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Today’s Class

- Methods for exploratory factor analysis (EFA)
> Principal Components-based (TERRIBLE)
> Maximum Likelihood-based Exploratory Factor Analysis (BAD)
> Exploratory Structural Equation Modeling (ALSO BAD)

« Comparisons of CFA and EFA

- How to do exploratory analyses with CFA
> Structure of no items known
> Structure of some items known
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The Logic of Exploratory Analyses

Exploratory analyses attempt to discover hidden structure in data with little to no

user input
> Aside from the selection of analysis and estimation

- The results from exploratory analyses can be misleading
> If data do not meet assumptions of model or method selected
> If data have quirks that are idiosyncratic to the sample selected
> If some cases are extreme relative to others
> If constraints made by analysis are implausible

- Sometimes, exploratory analyses are needed
» Must construct an analysis that capitalizes on the known features of data
> There are better ways to conduct such analyses

- Often, exploratory analyses are not needed

> But are conducted anyway — see a lot of reports of scale development that start with the idea that a
construct has a certain number of dimensions
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ADVANCED MATRIX OPERATIONS



A Guiding Example

To demonstrate some advanced matrix algebra, we will make use of data

| collected data SAT test scores for both the Math (SATM) and Verbal (SATV) sections of
1,000 students

The descriptive statistics of this data set are given below:

Statistic | SATV | SATM

Mean | 499.3 | 498.3
SD 498 | 81.2

Correlation

SATV 1.00 | 0.78

SATM 0.78 1.00
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Matrix Trace

- For a square matrix X with p rows/columns, the trace is the sum of the diagonal elements:

p
trx = 2 aii
i=1

- For our data, the trace of the correlation matrix is 2
> For all correlation matrices, the trace is equal to the number of variables because all diagonal elements
arel

- The trace will be considered the total variance in principal components analysis
> Used as a target to recover when applying statistical models
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Matrix Determinants

A square matrix can be characterized by a scalar value called a determinant:
detX = |X]

« Calculation of the determinant by hand is tedious
» Our determinant was 0.3916
> Computers can have difficulties with this calculation (unstable in cases)

- The determinant is useful in statistics:
> Shows up in multivariate statistical distributions
> |Is a measure of “generalized” variance of multiple variables

- If the determinant is positive, the matrix is called positive definite
> Isinvertable

. If the determinant is not positive, the matrix is called

non-positive definite
> Not invertable
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Matrix Orthogonality

« A square matrix A is said to be orthogonal if:

AAT = ATA =1
- Orthogonal matrices are characterized by two properties:
1. The dot product of all row vector multiples is the zero vector
3 Meaning vectors are orthogonal (or uncorrelated)
2. For each row vector, the sum of all elements is one
. Meaning vectors are “normalized”

. The matrix above is also called orthonormal
> The diagonal is equal to 1 (each vector has a unit length)

. Orthonormal matrices are used in principal components and exploratory factor analysis
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Eigenvalues and Eigenvectors

- A square matrix X can be decomposed into a set of eigenvalues A and a set
of eigenvectors e
Ye = Ae

- Each eigenvalue has a corresponding eigenvector
> The number equal to the number of rows/columns of £
> The eigenvectors are all orthogonal

- Principal components analysis uses eigenvalues and eigenvectors to reconfigure data
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Eigenvalues and Eigenvectors Example

In our SAT example, the two eigenvalues obtained were:

A =178
A, =0.22
The two eigenvectors obtained were:
0.71 0.71
0.711° —0.71

These terms will have much greater meaning in one moment (principal
components analysis)
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Spectral Decomposition

Using the eigenvalues and eigenvectors, we can reconstruct the original matrix using a
spectral decomposition:
p
_ T
Y = Z Aieiei
i=1

For our example, we can get back to our original matrix

71 . 189 .89

Ry =Aieer = 1'78l71 L7 .71] = l.89 89
B r .89 .89 71 _ [1.00 0.78
Rz =Ry + 1220, = l.89 .89]+O'22l—.71] 71 =711=1478 1.00
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Additional Eigenvalue Properties

