Path Analysis

Latent Trait Measurement and
Structural Equation Models
Lectures #3 and #4

January 23 and 30, 2013

PSYC 943: Lectures #3 and 4



Today’s Lecture

- Path analysis
» Starting with linear regression...
» ..then moving to multivariate regression...
» ..then moving to a “small” path model...
» ..then arriving at our final destination

- Path analysis details:
> Standardized coefficients (introduced in regression)
> Model fit (introduced in multivariate regression)

> Model modification (introduced in multivariate regression and
path analysis)

> Direct and indirect effects (introduced in path analysis)

- Additional issues in path analysis
» Estimation types
> Variable considerations
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Today’s Data Example

- Data are simulated based on the results reported in:

Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept
beliefs in mathematical problem solving: a path analysis. Journal of
Educational Psychology, 86, 193-203.

- Sample of 350 undergraduates (229 women, 121 men)

> In simulation, 10% of variables were missing (using missing completely at
random mechanism)

- Note: simulated data characteristics differ from actual data (some
variables extend beyond their official range)

> Simulated using Multivariate Normal Distribution
+ Some variables had boundaries that simulated data exceeded
> Results will not match exactly due to missing data and boundaries
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Variables of Data Example

- Gender (1 = male; 0 = female)

- Math Self-Efficacy (MSE)

> Reported reliability of .91
> Assesses math confidence of college students

- Perceived Usefulness of Mathematics (USE)
> Reported reliability of .93

- Math Anxiety (MAS)
> Reported reliability ranging from .86 to .90

- Math Self-Concept (MSC)
> Reported reliability of .93 to .95

. Prior Experience at High School Level (HSL)
> Self report of number of years of high school during which students took
mathematics courses
. Prior Experience at College Level (CC)
> Self report of courses taken at college level

- Math Performance (PERF)
> Reported reliability of .788
> 18-item multiple choice instrument (total of correct responses)
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Our Destination: Overall Path Model
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The Big Picture
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Path analysis is a multivariate statistical method that assumes the
variables in an analysis are multivariate normally distributed

> Mean vectors
> Covariance matrices

By specifying simultaneous regression equations (the core of path
models), a very specific covariance matrix is implied

> Similar to last week’s homework with Models #1 (independent variables,
common variance) and #2 (common covariance and common variance)

Much like MANOVA and multilevel models, the key to path analysis
is finding an effective approximation to the unstructured (saturated)
covariance matrix

> With fewer parameters, if possible

The art to path analysis is in specifying models that blend theory
and statistical evidence to produce valid, generalizable results



LINEAR REGRESSION:
A BASIC PATH MODEL



Linear Regression Framed As A Path Model

-  We will begin our discussion by starting with linear regression:
predicting mathematics performance (PERF) with high school (HSL)
and college experience (CC)

PERF; = B§ERF + BRERFHSL, + BEERF CC; + el FRF

. As typical, we assume el-PERF ~ N (O, O-ez:PERF)

- A guide to my notation:

>

>
>
>

BY - the regression slope where variable Y is being predicted by variable X
BY - the intercept for the regression line predicting variable Y
e) - the residual for variable Y for observation i

o’y - the residual variance (note the e: in the subscript) for the prediction
of variable Y

0)% - the variance of variable X (not a residual — unexplained)
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Linear Regression Path Diagram
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Types of Variables in the Analysis

- An important distinction in path analysis is between endogenous
and exogenous variables

- Endogenous variable(s): variables whose variability is explained by
one or more variables in a model

> Inlinear regression, the dependent variable is the only endogenous variable
in an analysis
+ Mathematics Performance (PERF) in our example

- Exogenous variable(s): variables whose variability is not explained
by any variables in a model

> Inlinear regression, the independent variable(s) are the exogenous
variables in the analysis
+ High school (HSL) and college (CC) experience
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Linear Regression in Mplus

The basic code for linear regression vaszste:

NAMES = id gender hsl cc use msc mas mse perf;

in Mplus uses the ON statement: TovamiasiE - aan
MISSING = .;

ANALYSIS:
ESTIMATOR = MLR;

Mplus uses ML by default .
to estimate the parameters pext ON nal co;

Of the mOdeI CUTP.;?;-\NDARDIZED RESIDUAL;
> Listwise deletion happens for any independent variables (right of ON) with

missing data * %% WARNING

Data set contains cases with missing on x-variables.
These cases were not included in the analysis.
Number of cases with missing on x-variables: 68

Sample should be
350 subjects

> MplUS uses 237 SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 237

Number of dependent variables 1
Number of independent variables 2
Number of continuous latent variables 0

PSYC 943: Lectures #3 and 4 11



DETOUR #1: MISSING DATA WITH
MAXIMUM LIKELIHOOD IN MPLUS



More Linear Regression in Mplus

- One way to get around Mplus omitting independent (exogenous)
variables is to add the command to estimate their covariance:

MODEL:
perf ON hsl cc;
hsl; cc;
hsl WITH cc:

- Now, Mplus attempts to estimate the covariance matrix of all
variables, using the multivariate normal distribution
> There is one omitted case (missing on all three variables)

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 349

Numkber of dependent variabkles
Number of independent wvariables
Number of continuous latent variables

O N
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Full Model Linear Regression Path Diagram
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Full Model in Statistical Distributions

. The full model uses maximum likelihood for the multivariate normal

(MVN) distribution for all variables

> Including the exogenous (independent) variables does not affect the direct
effects in the model

> Assumes Missing At Random for all variables in the model

. The MVN likelihood function has its mean vector and covariance re-

expressed as a function of:

> The model parameters (B3=%", Brsr, Bec ™, 04 perr

> The exogenous variable means and covariances

2 2
(UysL, Ucer OfisL, Occ O-HSL,CC)
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Full Model Likelihood Function

- The log-likelihood function (from the previous lecture):

— Ili)TZ_l(XiT — ;)
2

Np N - (x]
LOXi |1, E) = — =~ log(2m) — = log(IZ) — )
i=1

- The MVN distribution has two matrices of parameters:

> A mean vector u;

+ In regression this is called the conditional mean — the predicted value of the
dependent variable for an observation i

» A covariance matrix X
+ In regression, this is the same for all observations (so no subscript)

- These matrices result from the parameters in the full
regression model
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Model-Predicted Mean Vector

« The mean vector now becomes different for each observation i

 Thisis called a conditional mean vector
» Conditional on the values of the independent variables:

tiperr = Bo " + Bt HSL; + Bee ™ CC;
U = HysL
Ucc

- The means for HSL and CC are not conditional as they are
exogenous (not explained)
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Model-Predicted Covariance Matrix

- The model predicted covariance matrix is not conditional as it does

not depend on the values of the independent variables

2
OPERF OpERF,HSL OPERF,CC

_ 2
L= OPERF,HSL OHsL OHsL,cc

2
| OPERF,CC OHSL,CC Occ

- Note that there is no subscript —assumed the same for all i
Where, by the regression model:

2 _ (pPERF\? _2 PERF pPERF PERF\2 _2 2
OpERF = (,BHSL ) ohst t+ 2Bust Bec OysLcc T (.BCC ) Occ t Oc.PERF

> 0Zpgrp is the residual variance; o5zpy is the variance

A _ HPERF 2 PERF
 OperrHsL = Pust 0fsy + Bcc' OusLcc

A _ HPERF 2 PERF
« Opgrr.cc = PBcc' 0¢c + PusL OusLcc
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Maximum Likelihood with Missing Data

Because the MLR algorithm in Mplus assumes a MVN distribution, if

one or more variables are missing, a reduced mean
vector/covariance matrix is used

For instance, if an observation was missing HSL:

2
Hee OpERF,CC Occ

| highlight these terms because the linear regression model (and
path models) make specific predictions about a person’s MVN

distribution matrices

> Aregression model is a saturated (unstructured) model for the
distributional parameters of the MVN

:ulPERF] y, [ O-PERF OpERF,CC

> Number of distributional parameters (3 means, 3 variances, 3 covariances =

9) equals number of model parameters (1 intercept, 2 slopes, 1 residual
variance, 2 means, 2 variances, 1 covariance = 9)

PSYC 943: Lectures #3 and 4
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Saturated/Unstructured Model in Mplus

MODEL FIT INFORMATION

- The Model Fit Information Number of Free Parameters .
section of Mplus output Loglikelinood
Confirms that the number :8 ;ZiZi"g Correction Factor _22859;:;
. or MLR
of parameters in our model B2 Value _2215.144
. H1l Scaling Correction Factor 0.9520
is the same as the saturated for MLR
mOdeI (the unStrUCtured Chi-Square Test of Model Fit
model from last week) value 0.000+
Degrees of Freedom 0
P-Value 0.0000
Scaling Correction Factor 1.0000
for MLR

- Here the log-likelihood for H1 (unstructured/saturated) model and
HO (the current model) are identical

> Therefore, no tests of model fit are possible — no DF
> Model predicted covariance is exact — no residual variances or covariances
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...AND NOW BACK TO OUR REGULARLY
SCHEDULED REGRESSION ANALYSIS



Linear Regression Results in Mplus
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MODEL RESULTS
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.078
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5.
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8
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Linear Regression Path Diagram with Results
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Interpreting Linear Regression Results

- The linear regression results are interpreted as follows:

> BEERF = 8.253: the intercept for PERF — the value of PERF when all
predictors are zero (HSL =0 and CC = 0)

> BHERF = 0.986: the slope for HSL. Indicates that for every one-unit increase

in HSL (holding CC constant), PERF increases by .986

> BEERY = 0.079: the slope for CC. Indicates that for every one-unit increase

in CC (holding HSL constant), PERF increases by .079

> 0Zpgpr = 6.631: the residual (or unexplained) variance in PERF

> Note: the rest of the parameters are the descriptive statistics for the
independent (exogenous) variables and are not explained by the
regression model
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Explained Variance

- To demonstrate the concept of explained variance, consider the

dependent variable, math performance
> “Empty Model” — estimate of its variance: 655pr = 8.722

ESTIMATED SAMPLE STATISTICS

Means
PERF HSL

%]
O

Note: the sample statistics are from
: 13.923 4-925 *0.331 the unstructured (saturated) model
estimated with ML — if you have
missing data or are using unbiased
estimates, these will not match
other programs

Covariances

O
O

1.275 34.556

- The independent (exogenous) variables in the analysis seek to

explain the variability in math performance

> Adding significant IVs will reduce the variance, therefore “explaining” a
portion of the DV
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Regression Model Explained Variance

- After adding both independent variables HSL and CC, the residual
variance of performance was 62 pppr = 6.631

- Therefore, the inclusion of these variables reduced the variance of

PERF from 8.722 to 6.631, for an
B 8.722 — 6.631 B

8.722

2

-  Mplus reports this value under the standardized coefficients output

(explained next):

R-SQUARE

Cbserved Two-Tailed
Variable Estimate S.E. Est./S.E. P=-Value

PERF 0.240 0.043 5.566 0.000

PSYC 943: Lectures #3 and 4
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Standardized Coefficients

- The scale of the (unstandardized) slope coefficients is given in terms
of UNITS of Y (SD Y) per UNITS of X (SD X)

> Y goes up Y UNITS of Y for every UNIT of X
+ HSL has SD of 1.31; CC has SD of 5.88

> If the UNITS of X differ for the various IVs in a model, it can be hard to
compare relative strengths of coefficients
+ BFERF — 986 (but HSL has SD of 1.31)
+ BPERF = 079 (but CC has SD of 5.88)

. Standardized coefficients are the coefficients that would be
obtained if Y and X were standardized:
> Standardized = variance of 1 (i.e. z-scores used for analysis)

. Standardized coefficients are useful for comparing the relative
effects of each IV in the model
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Standardization in Mplus

- Under the output section, the word STANDARDIZED will produce
standardized coefficients in Mplus output

- Three types of standardizations are given:

> STDYX: These are the standardized regression coefficients; use these for
continuous IVs (used for our current analysis)

> STDY: These only standardize based on variance of Y (the DV). Use when

binary variables are IVs (like gender dummy coding) as unit of X has no
meaning

> STD: Discussed when we get to models with latent variables

PSYC 943: Lectures #3 and 4
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Standardized Coefficients Output

Standardized Coef:
SD(Xefrect)

beffect = IBeffect SD(Y)

For HSL:
1.726
pPERF _ 96— — 439
HSL 8.722
> PERF increases .439 SD

when HSL increases 1 SD
(holding CC constant)

For CC:
34.556
pEERE = 079 —— = 157
8.722
> PERF increases .157 SD
when CC increases 1 SD

(holding HSL constant)
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STDYX Standardization

Two-Tailed

Estimate S.E. Est./S.E. P-Value
PERF ON
HSL 0.439 0.047 9.415 0.000
cC 0.157 0.055 2.875 0.004
MODEL RESULTS
Two-Tailed
Estimate S.E. Est./S.E. E-Value
PERF ON
HSL 0.986 0.122 8.103 0.000
cC 0. 0.028 2.861 0.004
Variances
HSL 1.726 0.123 14.039 o.odo
CC 34.556 2.45¢6 14.069 0.000

RESIDUAL OUTPUT

Model Estimated Covariances/Correlations/Residual Correlations

PERF HSL cc
PERF g8.722
HSL 1.802 1.726
cC 3.980 1.275 34.556

29



REGRESSION IN MATRIX FORM



Regression in Matrices

- Many path modeling texts use matrix algebra to denote

complicated path models

> The easiest way to dissect these texts is to start with a linear regression
model — all regression models can be phrased as path models

- Matrix algebra helps to understand which models are identified
(able to be estimated)

- Because | believe one should know more than just the path diagram

approach, | will re-express our regression using matrix algebra (that

will come back in path analysis)
> | will borrow the notation used by Kaplan (2009)
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Linear Regression in Matrices

 Our linear regression equation was given by:
PERF; = B{ERF + BRERFHSL; + BEERFCC; + e FRF
> Here we have:

+ p = 1 endogenous variable
+ g = 2 exogenous variables

. Alternatively, we could rephrase this:
— ﬁo + in + el;y
Where:

. y ~ N(O Jez-y)

. I‘ = [BHERE BEERF] (matrix of size p x q relating exogenous

variables to endogenous variable(s))

HSL;
[ ] (matrix of size g x 1 containing observed

exogenous variables)

PSYC 943: Lectures #3 and 4
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More Regression with Matrices

. Although not explained by our model, we could state that the mean

vector of exogenous variables was:
_ [HHSL]

o Hce

. Likewise, we can state that the covariance matrix of the exogenous
variables is

2
OHsL OHSL,CC
® = [

2
OHSL,CC Occ

. We will use these terms in our matrix-version of the model
predicted mean and covariance matrix

PSYC 943: Lectures #3 and 4
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Model Predicted Mean Vector and

. . Matri
- The conditional mean of the endogenous variables is:
.ay — ,B(J)] + ',

. The covariance matrix of the exogenous and endogenous variables
is then: This covariance matrix has a very specific structure

