indicated the model
adequately (want these to be > .95)

The SRMR indicated the fit well (want this to
be < .08)
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Examining the Normalized Residuals

- The normalized residuals from the analysis indicated that several items had

guestionable fit:
> ltems 7, 16, and 18 had four significant normalized residuals
> The rest had 2 or fewer (4 items had none)

« At this point, the choice of removal of additional items is ultimately up to theory
> The fit of the model is adequate — removal of items may make the model fit better
> The construct may be significantly altered by removing items measuring certain features

- We will choose to omit items 7, 16, and 18 from the scale, and rerun the analysis with
12 items

PSYC 948: Lecture #7
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GRI 12 Item Analysis

- The 12 item analysis gave this model fit information:

Chi-Square Test of Model Fit

Value 185.178~*

Degrees of Freedom 54

P-Value 0.0000

Scaling Correction Factor 1.6034
for MLR

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.043

90 Percent C.I. 0.036

Probability RMSEA <= .05 0.949
CFI/TLI

CFI 0.952

TLI 0.941

SRMR (Standardized Root Mean Square Residual)

Value 0.032

0.050

The model y? indicated the model did not fit
better than the saturated model — but this
statistic can be overly sensitive

The model RMSEA indicated good model fit

(want this to be < .05)

The model CFl and TLI indicated the model fit
well (want these to be > .95)

The SRMR indicated the fit well (want this to
be < .08)

- Additionally, only 4 normalized residuals were significant

ltem 15 with item 1
> Item 14 with item 3
> Item 21 with item 3
> Item 15 with item 6

A\
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Interpreting Parameters

- The one-factor model seems to fit the 12 GRI items so we will interpret the parameters

Item Unstandardized Loading Residual Variance Standardized
Loading (STDYX)
GRI'1 1.000 (0.000) 0.697 (0.066) .567 (.037) 322
GRI 3 0.785 (0.073) 0.545 (0.044) .522 (.036) 272
GRI5 1.118 (0.096) 0.499 (0.047) .673(.032) 453
GRI 6 0.815 (0.070) 0.309 (0.024) .645 (.033) 416
GRI9 0.960 (0.059) 0.215 (0.017) .766 (.023) .587
GRI 10 1.068 (0.081) 0.369 (0.040) .711 (.028) .506
GRI 11 1.012 (0.075) 0.854 (0.078) .533(.033) .284
GRI 13 1.172 (0.073) 0.462 (0.047) .704 (.028) 496
GRI 14 1.023 (0.095) 1.837 (0.078) .398 (.026) .159
GRI 15 0.857 (0.071) 1.219 (0.078) .408 (.029) .166
GRI 21 0.967 (0.071) 0.377 (0.036) .672 (.028) 451
GRI 23 1.086 (0.080) 0.514 (0.044) .657 (.026) 432
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Interpreting Parameters

- Each item had a statistically significant factor loading
> The item measures the factor/is correlated with the factor

- The standardized factor loadings ranged from .766 (item 9) to .398 (item 14)

- The R?is the squared standardized loading

> Item 9 had an R? of .587
+ Items with high R? are better for measuring the factor

> Item 14 had an R? of .159
+ Items with low RZ are not contributing much to the factor

PSYC 948: Lecture #7
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Interpreting the Scale

- The final gambling scale had a different set of items than the original

gambling scale

> As such, the construct measured by the final scale is different that the construct that
would be measured if the full set of items were used (and fit a one-factor model)

Criterion 24-1tem Count 12-ltem Count
2

=
w
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Pathological Gambling: DSM Definition

To be diagnosed as a pathological gambler, an individual must meet 5 of 10 defined criteria:

1.  Is preoccupied with gambling 7. Lies to family members, therapist, or
2. Needs to gamble with increasing others to conceal the extent of
amounts of money in order to involvement with gambling
achieve the desired excitement 8.  Has committed illegal acts such as
3. Has repeated unsuccessful efforts to forgery, fraud, theft, or _
control, cut back, or stop gambling embezzlement to finance gambling
4. |s restless or irritable when 9.  Has jeopardized or lost a significant
attempting to cut down or stop relationship, Job{ educational, or
gambling career opportunity because of
5.  Gambles as a way of escaping from gamblmg _
problems or relieving a dysphoric ~ 10.  Relies on others to provide money
mood to relieve a desperate financial

6.  After losing money gambling, often situation caused by gambling

returns another day to get even
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Final 12 Items on the Scale

Item | Criterion Question
GRI1 3 | would like to cut back on my gambling.
If I lost a lot of money gambling one day, | would be more likely to want to play
GRI3 6 again the following day.
| find it necessary to gamble with larger amounts of money (than when | first
GRI5 2 gambled) for gambling to be exciting.
GRI6 8 | have gone to great lengths to obtain money for gambling.
GRI9 4 | feel restless when | try to cut down or stop gambling.
GRI10 1 It bothers me when | have no money to gamble.
GRI11 5 | gamble to take my mind off my worries.
GRI13 3 | find it difficult to stop gambling.
GRI14 2 | am drawn more by the thrill of gambling than by the money | could win.
GRI15 7 | am private about my gambling experiences.
GRI21 1 It is hard to get my mind off gambling.
GRI23 5 | gamble to improve my mood.

PSYC 948: Lecture #7
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QUANTIFYING AN ITEM’S CONTRIBUTION:
ITEM INFORMATION



Item Information

- The amount of information an item provides about a factor is a

combination of:

> The size of the factor loading
> The size of the error variance

- The index of the statistical information that item i provides for

212
factor fis l/%
l
» The unstandardized loadings provide the information for a factor with a variance
fixed at afz

> The standardized loadings provide the information for a factor with a variance of 1

> The rank order of the information will be the same using either unstandardized or
standardized loadings
+ So choice is arbitrary as both work the same way

- Note: as information depends on the model parameters (loadings
and unique variances) a model must fit well to have an accurate
sense of the information provided by each item
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Information of Our Items

- Given that the one-factor model seems to fit the 12 GRI items, we use the
parameters to calculate item information

Item Unstandardized Loading Residual Variance Item Information Info

Rank
GRI'1 1.000 (0.000) 0.697 (0.066) 1.434 8
GRI3 0.785 (0.073) 0.545 (0.044) 1.130 10
GRI5 1.118 (0.096) 0.499 (0.047) 2.504 4
GRI 6 0.815 (0.070) 0.309 (0.024) 2.148 7
GRI9 0.960 (0.059) 0.215 (0.017) 4.296 1
GRI 10 1.068 (0.081) 0.369 (0.040) 3.092 2
GRI 11 1.012 (0.075) 0.854 (0.078) 1.201 9
GRI 13 1.172 (0.073) 0.462 (0.047) 2.971 3
GRI 14 1.023 (0.095) 1.837 (0.078) 0.570 12
GRI 15 0.857 (0.071) 1.219 (0.078) 0.602 11
GRI 21 0.967 (0.071) 0.377 (0.036) 2.482 5
GRI 23 1.086 (0.080) 0.514 (0.044) 2.297 6

PSYC 948: Lecture #7



Using the Mplus NEW Command to Calculate Item Information

MODEL:
GAMBLING by GRI1
GRI3Z  (L3)
GRIS  (LS)
GRI6  (L6)
GRI9  (L9)
GRI10 (L10)
GRI11 (L11)
GRI13 (L13)
GRI14 (L14)
GRI15 (L15)

GRI21 (L21)
GRI23 (L23):

GRI1 (Ul):; GRI3 (U3); GRIS (US); GRI&6 (U6); GRIS (U9); GRI1O (U10):
GRI11 (Ull):; GRI13 (Ul3); GRI14 (Ul4):; GRI1S (UlS); GRIZ21 (U21):; GRIZ23 (U23);