The matrix trace is the sum of the eigenvalues:

p
trX = Z /11'
i=1

> Inour example, thetrR = 1.78 4+ .22 = 2

The matrix determinant can be found by the product of the eigenvalues

b
z=] |
i=1

> Inourexample |[R| = 1.78 .22 = .3916
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AN INTRODUCTION TO PRINCIPAL
COMPONENTS ANALYSIS



PCA Overview

« Principal Components Analysis (PCA) is a method for re-expressing the covariance (or often

correlation) between a set of variables
> The re-expression comes from creating a set of new variables (linear combinations) of the original

variables

- PCA has two objectives:

1, Data reduction
+ Moving from many original variables down to a few “components”

2. Interpretation
+ Determining which original variables contribute most to the
new “components”
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Goals of PCA

- The goal of PCA is to find a set of k principal components (composite variables) that:
> |s much smaller in number than the original set of p variables

» Accounts for nearly all of the total variance
+ Total variance = trace of covariance/correlation matrix

. If these two goals can be accomplished, then the set of k principal components contains
almost as much information as the original p variables
> Meaning —the components can now replace the original variables in any subsequent analyses
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Questions when using PCA

- PCA analyses proceed by seeking the answers to two questions:

1. How many components (new variables) are needed to “adequately” represent the
original data?
> The term adequately is fuzzy (and will be in the analysis)

2. (once #1 has been answered): What does each component represent?

> The term “represent” is also fuzzy
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PCA Features

- PCA often reveals relationships between variables that were not previously suspected
> New interpretations of data and variables often stem from PCA

« PCA usually serves as more of a means to an end rather than an end it itself
> Components (the new variables) are often used in other statistical techniques

+ Multiple regression
+ Cluster analysis

- Unfortunately, PCA is often intermixed with Exploratory Factor Analysis
> Don’t. Please don’t. Please make it stop.
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PCA Details

- Notation: Y are our new components and X is our original data matrix (with N observations

and p variables)
> We will let i be our index for a subject

- The new components are linear combinations:
_ Ty —
Yii = e1X =e11Xj1 +ex1Xip + -+ ep1Xip
_ Ty —
Yio = e3X = e5Xj1 + exXip + -+ epaXip

Yip egx = elel'l + esziz + .-+ eprip

- The weights of the components (e;;) come from the eigenvectors of the covariance or
correlation matrix
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Details About the Components

- The components (Y) are formed by the weights of the eigenvectors of the covariance or
correlation matrix of the original data

> The variance of a component is given by the eigenvalue associated with the eigenvector for the
component

- Using the eigenvalue and eigenvectors means:

> Each successive component has lower variance
+ Var(Y,) > Var(Y,) >... > Var(Y,)
> All components are uncorrelated
> The sum of the variances of the principal components is equal to the total variance:

p p
Z Var(Y;) = trR = z A
i=1 i=1
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PCA on our Example

-  We will now conduct a PCA on the correlation matrix of our sample data

> This example is given for demonstration purposes — typically we will not do PCA on small numbers of
variables

SATM
500
1

400
1

300
1
>

200
]

200 300 400 500 600 700 800

PSYC 948: Lecture #10

20



PCA in SAS

« The SAS procedure that does principal components is called proc princomp
> Not displayed as it is not part of this course
> Mplus does not compute principal components

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative
1 1.77522381 1.55044763 0.8876 0.8876
2 0.22477619 0.1124 1.0000

E igenvectors
Prinl Prin2

SATV 0.707107 0.707107
SATH 0.707107 -.707107

PSYC 948: Lecture #10 21



Graphical Representation

- Plotting the components and the original data side by side reveals the nature of PCA:
> Shown from PCA of covariance matrix
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PCA with Gambling Items

- To show how PCA works with a larger set of items, we will examine the 10 GRI items (the
ones that fit the one-factor scale)

- TO DO THIS YOU MUST IMAGINE:
» THESE WERE THE ONLY 10 ITEMS YOU HAD
> YOU WANTED TO REDUCE THE 10 ITEMS INTO 1 OR 2 COMPONENT VARIABLES

> CAPITAL LETTERS ARE USED AS YOU SHOULD NEVER DO A PCA AFTER RUNNING A CFA — DIFFERENT
PURPOSES!

« | will use SAS (my syntax is online), but | will not show you how as it is outside the scope of
this course
> | will show you how to perform EFA in Mplus
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Question #1: How Many Components?