[ Yonly Ywith x] B [rcprT +02, TP
o

Yyx = |XwithY X only r’ b

This is given in Mplus output:

llllllllllllllllllll

u
. T 2
. F(br + Ue:y 3riances/Correlations/Residual Correlations

‘..?.E-_R?..........-ﬂs'_f_ CC
PERF " 8.722 = ——
ger o 20 T .
noL 420V -e I &
CcC I' 3.930' e T MY
r T |
1 I
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Matching Matrices with Results

- To more specifically link our results (for both the full and reduced
model) to the matrices from the previous page:

Name Matrix Full Model Estimates

Residual Variance 02 pERF 6.631
Regression Weights of Exogenous onto r [0.986 0.079]
Endogenous

Regression Intercept LERE 8.253
Covariance Matrix of ()] 1.726 1.275
Exogenous Variables 1.275 34.556
Mean Vector of Wy [ 4,925
Exogenous Variables 10.331

PSYC 943: Lectures #3 and 4
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Predicted Model Mean and Covariance Matrix

The conditional mean of the endogenous variables is:

A, = By +Tp, =8.253+[0986 0.079]| 140'932351] — 13.923
Model Estimated mMeans/Intercepts/Thresholds Residuals for Means/Intercepts/Thresholds The Model
PERF HSL Prec PERF HSL ‘cc Perfectly
1 13.923 4.925 710.331 1 0.000 0.000 0.000 sseaizor(:::jf
s _|[Yonly Ywith X] _|Ter” +oz, TP Mean Vector
yx — |XwithY Xonly | &r7 b
[ 1.726 1.275171 [0.986 1.726  1.2751]
: : 6.631 : :
_ 10986 0.0790]1575 34556 lo070] * 0986 0.07911 575 34556
1.726 1.275] 0.986 1.726 1.275]
1.275 34.556110.079 1.275 34.556
8.722 1.802 3.980
=11.802 1.726 1.275
13.980 1.275 34.556
The Model Perfectly
Reproduces “Saturated”
Model Estimated Covariances/Correlations/Residual Correlations Covariance Matrix
PERF HSL cC
[ Residuals for Covariances/Correlations/Re
PERF 8.722 PERF HSL cC
HSL 1.802 1.726
CcC 3.980 1.275 34.5506 PERF 0. 000
HSL 0. 000 0.000
cC 0.000 0.000 0.000
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MULTIVARIATE REGRESSION



Multivariate Regression

- To transition from regression to path analysis, we will now try to

predict two variables simultaneously:

> Predicting mathematics performance (PERF) with high school (HSL) and
college (CC) experience

> Predicting perceived usefulness (USE) with high school (HSL) and College
(CC) experience

PERF; = B§ERF + BRERFHSL, + BEERF CC; + e FRF
USE; = BYSE + BUSEHSL, + BYSECC; + eVSE

. We denote the residual for PERF as e/ “%* and the residual for USE

dS eiPERF

> Here, we assume the residuals are Multivariate Normal:

PERF 2
€; - N 0 Oc.PERF O¢:PERF,USE
USE 2 0l’ 2
€; O¢.PERF,USE O¢.USE
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Multivariate Linear Regression Path Diagram

OnhsL,cc
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Labeling Variables

- The endogenous (dependent) variables are:
> Performance (PERF) and Usefulness (USE)

- The exogenous (independent) variables are:
> High school (HSL) and college (CC) experience

PSYC 943: Lectures #3 and 4

40



Multivariate Regression Model Parameters

- If we considered all four variables to be part of a multivariate normal
distribution, our unstructured (saturated) model would have 14
parameters:

>
>
>

4 means
4 variances
6 covariances (4-choose-2 or 4*(4-1)/2))

- The model itself has 14 parameters:

>

4 intercepts

> 4 slopes

YV V V VY

2 residual variances

1 residual covariance

2 exogenous variances
1 exogenous covariance

- Therefore, this model will fit perfectly — no model fit statistics
will be available

>

Even without model fit, interpretation of parameters can proceed
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Multivariate Linear Regression Path Diagram

1.728 (0.123)

1.290
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0.079 (0.028)

Not Shown On Path Diagram:
o BLERF =8.264 (0.594)

o BYSE =43.129 (3.338)

o Uysy = 4.922 (0.073)

e ucc = 10.330(0.331)
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Interpreting Multivariate Regression Results

_for PERF (nearly identical results)

CERF = 8.264: the intercept for PERF — the value of PERF when all
predictors are zero (HSL=0and CC=0)

5551: = 0.986: the slope for HSL predicting PERF. Indicates that for

every one-unit increase in HSL (holding CC constant), PERF increases
by .986

> The standardized coefficient was .438

EERE = 0.079: the slope for CC predicting PERF. Indicates that for

every one-unit increase in CC (holding HSL constant), PERF increases
by .079

> The standardized coefficient was .157
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Interpreting Multivariate Regression Results
_for USE

é]SE = 43.129: the intercept for USE — the value of USE when all

predictors are zero (HSL=0 and CC=0)

BisE = 1.466: the slope for HSL predicting USE. Indicates that for

every one-unit increase in HSL (holding CC constant), USE increases
by 1.466

> The standardized coefficient was .122

ggE = 0.206: the slope for CC predicting USE. Indicates that for

every one-unit increase in CC (holding HSL constant), USE increases
by .206. This was found to be not significant, meaning college

experience did not predict perceived usefulness
> The standardized coefficient was .077
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Interpretation of Residual Variances and Covariances

0’ pprp = 6.623: the residual variance for PERF
> The R? for PERF was .240 (the same as before)

. 0%ysp = 243.303: the residual variance for USE

> The R? for USE was .024 (a very small effect)

» Og.pprruse = 2.901: the residual covariance between
USE and PERF

> This value was not significant, meaning we can potentially set its value to
zero and re-estimate the model

. Each of these variance describes the amount of variance not
accounted for in each dependent (endogenous) variable

PSYC 943: Lectures #3 and 4
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Overall Model R? for All Endogenous Variables

Although the residual variance and R? values for PERF and USE
describe how each variable is explained individually, we can use
multivariate statistics to describe the joint explanation of both

> R? comparing the generalized variances (determinant of covariance matrix)

The overall generalized variance of the endogenous variables
8.709  6.362 ‘ — 213028

without the model was || = ”6 362 249254

The generalized residual variance of the endogenous variables was

%= 2901 21330s]] = 16029

2,130.28-1,602.98

2,130.28
> Most of that came from the PERF variable
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Therefore, the generalized R? was



Comparison of Model Output from Linear and

Multivariate B i 0n Model

Linear Regression Multivariate Regression
MODEL RESULTS

MODEL RESULTS

_ Two-Tailed
Two-Tailed _ _
Estimate S.E. Est./S.E. P—Value Estimate S.E. Est./S.E. P-Value
PERF ON PERF ON
HSL 0.986 0.122 8.103 0.000 HSL 0.984 0.121 8.115 0.000
CcC 0.079 0.028 2.861 0.004 CC 0.07%8 0.028 2.865 0.004
HSL WITH USE ON
cc 1.275 0.430 2.967 0.003 HSL 1.466 0.632 2.320 0.020
cc 0.206 0.157 1.305 0.192
Means
HSL 4,925 0.073 67.051 0.000 - . -
cC 10.331 0.331 31.189 0.000 H5L WITH
cc 1.290 0.430 3.001 0.003
Intercepts
PERF 8.253 0.598 13.807 0.000 USE WITH
PERF 2.901 2.579 1.125 0.261
Variances
HSL 1.726 0.123 14.039 0.000 Means
cc 34.536 2.45¢6 14.069 9.000 HSL 4.922 0.07 67.094 0.000
, , cc 10.330 0.331 31.194 0.000
Residual Variances
PERF 6.631 0.564 11.75%9 0.000
Intercepts
PERF 8.264 0.594 13.911 0.000
e Results for linear regression USE 43.129 3.338 12.920 0.000
parameters will be virtually unchanged  variances
HSL 1.728 0.123 14.027 0.000
cc 34.561 2.456 14.069 0.000
* Here, they differ due to one extra Residual Variances
. . . PERF 6.623 0.563 11.755 0.000
observation included in model USE 243.303 19.227 12.654 0.000
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Model Modification