MODEL CONSTRAINT:
NEW (INFO1 INFO3 INFOS INFO6é INFCS INFO10 INFO1l1l INFO13 INFO14 INFO01S5 INF021 INF023):

INFO1 = 1J/U1;

INFO3 = L3~2/U3;
INFOS = L5°2/US;
INFO6 = L6~2/US6;
INFO9 = L9°2/U9;

INFO10 = L1072/U10;
INFO11 = L11°2/U11;
INFO13 = L1372/U13;
INFO14 = L1472/U14;
INFO15 = L1572/U15;
INFO21 = L21°2/U21;
INFO23 = L23"72/U23;
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NEW Command Output:

GAMBLING BY
GRI1
GRI3
GRIS
GRI®
GRI9
GRI1O0
GRI1l
GRI13
GRI14
GRI1S
GRI21
GRIZ23
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New/Additional Parameters

O O KKK REFER OO O

INFO1
INFO3
INFOS
INFO6
INFOS
INFO10
INFO11
INFO13
INFOl14
INFO15
INFO21
INFO23

.000
.785
.118
.815
.960
.068
.012
172
.023
.857
.967
.086

000000000000

.000
.073
.096
.070
.059
.081
.075
.073
.095
.071
.071
.080

999.
10.
11.
11.
16.
13.
13.
16.
10.

.000

13.

13.

12

1.434
1.130
2.504
2.148
4.296
3.092
1.201
2.971
0.570
0.602
2.482
2.297

000 999.000

791
661
589
173
is1
584
131
791

590
635

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.135
0.241
0.543
0.419
0.635
0.610
0.233
0.507
0.116
0.116
0.435
0.411

Residual Variances

GRI1

| GrI3
GRIS
GRI6
GRIZ
GRI10
GRI11
GRI13
GRI14
GRI1S
GRI21
GRI23

10.638
4.687
4.613
5.131
6.763
5.070
5.143
5.858
4.909
5.203
5.708
5.582

OO0 K FPFOOOOO0O O OO

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

. 697
. 545
.499
.309
.215
.369
.854
.462
.837
.219
.377
.514

000000000000

.066
.044
.047
.024
.017
.040
.078
.047
.078
.078
.036
.044

10.
.360
.559
12.
.732
.315
10.
.912
23.
1s.
10.
11.

12
10

12

638

902

927

406
615
560
618

OO0 000000000 O0

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
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Notes About Item Information

- Under CFA (which assumes items that are continuous/normally

distributed), information is constant for each item

> This differs when you have categorical items: Information differs by values of the latent
trait (some items measure certain trait levels better than others)

- Because item information is constant under CFA, it gets very little

attention

> By extension, certain types of tests aren’t possible with CFA — such as computer
adaptive tests (as the best item at each point would be the best item overall)

. Item information can be used to select a set of items to be used to

measure a construct

> A shorter yet efficient test
> Remember — changing the items changes the construct
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Building A Shorter Form

. Using item information, if we wanted to build a shorter form of our

test, we would pick the top five items
> We may stratify by content if that is an important facet for the nature of the construct

- Neglecting content, a five-item test would be based on:
> Item 9 (Information = 4.296)
> Item 10 (Information = 3.092)
> Item 13 (Information = 2.971)
> Item 5 (Information = 2.504)
> Item 21 (Information =2.482)

- The 5-item test would still have less precision (reliability) than the 12
item test (more on this shortly)
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THE USE OF FACTOR SCORES



Factor Scores

« Once a scale has been constructed and is shown to fit some type of
analysis model (here, we used a one-factor model) the next step in

an analysis is typically to assess each subject’s score on the scale
> Representing their level of the construct measured by the scale