- To answer the question of how many components, two methods are used:
> Scree plot of eigenvalues (looking for the “elbow”)

> Variance accounted for (should be > 70%)

- We will go with 4 components: (VAC = 75%)

- Here VAC is for total variance (not each item as in CFA)
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Question

H2:

What Does Each Component Represent?

- To answer question #2 — we look at the weights of the eigenvectors (here is the unrotated

solution)

Eigenvectors

Prinl Prin2 Prin3 Prind
GRI1 0.31 0.10 0.17 0.84
GRI3 0.23 0.08 0.18 0.13
GRI5 0.32 0.09 0.23 -0.03
GRI9 0.24 0.09 0.16 -0.03
GRI10 0.28 0.09 0.24 -0.08
GRI13 0.33 0.16 0.19 -0.22
GRI14 0.45 -0.86 -0.23 -0.01
GRI18 0.35 0.40 -0.83 0.03
GRI21 0.27 0.14 0.06 -0.20
GRI23 0.33 0.10 0.14 -0.42
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Final Result: Four Principal Components

- Using the weights of the eigenvectors, we can create four new variables — the four principal

components

> SAS does this for our standardized variables |

Prin1

Prin2

Prin3

Prind

. Each of these is uncorrelated with each other

2.544888869
-2.185140823
0.6179045702
-0.144307756
-0.144307756
-2.185140823
-2.185140823
-2.185140823
-1.8724593616
-1.872493616

> The variance of each is equal to the corresponding eigenvalue

- We would then use these in subsequent analyses
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1.2879589791
0.364612547
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0.364612547
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0.469205857
0.469205857

1.5823332302
0.1984710543
0.2403178043
1.5393138875
1.5393138875
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0.1984710543
0.1984710943

0.364758028
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1.8230315368
-0.264276829
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0.1311429292 1

0.1311429292 1
-0.264276829
-0.264276829
-0.264276829
0.5794583213
0.5794583213



PCA Summary

- PCAis a data reduction technique that relies on the mathematical properties of eigenvalues

and eigenvectors
> Used to create new variables (small number) out of the old data (lots of variables)
> The new variables are principal components (they are not factor scores)

- PCA appeared first in the psychometric literature
> Many “factor analysis” methods used variants of PCA before likelihood-based statistics were available

« Currently, PCA (or variants) methods are the default option in SPSS and SAS (proc factor)
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Potentially Solvable Statistical Issues in PCA

The typical PCA analysis also has a few statistical issues
> Some of these can be solved if you know what you are doing
> The typical analysis (using program defaults) does not solve these

- Missing data is omitted using listwise deletion — biases possible
» Could use ML to estimate covariance matrix, but then would have to assume multivariate normality

- The distributions of variables can be anything...but variables with much larger variances will

look like they contribute more to each component
> Could standardize variables — but some can’t be standardized easily (think gender)

- The lack of standard errors makes the component weights (eigenvector elements) hard

to interpret
> Can use a resampling/bootstrap analysis to get SEs (but not easy to do)
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My (Unsolvable) Issues with PCA

My issues with PCA involve the two questions in need of answers for any use of PCA:

1. The number of components needed is not based on a statistical hypothesis test and

hence is subjective
> Variance accounted for is a descriptive measure
> No statistical test for whether an additional component significantly accounts for more variance

2. The relative meaning of each component is questionable
at best and hence is subjective

> Typical packages provide no standard errors for each eigenvector weight (can be obtained in
bootstrap analyses)
> No definitive answer for component composition

In sum, | feel it is very easy to be mislead (or purposefully mislead) with PCA
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EXPLORATORY FACTOR ANALYSIS



Primary Purpose of EFA

- EFA: “Determine nature and number of latent variables that account
for observed variation and covariation among set of observed

indicators (= items or variables)”
> In other words, what causes these observed responses?
» Summarize patterns of correlation among indicators
> Solution is an end (i.e., is of interest) in and of itself

- Compared with PCA: “Reduce multiple observed variables into fewer

components that summarize their variance”
> In other words, how can | abbreviate this set of variables?
> Solution is usually a means to an end
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Methods for EFA