- The residual covariance parameter (between PERF and USE) was
not significant

- This means that after accounting for the relationship between HSL
and CC with PERF along with HSL and CC with USE, the correlation
between these two is zero

> Meaning we can likely remove the parameter from the model

MODEL:
perf ON hsl cc;
use ON hsl cc;
hsl WITH cc;

perf WITH use E0:

- Removal of the parameter from the model would reduce the
number of estimated parameters from 14 to 13

> And would provide a mechanism to inspect goodness of fit of the
reduced model
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Reduced Model Path Diagram

/UeZ:PERF
2 7/
OHsL PERF 24
"“*al High School Math —>» Mathematics
7 Experience (HSL) Per{orma)nce
N PERF
GHSLCC Mathematics
Usefulness
(USE)
o To.uSE

CcC

— Direct Effect
— = > Residual (Endogenous)

Variance
........ > Exogenous Variances

) SELEED » Exogenous Covariances

2 %
occ +»., \ College Math
‘A Experience (CC)
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Model Fit Information

- The Mplus Model Fit Information section provides model fit
statistics that can help judge the fit of a model

> More frequently used in models with latent variables, but sometimes used
in path analysis

- The important thing to note is that not all “good-fitting” models
are useful...
> More on this topic in two weeks

- The next few slides describe the statistics reported in this section of
Mplus output

PSYC 943: Lectures #3 and 4 50



Log-likelihood Output

- The log-likelihood output section provides two
log-likelihood values:

> HO: the log-likelihood from the model run in the analysis
> H1: the log-likelihood from the saturated (unstructured) model

Loglikelihood

HO Value -3573.439

HO Scaling Correction Factor 0.9584
for MLR

H1 Value -3572.730

H1l Scaling Correction Factor 0.9714
for MLR

- The log-likelihood is the log of the value from the likelihood function
(the function that finds the parameters), evaluated at the peak

. |If these statistics are identical, then you are running a model
equivalent to the saturated model

> No other model fit will be available or useful
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Information Criteria Output

- The information criteria output provides relative fit statistics:

Information Criteria

Akaike (ARIC)

Bayesian (BIC)

Sample-Size Adjusted BIC
(n* = (n + 2) / 24)

-J
J

L I

.878
.031
.790

~J
mw N -
=W N

-

> AIC: Akaike Information Criterion
> BIC: Bayesian Information Criterion (also called Schwarz’s criterion)
» Sample-size Adjusted BIC

- These statistics weight the information given by the parameter
values by the parsimony of the model (the number of
model parameters)
> For all statistics, the smaller number is better

- The core of these statistics is -2*log-likelihood
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Comparing Information Criteria

The information from our reduced model (without the
reSiduaI Covariance): Information Criteria

Akaike (AIC) 7172.878

Bayesian (BIC) 7223.031

Sample-Size Adjusted BIC 7181.790
(n* = (n + 2) / 24)

The information criteria from our full model (with the residual
covariance estimated): ...

rmation Criteria

Akaike (AIC) 7173.459

Bayesian (BIC) 7227.470

Sample-5Size Adjusted BIC 7183.057
(n* = (n + 2) / 24)

For each statistic, the reduced model is preferred because values
are smaller (so it fits better, relative to the full model)
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Chi-Square Test of Model Fit

- The Chi-Square Test of Model Fit provides a likelihood ratio test
comparing the current model to the =~ ™ = 5 =

Value 1.245%
saturated (unstructured) model: Degrees of Freedom el
Scaling Correction Factor 1.1393

for MLR

> The value is -2 times the difference in log-likelihoods

> The degrees of freedom is the difference in the number of estimated
model parameters

> The p-value is from the Chi-square distribution

. |If this test has a significant p-value:

> The current model (HO) is rejected — the model fit is significantly worse than
the full model

> However, in latent variable models, this test is usually ignored
+ Said to be overly sensitive

. If this test does not have a significant p-value:
> The current model (HO) is not rejected — fits equivalently to full model
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RMSEA
(Root M c E f imation)

- The RMSEA is an index of model fit where O indicates perfect fit
(smaller is better):

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.026
90 Percent C.I. 0.000 0.148
Probability RMSEA <= .05 0.449

- RMSEA is based on the approximated covariance matrix
> More on this in two weeks

- The goal is a model with an RMSEA less than .05
> Although there is some flexibility

- The result above indicates our model fits well (RMSEA of .026)
> Expected for 13 parameters (out of 14 possible)
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CFI/TLI

- The CFI/TLI section provides two additional measures of
model fit:

CFI/TLI

o
w
w

CFI

« CFl stands for Comparative Fit Index
> Higher is better (above .95 indicates good fit)
> Compares fit to independence model (uncorrelated variables)

« TLI stands for Tucker Lewis Index
> Higher is better (above .95 indicates good fit)

- Both measures indicate good model fit (as they should for 13
parameters out of 14 possible)
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Chi-Square Test of Model Fit
_for the Baseline Madel

The Chi-Square test of model fit for the baseline model provides a
likelihood ratio test comparing the saturated (unstructured) model
with an independent variables model (called the baseline model)

Chi-Square Test of Model Fit for the Baseline Model
Value 82.959

Degrees of Freedom 5
F-Value 0.0000

Here, the “null” model is the baseline (the independent endogenous
variables model)
> If the test is significant, this means that at least one (and likely more than
one) variable has a significant covariance

> If the test is not significant, this means that the independence model is
appropriate
+ This is not likely to happen
+ But if it does, there are virtually no other models that will be significant
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Standardized Root Mean Squared Residual

- The SRMR (standardized root mean square residual) provides the
average standardized difference between the observed correlation
and the model-predicted correlation

SRMR (Standardized Root Mean Square Residual)

Value 0.016

- Lower is better (some suggest less than 0.08)

- This indicates our model fits the data well (as it should for 13 out of
14 possible parameters in use)
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Comparing Our Full and Reduced

Multivariate B 0 Model

MODEL RESULTS

|:u|| |V|Od9| MODEL RESULTS
Two
Estimate S.E. Est./S.E. E
PERF on PERF ON
HSL 0.934 " 0.121 3.115 HSL
cc 0.079 0.028 2.865 cc
USE ON USE ON
HSL 1.466 0.632 2.320 HSL
cc 0.206 0.157 1.305 cc
HSL WITH HSL WITH
cC 1.2%0 0.430 3.001 cc
USE WITH PERF WITH
PERF 2.901 2.579 1.125 USE
Means Means
HSL 4,922 0.073 67.094 HSL
CcC 10.330 0.331 31.194 CcC
Intercepts Intercepts
PERF g8.264 0.584 13.911 PERF
USE 43.129 3.338 12.920 USE
Variances Variances
HSL 1.728 0.123 14,027 HSL
cC 34.561 2.456 14.069 CcC
Residual Variances Residual Variances
PERF 6.623 0.563 11.755 PERF
USE 243.303 15.227 12.654 USE
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Reduced Model

Estimate

(=]

(1]

34

o o
O

w
-] o
w0

.473
.210

.293

.000

.921
10.

331

.242
.074

.729
.563

.617
243.

191

.E.

121
.028

.632
.157

.430

.000

.073
.331

.596
.334

.123
.457

.563
.243

Est./S.E.

(4]

999.