- In SEM/CFA (“continuous” items), factor scores are not typically
used, instead:
> If a scale “fits” a unidimensional model, sum scores are used (less ideal — not preferred

in SEM)
+ More on this next week
> A path model with the latent factor as a predictor (IV) or outcome (DV) is used (the
preferred approach)
+ More on this after the CFA/measurement models section
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More on Factor Scores

« Factor scores (by other names) are used in many domains
> Item response theory (CFA with categorical items) —i.e. the GRE

- Because the historical relationship between CFA and exploratory

factor analysis, factor scores are widely avoided and deadpanned

> In exploratory factor analysis, factor scores are indeterminate
+ No single “best” score

> Due to too many loadings

- The use of factor scores from CFA is possible and is justified as they
are uniquely determined (like IRT/unlike EFA)

> | seek to describe why in the next few slides
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Factor Scores: The Big Picture

A factor score is the estimate of a subject’s level of an unobserved
latent variable

- Because this latent variable is not measured directly, it is essentially
a piece of missing data

. It is difficult to pin down what the missing data value (factor score

value) should be precisely

> Each factor score has a distribution of possible values
> The mean of the distribution is the “factor score” — it is the most likely value
> Depending on the test, there may be a lot of error (variability) in the distribution

- Therefore, the use of factor scores must reflect that the score is not
known and is represented by a distribution
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Factor Scores: Empirical Bayes Estimates

- For most (if not all) latent variable techniques (e.g., CFA, IRT,
mixed/multilevel/hierarchical models), the estimate of a factor score

is a so-called empirical Bayes estimate

» Empirical = some or all of the parameters of the distribution of the latent variable are
estimated (i.e., factor mean and variance)
> Bayes = the score comes about from the use of Bayes’ Theorem

- Bayes’ Theorem states the conditional distribution of a variable A
(soon to be our factor score) given values of a variable B (soon to be
our data) is:

gy = LEIDFA) F(BIA)f (4)

fB [ ., f(BIA=a)f(A=a)da
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Factor Scores through Empirical Bayes

In the empirical Bayes formula:
> The variable A is our factor score (Fs for subject s and factor f)

> The variable B is the data (the vector Y, for a subject s)
f(Fsr|Ys) = FOG|Fsr)f (Fop) _ f (Ys| For ) (Fsp)
sfl¥s f(Ys) faEAf(YleSf = a)f(st — a)da

> f(FSf|YS) is the distribution of the factor score given the data
+ This is the posterior distribution (we are doing Bayesian stats!)

> f(YS|FSf) is the CFA model (think multivariate normal density), evaluated at
factor score Fsf

> f (Fsr) is the distribution of the factor score, evaluated at F

+ This comes from our CFA assumption of normality of factor score: Fgr ~ N(uy, afz) where us
and afz are set by identifiability constraints
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Moving from Distributions to Estimates

- The previous slide provides the distribution of the factor score -
understanding a factor score has a distribution is the key to its use

- For the CFA model (“continuous”/normal data and normal factors),
this distribution will be normal (for a single factor) or multivariate
normal (for more than one factor)

> For our example with one factor: univariate normal
> Univariate normal has two parameters: mean and variance

+ Mean = factor score (called Expected A Posteriori or EAP estimate)
Fof = E(Fsf) = j a f(Fsf|Ys)da

a€F
+ Variance = variance of factor (directly related to reliability)

62, = E (Fy - E(st))2 - LEF (a- E(st))2 f(Fyf|Ys)da
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Factor Scores from Mplus

The SAVEDATA command is used to have Mplus output the factor scores for each subject:

WVARIABLE: Order and format of variables
NAMES = ID GRI1-GRI41;
USEVARIABLES = GRI1 GRI3 GRIS-GRI6 GRIS-GRI11 GRI13-GRI15 GRI21 GRI23 "GRI1 F10.3
GRI12sum GRI12avg: GRI3 F10.3
IDVARIABLE = ID; ID Variable Variables in Analysis GRIS F10.3
MISSING = ALL(99): ~ GRI6 F10.3
AUXILIARY = GRI12sum GRI12avg: GRIZ F10.3
\- GRI10 F10.3
MODEL: GRI11 Fi10.3
GAMBLING by GRI1 GRI3 GRI5-GRI6 GRIS-GRI11l GRI13-GRI15 GRI21 GRIWY GRI13 F10.3
N GRI14 F10.3
DEFINE : \ GRI1S F10.3
GRI12avg = MEAN (GRI1 GRI3 GRIS-GRI6 GRI9S-GRI11 GRI13-GRI1S5 GRI21 GRI23): GRI21 F10.3
GRI12sum = SUM(GRI1 GRI3 GRI5-GRI6 GRI9-GRI11 GRI13-GRI15 GRI21 GRI23): [GRI23 F10.3
Auxiliary Variables IEHZSUH ;io 3
SAVEDATA: (not in analysis) RI12AVG F10.3
!saves latent trait estimates AMBLING F10.3
SAVE = FSCORES; AMBLING SE F10.3
Latent Variable
'puts latent trait estimates into file named *.dat .
FILE = grilOitem fscores.dat; Person Estimate:
Mean and SE
A B C D E F G H I J K L M N O P Q
1 |GRI1 GRI3 GRIS GRI6 GRI9 GRI10 GRI11 GRI13 GRI14 GRI15 GRI21 GRI23 ID GRI12SUM GRI12AVG GAMBLING GAMBLING_SE
2 3 1 a 1 4 5 1 1 1 2 1 1 1 25 2083 0.776 0.19
3 2 1 1 1 4 2 3 5 6 4 3 4 2 36 3 1.185 0.19
4 4 4 1 2 < 6 5 5 2 2 2 = 3 41 3.417 1.818 0.19
5 4 2 5 5 5 4 2 5 2 5 3 2 4 44 3.667 2.163 0.19
6 4 2 4 1 3 4 2 3 4 3 3 2 5 35 2.917 1.186 0.19
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Interpreting Factor Score Output

- From Mplus:

A B C D E F G H | J K L M N (o] P Q
1 |GRI1 GRI3 GRIS GRI6 GRI9 GRI10 GRI11 GRI13 GRI14 GRI15 GRI21 GRI23 ID GRI12SUM GRI12AVG GAMBLING GAMBLING_SE
2 3 1 4 1 4 5 1 1 1 2 1 1 1 25 2.083 0.776 0.19
3 2 1 1 1 4 2 3 5 6 4 3 4 2 36 3 1.185 0.19
4 4 4 1 2 4 6 5 5 2 2 2 4 3 41 3.417 1.818 0.19
5 4 2 5 5 5 4 2 5 2 5 3 2 4 44 3.667 2.163 0.19
6 4 2 4 1 3 4 2 3 4 3 3 2 5 35 2.917 1.186 0.19
=l . . . . . . . N I | . . - . . -- .- - .-
- Subject #1 — Factor Score: F;; = 0.776; Standard Error of Factor Score: 65 = 0.19
. SUbjeCt H2 - F21 = 1185, 6-F1 = 0.19
- Subject #3 - F3, = 1.818; 65, = 0.19
- Subject #4 - Fy; = 2.163; 65, = 0.19
- Note: gg, is the same for all subjects with complete data
> This is due to us using CFA (item information is constant)
- For subjects with missing data, the standard errors will be different:
IGRIl _IGRI3 GRIS GRI6 GRIS GRI10 GRI11 GRI13 GRI14 GRI15 GRI21 GRI23 ID GRI12SUM GRI12AVG GAMBLING GAMBLING_SE
3 1 2 1 1 1 4 1 3* 1 2 75 * 1.818 -0.045 0.192
2 1 4 1 2 2 1 4* 3 2 2 76 * 2.182 0.596 0.192
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Distributions of Factor Scores for Subjects 1-4