- You will see many different types of methods for “extraction” of factors in EFA
> Many are PCA-based
> Most were developed before computers became relevant or likelihood theory was developed

- You can ignore all of them and focus on one: Only Use Maximum Likelihood for EFA

« The maximum likelihood method of EFA extraction:
> Uses the same log-likelihood as CFA and SEM
+ Assumes multivariate normal distribution of data
> Provides consistent estimates with good statistical properties (assuming you have a large
enough sample)
> Missing data using all the data that was observed (MAR)
> Is consistent with modern statistical practices
> Does not feature eigenvalues/eigenvectors as PCA-based methods do (very big change for some)
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Questions when using EFA

- EFAs proceed by seeking the answers to two questions:
(the same questions posed in PCA; but with different terms)

1. How many latent factors are needed to “adequately” represent the original data?
> “Adequately” = does a given EFA model fit well?
2. (once #1 has been answered): What does each

factor represent?
> The term “represent” is fuzzy
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How Maximum Likelihood EFA Works

Maximum likelihood EFA assumes the data follow a multivariate normal distribution
> The basis for the log-likelihood function (same log-likelihood we have used in every analysis to this point)

The log-likelihood function depends on two sets of parameters: the mean vector and the
covariance matrix

> Mean vector is saturated (just uses the item means for item intercepts) — so it is often not thought of
in analysis
+ Denoted as uy = y,;

> Covariance matrix is what gives “factor structure”
+ EFA models provide a structure for the covariance matrix
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The EFA Model for the Covariance Matrix

- The covariance matrix is modeled based on how it would look if a set of hypothetical
(latent) factors had caused the data

- For an analysis measuring F factors, each item in the EFA:
> Has 1 unique variance parameter
> Has F factor loadings

- The initial estimation of factor loadings is conducted based on the assumption of
uncorrelated factors
» Assumption is dubious at best — yet is the cornerstone of the analysis
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Model Implied Covariance Matrix

. Recall from CFA that the factor model implied covariance matrix is &, = A®AT + ¥

> Where:
+ Xy =model implied covariance matrix of the observed data (size I x I)

+ A = matrix of factor loadings (size I x F)
— In EFA: all terms in A are estimated

+ & =factor covariance matrix (size F x F)
— In EFA: @ = I (all factors have variances of 1 and covariances of 0)

+ W =matrix of unique (residual) variances (size I x I)
— In EFA: W is diagonal by default (no residual covariances)

- Therefore, the EFA model-implied covariance matrix is:
Xy, =AAT + P
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EFA Model Identifiability

Under the ML method for EFA, the same rules of identification apply to EFA as to
CFA/Path Analysis
> T-rule: Total number of EFA model parameters must not exceed unique elements in saturated

covariance matrix of data
« For an analysis with a number of factors F and a set number of items I thereare F*I + 1 = I(F + 1) EFA

model parameters
F(F-1)

+ As we will see, there must be constraints for the model to work

F(F-1) < 1(I+1)
2 2

+ Therefore, I(F + 1) —

> Local-identification: each portion of the model must be

locally identified

+ With all factor loadings estimated local identification fails
— No way of differentiating factors without constraints
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Constraints to Make EFA in ML Identified

The EFA model imposes the following constraint:
ATPA=A
such that A is a diagonal matrix

F(F-1)
2

This puts constraints on the model (that many fewer parameters to estimate)

This constraint is not well known — and how it functions is hard to describe
> For a 1-factor model, the results of EFA and CFA will match

- Note: the other methods of EFA “extraction” avoid this constraint by not being statistical
models in the first place

> PCA-based routines rely on matrix properties to resolve identification
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The Nature of the Constraints in EFA

- The EFA constraints provide some detailed assumptions about the nature of the factor
model and how it pertains to the data

- For example, take a 2-factor model (one constraint):

I F=2
XIS
i=1  f=1

- In short, some combinations of factor loadings and unique variances (across and within
items) cannot happen

> This goes against most of our statistical constraints — which must be justifiable and understandable
(therefore testable)

> This constraint is not testable in CFA
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The Log-Likelihood Function

Given the model parameters, the EFA model is estimated by maximizing the multivariate
normal log-likelihood
> For the data