67

13.8
12.

14
14

11

.149
.861

.331
.341

.008

000

.085
31.

196

.027
.068

. 747
12.

638

Two-Tailed
P-Value

0.000
0.004

0.020

0.003

999.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000
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Multivariate Regression in Matrices

Our linear regression equation was given by:
PERF; = B§"™" + BEEFFHSL; + BEERFCC, + ef PP
USE; = By*F + Bust HSL; + BEe"CC; + e°F

> p =2 endogenous varlables
» g = 2 exogenous variables

Alternatively, we could rephrase this:
yi=a+TIx; +

Where:

" PERF

{; = e‘USE ] ~ N5, (0,%) (W is the p x p residual covariance matrix)
lBPERF BPERF

I' = HUSE USE 1(matrix of size p x g relating exogenous variables

HSL cC :
o endogenous variable(s))

HSL

xX; = (matrix of size g x 1 containing observed exogenous variables)
PERF

Yy = USE, (matrix of size p x 1 containing observed endogenous variables)

a =
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More Regression with Matrices

. Although not explained by our model, we could state that the mean

vector of exogenous variables was:
_ [HHSL]

o Hce

. Likewise, we can state that the covariance matrix of the exogenous
variables is

2
OHsL OHSL,CC
® = [

2
OHSL,CC Occ

. We will use these terms in our matrix version of the model
predicted mean and covariance matrix
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Model Predicted Mean Vector and
- ) Matri

- The conditional mean of the endogenous variables is:

ﬁy =a+T'u,
- The covariance matrix of the exogenous and endogenous variables
is then:
s Yonly Y with X] _[rerr+v ro
yx — |XwithY Xonly | or’ P

« Thisis given in Mplus output:

T [ ]
Irer' +v :
................. "
Model Estimated Covariances/Correlations/Residual Correlations
PERF USE HSL CcC
PERF R 8.722 -
USE = 3.509 249.274 ——
HSL 0 fulh ufh Stk Sl Sulh Balh Sl a3y 1.729 (I)
CC I 4.001 9.171 1.293 34.563
----- T---‘I
T
1 &I'" 1
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Matching Matrices with Results

- To more specifically link our results (for both the full and reduced

model) to the matrices from the previous page:

> Note: difference between models is one parameter — the covariance
between residuals is 0 in the reduced model

Name Matrix | Full Model Estimates Reduced Model
Estimates
Residual Covariance Matrix p 6.623  2.901 l6.617 0 ]
2901 243.303 0 243.191
Regression Weights of r 0.984 0.079 l0.988 0.079
Exogenous onto Endogenous 1.466 0.206 1.473 0.210
Covariance Matrix of o l1.728 1.290 l1.729 1.293
Exogenous Variables 1.290 34.561 1.293 34.563
Mean Vector of Uy $4.922 ] 4.921 7
Exogenous Variables 110.330. 110.331.
Vector of Endogenous a [ 8.264 ] [ 8.242 ]
Variable Intercepts 143.129 143.074
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Predicted Model Mean Vectors

FULL MODEL: The unconditional mean vector of the endogenous variables is:
8.264 0.984 0.079] [ 4,922 ] _ [13.919

43.129 1.466 0.2061110.330 52.466

Hy =a+Tu,

The FULL MODEL Perfectly Reproduces “Saturated” Mean Vector

Model Estimated Means/Intercepts/Thresholds

PERF USE HSL cc
1 "13.919 "52.466 T 4.922 "10. 330 Residuals for Means/Intercepts/Thresholds
PERF USE HSL cC
1 0.000 0. 000 0.000 0.000
REDUCED MODEL: The unconditional mean vector of the endogenous variables
IS:
W, =a+Tu 8.242 0.988 0.079] [ 4921 ] _ [13.920
Y 43.074 1.473 0.210/110.331 52.497
The REDUCED MODEL NEARLY Reproduces “Saturated” Mean Vector
Model Estimated Means/Intercepts/Thresholds Residuals for Means/Intercepts/Thresholds
PERF USE HSL cC PERF USE HSL cC
1 13.920 52.497 4.921 10.331 1 -0.002 -0.030 0.000 0.000
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Full Model Predicted Covariance Matrices

FULL MODEL: The covariance matrix of the exogenous and

endogenous variables is then:

5 _[Yonly YwithX]_ ror?” +y ['q)]
yx — |XwithY Xonly | orT P

ror’ +y — 0.984 0.079”1.728 1.290] 0.984 1.466] 6.623 2901] [8709 6.362
1.466 0.206111.290 34.561110.079 0.206 2901 243.303 6.362 249.252
ro = [098% 0.079)11726° 1.250 ) 18013992
1466 0.206)11.290 34.5611 ~ 12.798 8.994
r[L728 1290170984 Ldo6) _ 1801 2798
1.290 34.561110.079 0.206] ~ 13.992 8.994
o= [1728° 1290
1.290 34.561

8.709 6.362 1.801 3.992°
6.362 249.252 2.798 1.728
Ix 1.801 2.798 1.728 1.290
13.992 8994 1.290 34.561.
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Full Model Predicted and Residual Covariance Matrices —

—in Mplus

- The FULL MODEL exactly reproduces the covariance matrix of
endogenous and exogenous variables:

Model Estimated Covariances/Correlations/Residual Correlations

PERF

PERF 8.709
USE 6. 362
HSL 1.801
cC 3.992

USE HSL CC

249,252
2.798 1.728
8.994 1.290 34.561

Residuals for Covariances/Correlations/Residual Correlations

PERF
PERF 0.000
USE 0.000
HSL 0.000
CcC 0.000

USE HSL cc
0.002
0.000 0.000
0.000 0.000 0.000

- Sense a trend? This will always be the case —a model with O degrees
of freedom will always reproduce the covariance matrix of the

saturated (unstructured) model
> The parameters explain the covariances in more meaningful ways
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Reduced Model Predicted Covariance Matrices

REDUCED MODEL: The covariance matrix of the exogenous and endogenous
variables is then:

y = Yonly YwithX] [rér’+w ro
yx  |XwithY Xonly l B or’ P
T _ 0.988 0.07911.729 1293 0988 1.473 6.617 0 _ 8.722 3.509
rer' +¥ = 1.473 O,Z]_Ol [1 293  34. 563 0079 0.210]+[ 0 243.191] B [3.509 249.274]
e — [0.988 0.079] 1.729 1.293] _ 1.811 4.001
1.473 0.210111.293 34.563 2.818 9.177
&7 = 1.729 1.293 ] [O.988 1.473 _ [1.811 2.818
1.293 34.563110.079 0.210 4,001 9.177
_11.729 1.293
¢ = [1.293 34.563]

(8.722 3,509 1.811 4.001 |
3.509 249.274 2.818 9.177
yx 1.811 2.818 1.729 1.293
14.001 9.177 1.293 34.563]
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Reduced Model Predicted and Residual Covariance

- The REDUCED MODEL does not exactly reproduce the covariance
matrix of endogenous and exogenous variables:

Model Estimated Covariances/Correlations/Residual Correlations

PERF USE HSL Ccc
PERF 8.722
USE 3.509 249.274
HSL 1.811 2.818 1.729
CcC 4.001 9.177 1.293 34.563

Residuals for Covariances/Correlations/Residual Correlations

PERF USE HSL CcC
PERF -0.013
USE 2.853 -0.020
HSL -0.010 -0.021 -0.001
CcC -0.009 -0.183 -0.003 -0.002

- Note: the position of greatest discrepancy is for the covariance of
PERF and USE

> The location where the residual covariance would matter

- The question of model fit statistics is whether “close fit” is close
enough — does the model fit well enough
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“BASIC” PATH ANALYSIS