(Posterior) Distributions of Factor Scores

\,? Q)A
©
L ¢ 0 N
/[ \
o
© _| # %
o o .
— 2 %
> s N
- g P 0 \
y— o J [
R
N / #
C) v
.-f;) ’
Q] D "D.’:’L‘
< | |

-1 0 1 2 3

Gambling Tendency

PSYC 948: Lecture #7

45



Secondary Analyses with Factor Scores

- If using CFA, factor scores are not widely accepted
- BUT you want to use results from a survey in a new analysis

. Solutions (which we will get to next class):
> Best: Use SEM —error in factor scores is already partitioned variance
Similarly good: Use “plausible values” (repeated draws from posterior distribution of each person’s
factor score) — essentially what SEM does — but with factor scores that vary within a person
+ Used in National Assessment of Educational Progress (NAEP)
Possibly Okay (but widespread): for scales that are unidimensional (and verified in CFA), use sum scores
+ Assumes unidimensionality and “high” reliability
+ Should also be a distribution
Okay: Use SEM with “single indicator” factors using sum scores
+ More on this later
+ Make error variance = (1-reliability)*Variance (Sum score); factor loading = 1
Not Cool: Use factor scores only
+ Considered bad because of EFA (but CFA has different scores)
+ Widespread in other measurement models (like IRT)
+ Should give better results than sum-scores, but also neglects reliability and model fit issue

Y

A\

A\

A\

PSYC 948: Lecture #7



RELIABILITY OF FACTOR SCORES



Reliability of Factor Scores

- The factor score itself is not measured perfectly - the error of the factor score distribution,
67, indicates how much each factor score estimate varies

> If 6,? were to be 0, then we would have perfect measurement
> Perfect measurement = reliability of 1.0

« Our goal is to quantify the reliability of the factor score

« The classical notion of reliability still holds:
B Var(True Score) _ of
~ Var(True Score) + Var(Error) o + 62

> of = variance of the factor (from the CFA model — the true score)
> 67 =variance of the estimated factor score (error)

Pr
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Reliability of Our Factor Score

. Using the CFA model estimate, we found that: 7 = 0.331

. From our estimated factor scores, 6z = 0.19; 67 = 0.036

- The reliability for the factor score is:
B oF B 0.331
PF = 52162 0331 +0.036

> This reliability is above a minimal standard of .8 — meaning our factor is fairly
well-measured

=.902
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Test Information

. The information about a factor each item contributes is an indirect
index of that item’s ability to measure the factor

. The information a TEST has about a factor is the sum of the item
information for each item of the test

- For our test (from item information slide):

12
ltest = § I;
=1

= 1.434_+ 1.13 + 2.504 + 2.148 + 4.296 + 3.092 + 1.201 + 2.971
+ 0.570 + 0.602 + 2.482 + 2.297 = 24.727
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Test Information and Factor Score Variance

- The factor score variance is directly related to the test

information function:
/\2 _ 1
OF =
Itest
1 1

. For our test: 67 = = ~ 0.04
Itest 24‘.727

> And, consequently, 6 = 0.19

- To increase the reliability of the measurement of a factor,

you must increase the test information
> To do that, you must add informative items
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CONCLUDING REMARKS



Wrapping Up

- Today, we built a scale using confirmatory factor analysis

. In the process, we touched on many important topics in

psychometrics:

Construct Maps

ltem Design

Model Fit

Model Modification (by removing items)
Scale Interpretation

ltem Information

Factor Scores

Reliability for Factor Scores
Test Information

Validity

vV vV Vv V¥V ¥V VYV V¥V V VY VY
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Where We Are Heading

- Next week, we will continue our discussion of confirmatory
factor analysis with one factor

- We will compare classical test theory to confirmatory
factor analysis (and show how we can test the
assumptions of the ASU model)

> This will bring about a comparison of reliability coefficients

- We will discuss how to use factor scores, sum scores, item
parcels, and single-indicator models in analyses
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