N
z -z (] - )
2
i=1

_Np N
logL =log|= (2m) 2 |Z| 2exp

N T
N N T—p) 2 (xI -
——zplog(Zn)—Elog(lzD— E (i — 1) > (i — 1)
i=1

Under EFA, this becomes:

+ W) M (x{ — )
2

N T

N N T — )" (AAT

logL = —7plog(2n) ~ - log(IAAT + W) — E (i — 1) €
i=1
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Benefits and Consequences of EFA with ML

- The parameters of the EFA model under ML retain the same benefits and consequences of

any model (i.e., CFA)
> Asymptotically (large N) they are consistent, normal, and efficient

» Missing data are “skipped” in the likelihood, allowing for incomplete observations to contribute
(assumed MAR)

- Furthermore, the same types of model fit indices are available in EFA as are in CFA

- As with CFA, though, an EFA model must be a close approximation to the saturated model

covariance matrix if the parameters are to be believed
» This is a marked difference between EFA in ML and EFA with other methods — quality of fit is statistically
rigorous
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FACTOR LOADING
ROTATIONS IN EFA



Rotations of Factor Loadings in EFA

- Transformations of the factor loadings are possible as the matrix of factor loadings is only
unique up to an orthogonal transformation
> Don’t like the solution? Rotate!

« Historically, rotations use the properties of matrix algebra to adjust the factor loadings to
more interpretable numbers

- Modern versions of rotations/transformations rely on “target functions” that specify what a

“good” solution should look like
> The details of the modern approach are lacking in most texts
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Types of Classical Rotated Solutions

- Multiple types of rotations exist but two broad categories seem to dominate how they
are discussed:

- Orthogonal rotations: rotations that force the factor correlation to zero (orthogonal
factors). The name orthogonal relates to the angle between axes of factor solutions being
90 degrees. The most prevalent is the varimax rotation.

- Obligue rotations: rotations that allow for non-zero factor correlations. The name
orthogonal relates to the angle between axes of factor solutions not being 90 degrees. The

most prevalent is the promax rotation.
> These rotations provide an estimate of “factor correlation”
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How Classical Orthogonal Rotation Works

Classical orthogonal rotation algorithms work by defining a new rotated set of factor
loadings A* as a function of the original (non-rotated) loadings A and an orthogonal
rotation matrix T
A = AT
where: TTT = TIT =1

These rotations do not alter the fit of the model as
Sy = AAT W= ATAT) + P = ATTTAT + W = AN + @
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Modern Versions of Rotation

- Most studies using EFA use the classical rotation mechanismes, likely due to insufficient
training

- Modern methods for rotations rely on the use of a target function for how an optimal
loading solution should look

(X 0 0]
X 00
X 00
X 00
L=(0x0
0x0
00 x
00 X
_OOx_

From Browne (2001)
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Rotation Algorithms

- Given a target function, rotation algorithms seek to find a rotated solution that
simultaneously:

1. Minimizes the distance between the rotated solution and the original factor loadings

2. Fits best to the target function

. Rotation algorithms are typically iterative — meaning they can fail to converge

. Rotation searches typically have multiple optimal values
> Need many restarts
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EFA IN MPLUS



EFA in Mplus

- Mplus has an extensive set of rotation algorithms
> The default is the Geomin rotation procedure

- The Geomin procedure is the default as it was shown to have a good performance for a
classic Thurstone data set (see Browne, 2001)

- We could spend an entire semester on rotations, so | will focus on the default option in
Mplus and let the results generalize across most methods
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Steps in an ML EFA Analysis

« To determine number of factors:

1. Run a 1-factor model (note: same fit as CFA model)
. Check model fit (RMSEA, CFl, TLI) — stop if model fits adequately
2. Run a 2-factor model
. Check model fit (RMSEA, CFI, TLI) — stop if model fits adequately
3. Run a 3-factor model (if possible — remember maximum number of parameters possible)

. Check model fit (RMSEA, CFl, TLI) — stop if model fits adequately

> And so on...