Basic Path Model

- To demonstrate path analysis using a limited set of variables, we
will examine the relationship between three of our observed
variables: HSL (high school experience), CC (college experience), and
MSE (math self-efficacy)

- Specifically, we seek to investigate the following regression
equations, simultaneously:
CC; = B§C + B HSL; + ef©
MSE; = B + Biisy HSL; + B¢ CCi + &/

- We are hypothesizing that:
> College experience is predicted by high school experience

> Math self efficacy is predicted by high school experience (directly and
indirectly) and college experience directly
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Basic Path Model

a"“ O-I-ZISL
L

High School
Math

Experience

cC
HSL

College Math &7
Experience
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Labeling Variables

. The independent (exogenous) variable in our analysis is:
> High School Experience (HSL) — nothing explains why it varies

- The dependent (endogenous) variables in our analysis are:
> College Experience (CC) —is explained (predicted) by HSL
> Math Self-Efficacy (MSE) —is explained (predicted) by HSL and CC

. College Experience (CC) is both predicted and a predictor variable
> If any variable is predicted at all, it is endogenous
> Path models allow endogenous variables to predict other variables

. Also note that High School Experience (HSL) predicts Math Self Efficacy
(MSE) directly and indirectly
> Direct examines how HSL predicts MSE by itself

> Indirect examines how relationship between HSL and MSE
is mediated by CC (more on mediation later in course)

> Combination of effects speaks of how variables interact with other variables in a
path model
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Path Model Parameters

If we considered all three variables to be part of a multivariate

normal distribution, our unstructured (saturated) model would have
9 parameters:

>
>
>

>

3 means
3 variances
3 covariances (3-choose-2 or 3*(3-1)/2))

The model itself has 9 parameters:

2 intercepts

> 3 slopes

vV V VY

2 residual variances
1 exogenous variance
1 exogenous mean

Therefore, this model will fit perfectly — no model fit statistics will

be available

>

Even without model fit, interpretation of parameters can proceed
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Mplus Syntax for Path Model

TITLE:
Basic Path Model
Predicting MSE and CC

DATA:
FILE = mathdata.csv;

VARIABLE:
NAMES = id gender hsl cc use msc mas mse perf;
USEVARIABLE = hsl cc mse;
IDVARIABLE = id;
MISSING = .;

ANALYSIS:
ESTIMATCR = MLR;

MODEL:
cc ON hsl;
mse ON hsl cc;

hsl:; !provides variance estimate for HSL (puts wvalues into likelihood)
MODEL INDIRECT:
mse IND hsl; !'requests calculation of direct and indirect effects

CUTPUT:
STANDARDIZED RESIDUAL SAMPSTAT;
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Basic Path Model Results

1,743 (0.125)

yAN .
High School —3 Direct Effect
Math — = 5 Residual (Endogenous)
Experience Variance
"""" > Exogenous Variances
4.159 (0.438) ) LILLEY > Exogenous Covariances
0.696
(0.245) /103.128 (8.375)
7
24
0363 I\S/Ial'?hEef?atics
Not Shown On Path Diagram:
_ 33.797 (2.438) e B§¢ =6.904 (1.260)
College Math &7 o BYSE =49.313 (2.330)

Experience * uys, = 4.912 (0.074)
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Interpretation of Path Model Parameters: CC

- Because no test of model fit is possible, we can immediately go onto
examination of the parameters:

> BSC = 6.904: the intercept for CC; the predicted value of CC when all
predictors of CC are zero (HSL = 0)

> B5S. = 0.696: the direct effect of HSL on CC (analogous to a regression

slope). For every one-unit increase in HSL, CC increases by 0.696
+ The standardized coefficient was 0.156
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Interpretation of Path Model Parameters: MSE

- For the Math Self-Efficacy variable, the path model
parameters were:

> BYSE = 49.313: the intercept for MSE; the predicted value of MSE when all
predictors of MSE are zero (HSL=0and CC=0)

> BMSE = 4.159: the direct effect of HSL on MSE. For every one-unit increase

in HSL, MSE increases by 4.159
(holding CC constant — an important distinction)
+ The standardized coefficient was .462

> BEPE = 0.363: the direct effect of CC on MSE. For every one-unit increase
in CC, MSE increases by 0.363
(holding HSL constant)
+ The standardized coefficient was .180
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Interpretation of Residual Variances

. 0%-c = 33.797: the residual variance for CC
> The R? for CC was .024 (a very small effect)

2 _
* Oo:MSE —

103.128: the residual variance for MSE

> The R2 for MSE was .271
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Indirect Paths

- Because High School Experience (HSL) predicted College Experience
(CC) and College Experience (CC) predicted Math Self-Efficacy (MSE),

an indirect path between HSL and MSE exists

> An indirect path represents the effect of one variable on another, as
mediated by one or more variables

- The indirect path suggests that the relationship between High
School Experience (HSL) and Math Self-Efficacy is mediated by

College Experience (CC)

> More formally, the mediational relationship is hypothesized by the path
model, a formal test of hypothesis is needed to establish College Experience
as a mediator of High School Experience and Math Self-Efficacy
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Direct and Indirect Effects of HSL on MSE

1,743 (0.125)

A“

High School
Math
Experience

0.696
(0.245)

0.363
(0.108)

4.159 (0.438)

College Math
Experience

L’
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— Direct Effect

9 Indirect Effect

Residual (Endogenous)

Variance
Exogenous Variances

Exogenous Covariances

,103.128 (8.375)

/7

24
Mathematics
Self-Efficacy

¢ =6.904 (1.260)

MSE = 49313 (2.330)

o Uy = 4912 (0.074)

_ 33.797 (2.438) .

Not Shown On Path Diagram:
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Calculation of Indirect Effects

The indirect effect of High School Experience on Math Self-Efficacy is the
combination of two path coefficients:
> The path between High School (HSL) and College (CC) Experience: ,B%L = 0.696

> The path between College Experience (CC) and Math Self-Efficacy (MSE):
M3E =0.363

The indirect effect of HSL on MSE is the product of these two terms:
SCLBYSE = 0.69670.363 = 0.253

The indirect effect is the amount of increase in the outcome variable (MSE
in this case) that comes indirectly by a one-unit increase in the initiating
variable (HSL in this case)

> As HSL increases by one unit, CC increases by 0.696 (the direct effect of
HSL on CC)

> Then, as CCincreases by 0.696, HSL increases by 0.393 (the direct effect of CC
on MSE)

Indirectly, MSE increases by 0.253 (the multiplication of the two direct
effects) for every one unit increase of HSL
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Hypothesis Tests for Indirect Effects

- Of importance in the understanding of mediating variables is the

test of hypothesis for the indirect effect

> If the indirect effect (the product of the two direct effects) is significant,
then the third variable is said to be a mediator

- Hypothesis tests for the indirect effect have become a hot topic in

recent years
> We will discuss this more in the mediation lecture later in class

> For now, we will stick with the test of the indirect effect given to use by
Mplus using the “MODEL INDIRECT” command

+ This test uses a delta-method transformation (relevant if you are publishing in
this area)

MODEL INDIRECT:
mse IND hsl;
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Total Effects

. Finally, of concern in mediational models and general path models
is the total effect of one variable on another

. The total effect is the sum of all direct and indirect effects

> It represents the total increase in the outcome variable for a one-unit
increase in the initiating variable

- In our example, the total effect of High School Experience (HSL) on
Math Self-Efficacy (MSE) is the sum of the direct and indirect
effects:

BME + RS BMSE = 4159 + 0.696*0.363 = 4.412

- This means that for every one-unit increase in HSL, the total

increase in MSE is 4.412

> The direct effect represents the increase holding CC constant, which is
implausible in this model
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Mplus Output