. One huge note: unlike in PCA analyses, there are no model-based eigenvalues to report
(nor VAC for the whole model)
> These are no longer useful in determining the number of factors

> Mplus will give you a plot (PLOT command, TYPE=PLOT2)
. These are from the H1 model correlation matrix
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12 Item GRI: EFA Using ML in Mplus

« The 12 item GRI has a 12(12+1)

> This is the limit of parameters possible in an EFA model

> In theory, we could estimate 6 factors
+ In practice, 6 factors is impossible with 12 items

= 78 unique parameters in the saturated covariance matrix

Factors Factor Loadings | Unique Constraints Total
Variances Covariance
Parameters
1 12 10 0 24
2 24 10 1 35
3 36 10 3 45
4 48 10 6 54
60 10 10 62
6 72 10 15 69
7 84 12 21 75
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Mplus Syntax

TITLE:

Gambling Research Instrument Items

Data from 1192 College Students/144 Gamblers

41 Likert Items (1-6): GRI1-GRI41l

12 SOGS items (S0GS4-S0GS1S), mostly dichotomous

Identification: Marker Item Factor Variance, Zero Factor Mean

All 41 Items: EFA Analysis

DATA:

FILE = gamblingdata.csv;

VARIABLE:

NAMES = GRI1-GRI41l S0OGS4-S0OGS1S5 Student ID;

USEVARIABLES = GRI1 GRI3 GRIS-GRI& GRIS-GRI1l GRI13-GRI1S GRI21
IDVARIABLE = ID;

MISSING = ALL(99):

ANALYSIS:

ESTIMATOR = MLR;
TYPE = EFA 1 6;
ROTATION = GEOMIN:
RSTARTS = 100;

PLOT:

TYPE = PLOT1 PLOT2 PLOT3;

OUTPUT:
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Model Comparison: Fit Statistics

F | Log-Likelihood #Ptrs Scaling RMSEA | CFI TLI
Constant

1 | -19,567.084 36 2.4123 .045 .949 .938

2 | -19,499.952 47 2.3518 .038 971 .955

3 | Did not converge

4 | -19,433.523 66 2.0911 .018 .996 .990

5 | Did not converge

6 | Did not converge
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Model Comparison: Likelihood Ratio Tests

Model 1 v. Model 2: ¥2, = 62.338,p < .001

Model 2 v. Model 4: yZ5 = 91866,p < .001

Likelihood ratio tests suggest a 4 factor solution
> However, RMSEA, CFl, and TLI all would be acceptable under one factor
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Mplus Output: A New Warning

« NOTE: A new warning now appears in the Mplus output:
WARNING: IN EXPLORATORY FACTOR ANALYSIS WITH 4 FACTOR(S)

THE CONDITION NUMBER OF THE ROTATED SCOLUTION IS 0.288LC-09.
THE OPTIMAL ROTATION MAY BE POORLY IDENTIFIED.
CHANGING THE ROTATICON METHOD MAY RESOLVE THIS PROBLEM.

- The GEOMIN rotation procedure uses an iterative algorithm that attempts to provide a
good fit to the non-rotated factor loadings while minimizing a
penalty function
» It may not converge
> It may converge to a local minimum
> It may converge to a location that is not well identified (as is our problem)
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Mplus EFA 4 Factor Model Output

- The key to interpreting EFA output is the factor loadings:

GECMIN ROTATED LOADINGS (* significant at 5% level)

1 2 3 4

GRI1 0.411* 0.086 -0.040 0.273*%
GRI3 0.425* 0.082 0.000 0.052
GRIS 0.664* -0.011 -0.008 0.101
GRI6 0.639* 0.052 0.053 -0.11

GRIS 0.784% 0.034 -0.006 -0.026
GRI1O0 0.730% -0.036 0.053 0.009
GRI1l -0.005 0.032 0.900 -0.012
GRI13 0.042 0.739* 0.011 -0.006
GRI14 0.139 -0.034 0.256 0.298%*
GRI1S -0.034 0.277 0.010 0.419*
GRI21 0.015 0.714~* 0.015 -0.021
GRIZ23 0.038 0.463* 0.189 0.170

- Historically, the standard has been if the factor loading is bigger than .3, then the item is
considered to load onto the factor
> This is different under ML — as we can now use Wald tests
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Wald Tests for Factor Loadings

- Using the Wald Tests, we see a different story (absolute value must be great than 2 to be
significant)