- The MODEL INDIRECT command provides the total and indirect

effects between terminating and originating variables

> |f the STANDARDIZE command is included in the OUTPUT section, the
standardized versions of these effects are also given (the increase in
standard deviations)

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTIS

SIDYX Standardization
Two-Tailed

Estimate S.E. Est./S.E. P-Value Two-Tailed

Estimate S.E. Est./S.E. P-Value
Effects from HSL to MSE
Effects from HSL to MSE
Total 4.412 0.443 9.969 0.000
Total indirect 0.253 0.109 2.326 0.020  Total 0.490 0.044 11.097 0.000
Total indirect 0.028 0.012 2.360 0.018

Specific indirect )
Specific indirect

MSE MSE

CcC cc

HSL 0.253 0.109 2.326 0.020 HSL 0.028 0.012 2.360 0.018
Direct Direct

MSE MSE

HSL 4.159 0.438 9.492 0.000 H5L 0.462 0.045 10.336 0.000

- Here, our output suggest the indirect effect is significant, so
we say that CC mediates the relationship between HSL
and MSE
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Path Analysis in Matrix Form

Our path model simultaneous equations were
CC; = + BES HSL; + ef*
MSE; = BJ"*F + /3 WECC + ﬁ,@”SSEHSLL + eM5F
> p =2 endogenous variables
> q =1 exogenous variable

Alternatively, we could rephrase this in matrix form:
yi =a+By; +I'x; +{;

Where
[HSL;] (matrix of size g x 1 containing observed exogenous variables)
’MSE (matrix of size p x 1 containing observed endogenous variables)
Then:
a = MSE] (matrix of size p x 1 containing intercepts for endogenous variables)
0
B=|,use 0 (a p x p matrix of coefficients relating the endogenous variables to themselves)
Pcc
H e
I' = ZgLE (matrix of size p x q relating exogenous variables to endogenous variable(s))
|PHSL |
" CC 3
{; = 1\255 ~ N5 (0,W¥) (where W is the p x p residual covariance matrix)
€

Here, W will be diagonal (no covariance) as we do not have any more degrees of freedom
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Rebuilding our Equations From Matrices

To elaborate on how we get back to our path model equations from
matrix form:
yl —a+Byl+I‘xl+(l

] ” Biist [HSL;] + e
MSE [;MSE C’Y’CSE 0 MSE BMSE eMSE

[ ’ ] BstHSL:| [ e

MSE MSE ,B%SECC SEHSL elMSE
] +ﬁ,§§LHSL +eCC

MSE IBMSE _|_ SECC +,BHSEHSL eMSE

CC; = ,BHSLHSL + el¢
MSE; = ﬁ{)‘“E + ﬁc MSECC, + BMSEHSL; + e}
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Rebuilding our Equations From Matrices

—..and Estimates
To elaborate on how we get back to our path model equations from
matrix form:
yl —a+Byl+I‘xl+(l
BisL eCC
MSE ] [ ] [HSL;] + l ]
MSE ] [lgMSE] Bee 0 MSE II-\I/I.S:S‘LE eMSE

cC
6.904 0696 e
’MSE] [49.313] [0 363 0 [MSE] [4 159 HSL] +[ MSE]

CC; = 6.904 + 0.696HSL; + ef©
MSE; = 49.313 + 0.636CC; + 4.159HSL; + e°F

cC

e
Where [ AZSE] ~ N, (O,‘IJ =
e.

l
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Path Analysis in Matrix Form

The equations from the previous slide are called the structural form
of the path model

Another form that exists in literature is the reduced form, where all

endogenous variables are on the left-hand side
yi=a+ By, +T'x; +{; &
yi—-Byi=a+Ix;+( <
I-B)y,=a+Tx;+; <

y;=I-B)la+(A-B)Irx; + 1—B)™{; &
yi =g+ yx; + G
Where {; ~ N,,(0,¥*)

The reduced form is not as frequently used in practice, but does
arise in some research areas and in identification (discussed shortly)
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Path Analysis with Matrices

. Although not explained by our model, we could state that the mean
vector of exogenous variables was:

iy = lugse]

. Likewise, we can state that the covariance matrix of the exogenous
variables is

P = [UPZISL]

. We will use these terms in our matrix-version of the model
predicted mean and covariance matrix

PSYC 943: Lectures #3 and 4
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Model Predicted Mean Vector and
. ) Matri

The unconditional mean of the endogenous variables is:
f,=0-B)la+1-B) Iy,

The covariance matrix of the exogenous and endogenous variables
is then:
Yonly Y with X]

Zyx = XwithY Xonly
[(1 B 1(rer’ +¥)1-B)7 ' (I-B)re
&r’(1-B)7 " 0

The point: that model specifications have direct implications for the
parameters of the multivariate
normal distribution
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Matching Matrices with Results

- To more specifically link our results to the matrices from the
previous page:

Name Matrix Model Estimates
Residual Covariance Matrix P [33.797 ]
103.128
Regression Weights of Exogenous onto r 0.696
Endogenous 4.159
Covariance Matrix of Exogenous Variables Lo [1.743]
Mean Vector of Exogenous Variables U, [4.912]
Vector of Endogenous Variable Intercepts a 6.904
49.313
Matrix of Endogenous Regression Weights B [ ]
0. 363 O
Inverse matrix used in calculations 1-B)1 [
—0.363 1
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Model Predicted Mean Vector and
- ) Matri

- The estimated conditional mean of the endogenous variables is:

Model Estimated Means/Intercepts/Thresholds Residuals for Means/Intercepts/Thresholds
cC MSE HSL cC MSE HSL
1 10.322 73.495 4.912 1 0.000 0.000 0.000

> These values correspond exactly (saturated model)

- The estimated covariance matrix of the exogenous and endogenous
variables is:

Model Estimated Covariances/Correlations/Residual Correlations

cc MSE HSL
CC 34.641
MSE 17.629 141.526
HSL 1.213 7.692 1.743

- These are mostly exact — small differences

Residuals for Covariances/Correlations/Residual Correlations

cC MSE HSL
cc 0.000
MSE -0.002 -0.018
HSL 0.000 -0.001 0.000
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IDENTIFICATION OF PATH MODELS



Path Model Identification

- You may have noticed that unlike the multivariate regression

analysis, our path model did not have a covariance between the
residuals of the endogenous variables

> The reason for this is that we would have one more parameter than we
have degrees of freedom - an unidentified model

- See the error from Mplus when trying to add this parameter:

MAXTMUM LCG-LIKELIHCCD VALUE FOR THE UNRESTRICTED (H1) MCDEL IS -2713.834

THE DEGREES OF FREEDCM FOR THIS MODEL ARE NEGATIVE. THE MODEL IS NCT
IDENTIFIED. NO CHI-SQUARE TEST IS AVAILABLE. CHECK YOUR MODEL.

THE MODEL ESTIMATION TERMINATED NORMALLY

THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES COULD NOT BE

COMPUTED. THE MODEL MAY NOT BE IDENTIFIED. CHECK YOUR MODEL.
PROBLEM INVOLVING PARAMETER 9.

THE CONDITICN NUMBER IS -0.335C-10.