GEOMIN RCTATED LOADINGS

GRI1
GRI3
GRIS
GRI6
GRIY
GRI1O
GRI1l1
GRI13
GRI1l4
GRI1S
GRI21
GRI23

- Factors 3 has no significant loadings

OO0 0000000000

1

.411%
.925%
.664%
.639~%
.784x*
.730%
.005
.042
.139
.034
.015
.038

OO0 0000000000

2

.086
.082
.011
.052
.034
.036
.032
.739*%
.034
277
.714%
.463%

O 0O 0 0o

3

.040
.000
.008
.053
.006
.053
.900
.011
.256
.010
.015
.189

[ e R ]

(* significant at 5% level)

4

.273*%
.052
.101
-0.
.02¢6
.009
-0.
-0.
.298~*
.419*
-0.
.170

110

012
006

021

« One item has no significant loadings at all!
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GRI1
GRI3
GRIS
GRI6
GRIS
GRI1O
GRI1ll
GRI13
GRI14
GRI1S
GRI21
GRI23

Est./5.E. GEOMIN ROTATED LOADINGS

1 2 3 4
3.844 0.594 -0.824 2.778
3.709 0.671 0.00S 0.901
6.988 -0.129 -0.209 1.445
5.178 0.465 1.315 -1.666
8.730 0.350 -0.266 -0.660
7.398 -0.366 0.685 0.204

-0.287 0.386 1.875 -0.309
0.329 4.863 -0.453 -0.096
0.927 -0.567 1.064 3.713

-0.807 1.162 0.166 2.463
0.153 5.010 0.326 -0.412
0.375 3.558 1.003 1.537
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Factor Correlations

- Another salient feature in oblique rotations is that of the factor correlations
- Sometimes these values can exceed 1 (called factor collapse) so it is important to check

GEOMIN FACTOR CORRELATIONS (* significant at 5% level)

1 2 3 4
1 1.000
2 0.841~* 1.000
3 0.515* 0.514* 1.000
4 0.330* 0.363* 0.168%* 1.000
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Where to Go From Here

- If this was your analysis, you would have to make a determination as to the number

of factors
> We thought 5 —but 5 didn’t work
» Then we thought 3 — but the solution for 3 wasn’t great
» Can anyone say 2?

- Once you have settled the number of factors, you must then describe what each

factor means
> Using the pattern of rotated loadings

- After all that, you should validate your result
> You should regardless of analysis (but especially in EFA)
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PCA VERSUS EFA



EFA vs. PCA

. 2 very different schools of thought on exploratory factor analysis
(EFA) vs. principal components analysis (PCA):
1. EFA and PCA are TWO ENTIRELY DIFFERENT THINGS...

2. PCAis a special kind (or extraction type) of EFA...
although they are often used for different purposes, the results turn out the
same a lot anyway, so what’s the big deal?

- My world view:

> I'll describe them via school of thought #2
| want you to know what their limitations are
| want you to know that they are not really testable models

> Itis not your data’s job to tell you what constructs you are measuring!! If
you don’t have any idea, game over
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PCA vs. EFA, continued

- Soif the difference between EFA and PCA is just in the communalities (the diagonal of the

correlation matrix)...
> PCA: All variance in indicators is analyzed
+ No separation of common variance from error variance
+ Yields components that are uncorrelated to begin with
» EFA: Only common variance in indicators is analyzed
+ Separates common variance from error variance
+ Yields factors that may be uncorrelated or correlated

« Why the controversy?

> Why is EFA considered to be about underlying structure,
while PCA is supposed to be used only for data reduction?

> The answer lies in the theoretical model underlying each...
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Big Conceptual Difference
between PCA and EFA

. In PCA, we get components that are outcomes built from linear
combinations of the indicators:
> Cp =Lyl + Lpply + Lysly + Lyyly + Lysls
> Gy =Lyly + Lysly + Lysly + Lyyly + Lysls
> ... and so forth — note that C is the OUTCOME

+ This is not a testable measurement model by itself.

. In EFA, we get factors that are thought to be the cause of the
observed indicators (here, 5 indicators, 2 factors):
> ;=L F +L,F, + e
> 1, =L,,F; +L,F, +e;
> I3 =L3,F + Lg,F, + e
> ... and so forth... but note that F is the PREDICTOR - testable
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PCA vs. EFA/CFA

Component

This is not a testable
measurement model,
because how do we know
if we’ve combined stuff
“correctly”?
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Y. |l Y, (| Y | Y,

y y 3 A
This IS a testable measurement
model, because we are trying to
predict the observed covariances
between the indicators by creating a

factor — the factor IS the reason for
the covariance.
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Big Conceptual Difference
between PCA and EFA

- In PCA, the component is just the sum of the parts, and there is no inherent
reason why the parts should be correlated (they just are)

> But they should be (otherwise, there’s no point in trying to build components to
summarize the variables 2 “component” = “variable”)

> The type of construct measured by a component is often called an ‘emergent’
construct —i.e., it emerges from the indicators (“formative”).

> Examples: “Lack of Free time”, “SES”, “Support/Resources”

- In EFA, the indicator responses are caused by the factors, and thus should be
uncorrelated once controlling for the factor(s)

> The type of construct that is measured by a factor is often called a ‘reflective’
construct —i.e., the indicators are a reflection of your status on the latent variable.

> Examples: Pretty much everything else...
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My Issues with EFA

Often a PCA is done and called an EFA
> PCA is not a statistical model!

No statistical test for factor adequacy

Rotations are suspect

Constraints are problematic
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COMPARING CFA AND EFA



Comparing CFA and EFA

- Although CFA and EFA are very similar, their results can be very different for two or
more factors
> Results for the 1 factor are the same in both (use standardized factor identification in CFA)

- EFA typically assumes uncorrelated factors

- If we fix our factor correlation to zero, a CFA model becomes very similar to an EFA model
» But...with one exception...
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EFA Model Constraints

For more than one factor, the EFA model has too many parameters to estimate

> Uses identification constraints (where A is diagonal):
ANPA=A

F(F-1)
2

This puts multivariate constraints on the model

These constraints render the comparison of EFA and CFA useless for most purposes
> Many CFA models do not have these constraints

Under maximum likelihood estimators, both EFA and CFA use the same likelihood function

> Multivariate normal
> Mplus: full information
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CFA Approaches to EFA

«  We can conduct exploratory analysis using a CFA model
> Need to set the right number of constraints for identification

> We set the value of factor loadings for a few items on a few of the factors
+ Typically to zero (my usual thought)
+ Sometimes to one (Brown, 2002)

> We keep the factor covariance matrix as an identity
+ Uncorrelated factors (as in EFA) with variances of one

- Benefits of using CFA for exploratory analyses:
> CFA constraints remove rotational indeterminacy of factor loadings — no rotating is needed (or possible)

> Defines factors with potentially less ambiguity
+ Constraints are easy to see
> For some software (SAS and SPSS), we get much more model fit information
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EFA with CFA Constraints

- To do EFA with CFA, you must:

> Fix factor loadings (set to either zero or one)
+ Use “row echelon” form:
+ One item has only one factor loading estimated
+ One item has only two factor loadings estimated
+ One item has only three factor loadings estimated

> Fix factor covariances
+ Setallto0

> Fix factor variances
e Setallto 1
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Re-Examining Our EFA of GRI 12 Items

- We will fit a series of “just-identified” CFA models and examine our results

« NOTE: the one factor model CFA model will be identical to the one factor EFA model
> The loadings and unique variances in the EFA model are the standardized versions from the CFA model
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Model Comparison

F Log-Likelihood #Ptrs Scaling RMSEA CFI TLI
Constant

1 -19,567.084 36 2.4124 .045 .949 .938

2 -19,542.939 47 2.2260 .047 .956 .932

3 Did not converge

4 -19,433.523 66 2.0909 .018 .996 .990

5 Did not converge — Heywood Case

6 Did not converge
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CONCLUDING REMARKS



Wrapping Up

- Today we discussed the world of exploratory factor analysis and found the following:
> PCA is what people typically run when they are after EFA

> ML EFA is a better option to pick (likelihood based)
+ Constraints employed are hidden!
+ Rotations can break without you realizing they do

> ML EFA can be shown to be equal to CFA for certain models

> Overall, CFA is still your best bet
+ We have been essentially exploring our data using modification indices all along
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