PSYC 943: Lectures #3 and 4
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Basic Path Model + Residual Covariance

. 22
" OHsL

L ———> Direct Effect
ng:/lsi::ool - Residual (Endogenous) Variance
a
) <« = » Residual (Endogenous) Covariance
Experience i
-------- » Exogenous Variances
Krnnnns » Exogenous Covariances
cC
HSL 2
/Ue:MSE
7
4
Mathematics _ ,
: This model posits that CC
Self-Efficacy ,
A causes MSE, but, their
/ covariance is also
Pad unexplained — not
College Math «--" = Oe.ccMSE plausible
Experience <
~
N g2
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Identification of Path Models

- Model identification is necessary for statistical models to have
meaningful results

> From the error on the previous slide, we essentially had too many unknown
values (parameters) and not enough places to put the parameters in the model

. For path models, identification can be a very difficult thing to understand
> We will stick to the basics here

- Because of their unique structure, path models must have identification in
two ways:

> “Globally” —so that the total number of parameters does not exceed the total
number of means, variances, and covariances of the endogenous and
exogenous variables

> “Locally” —so that each individual equation is identified

. ldentification is guaranteed if a model is both “globally” and
“locally” identified
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Global Identification: “T-rule”

- A necessary but not sufficient condition for a path models is that of
having equal to or fewer model parameters than there are
distributional parameters

« As the path models we discuss assume the multivariate normal
distribution, we have two matrices of parameters with which
to work

> Distributional parameters: the elements of the mean vector and (or more
precisely) the covariance matrix

- For the MVN, the so-called T-rule states that a model must have
equal to or fewer parameters than the unique elements of the
covariance matrix of all endogenous and exogenous variables (the
sum of all variables in the analysis)

» Lets = p + g, the total of all endogenous (p) and exogenous (q) variables
s(s+1)

> Then the total unigue elements are
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More on the “T-rule”

- The classical definition of the “T-rule” counts the following entities
as model parameters:

Direct effects (regression slopes)

Residual variances

Residual covariances

Exogenous variances

Exogenous covariances

VvV V ¥V V V

« Missing from this list are:
> The set of exogenous variable means
> The set of intercepts for endogenous variables

- Each of the missing entities are part of the Mplus likelihood
function, but are considered “saturated” so no additional
parameters can be added

> These do not enter into the equation for the covariance matrix of the
endogenous and exogenous variables

PSYC 943: Lectures #3 and 4
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Global Identification of Our Examples

Model Endogenous Exogenous Unique Model Identification
Variables (p) Variables (q) | Covariance Parameters Status
Matrix (excluding Exo.
Elements Var. means)
Linear 1 2 3"3+1) 6 6: 0551, Onsce, | Just Identified
Regression 2 - ole, BhsE:
(slide 14) e, 0 pERE
Multivariate 2 2 4*(4+ 1) 10: 0451, OnsLcer | Just Identified
Regression Full 2 oéc, Bhst
Model (slide =10 BECRE, BHSE
USE 2
39) pec »O¢.PERF>
Oc.USE» Oe:PERF,USE
Multivariate 2 2 4*(4+1) 9: GfisL OnsL,ccs Over-ldentified
Regression 2 oéc, BhsL
Reduced Model =10 BEERT, Bhst
. USE 2
(slide 49) cc 'zae:PERF'
Oe.USE

Path Model 2 1 3"+ 1) . 6:07 L, Just Identified
(slide 71) 2 o 0é.ccr O8-MSE

cC MSE pMSE

HSL»FCC »FHSL
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T-rule Identification Status

. Just-ldentified: number of covariances = number of model
parameters
> Necessary for identification, but no model fit indices available

. Over-ldentified: number of covariances > number of model
parameters
> Necessary for identification; model fit indices available

. Under-ldentified: number of covariances < number of model
parameters

> Model is NOT IDENTIFIED: No results available
> Do not pass go...do not collect $200
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Moving from Global to Local Identification: Types of Path
—Madels

- For most research designs, global identification will suffice

> For the most part, recursive path models will be identified if the “t-rule” is
met

- Arecursive path model is one where the direct effects are
unidirectional — no feedback loops
> Our path model is an example of a recursive path model

- A non-recursive path model is one where the direct effects are
bidirectional for some variables — feedback loops are present

> Difficult to envision using cross-sectional data
> More frequent in econometrics

> Different estimation algorithms used (see the next few slides)
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Basic Path Model: Recursive

2

A OHsL,
: — Direct Effect
High School
Math — = 5 Residual (Endogenous)

Experience Variance

"""" > Exogenous Variances

s CLLLLE > Exogenous Covariances
HSL

O-eZ:MSE
7/
7/
| 24

Mathematics
Self-Efficacy

College Math &7
Experience
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A Non-Recursive Path Model

. 2 . : : :
.*" OHsL This model posits a feedback relationship between

) L Math Self-Efficacy and College Math Experience
High School
Math Global Identification is
Experience 5 met: 6 unigue covariance
Oc:MSE elements; 6 model
/7 parameters
4

Mathematics

Self-Efficacy

CC; = B5¢ + Bis HSL + Bifse + ef
MSE; = By"F + Bt " CC; + e]™"

cC
HSL

—_— Direct Effect

— = = Residual (Endogenous)

_ Variance
College Math &7 | seeeeees > Exogenous Variances
Experience &rorene >

Exogenous Covariances
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Mplus Estimates

MODEL RESULTS

Estimate

cC ON

HSL 30.536

MSE -6.764
MSE ON

CcC 6.335
Means

HSL 4.912
Intercepts

CcC 357.406

MSE 8.103
Variances

HSL 1.743
Residual Variances

CcC 5121.175

MSE 1308.504
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S.E. Est./S.E.

48.227 0.633

Two-Tailed
P-Value

0.527

Mplus will estimate this
model; however, estimates
indicate some type of
problem in the analysis

"
0 w
w0 N
o
m N
= O
w W
-]

-]
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Step #2: Local Identification

If a model is globally identified (just- or over-identified), then the

next step is to determine if it is locally identified
> Mostly an issue for non-recursive models

Local identification is verified by satisfying the rank condition

The rank condition starts with the augmented matrix:
A=[0I-B) | TI]

For the previous model, this would be:

1 __pCC cC
MSE PHSL

A =
_pUSE 1 0
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Rank Condition, Continued

- Then, remove the non-zero elements of matrix A
cC

Ay = [,BHSL]
0
- The places where non-zeros occur correspond to the specific

equations in the model
» There is only one here —in the first row of A}
» Our first hint that local identification is not met

- The row rank (roughly- the number of rows that have some number
other than zero in them) of the sub-matrices must be equal to or

greater than the number of exogenous variables minus 1 (p — 1)
» For equation 1,therankis1 (andp —1 = 1), so it is identified
> For equation 2, the rank is 0 (no matrix left), so it is not identified

- Local non-identification was the cause of Mplus issues
> Mplus still attempted to estimate the model and did not return an error
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Guiding Identification Principals

. If you have a recursive model (no feedback loops) make sure:
> # of model parameters < # of unigue covariance elements

> No undirected paths (residual covariance) connecting variables with direct
effects

+ Does not make sense to say one variable causes another yet their correlation is
unexplained

. If you have a non-recursive model (feedback loops):

> Think critically about whether such a model can be investigated by your
data (cross-sectional versus longitudinal)

> Attempt to determine if the model meets the rank condition

> Investigate model output for irregularities (very large effects relative to the
scale of the variables
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THE FINAL PATH MODEL:
PUTTING IT ALL TOGETHER



A Path Model of Path Analysis Steps

1. Formulate
Hypothesized
Model

2. Is Model No Kick the —
|dentified? Computer
Yes
3. Estimate
Model No
No
4. Did algorith Yes . Does Ves
converge? Are Model Have 6. Interpret
estimates stable? ood Fit? Results
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Our Destination: Overall Path Model

L/ < Based on the theory described in the introduction to Pajares &
, Miller (1994), the following model was hypothesized — use this
High School diagram to build your knowledge of path models /
Math / , /7
Experience (HSL) —— L
/ Mathematics
4 Performance
Mathematics (PERF)
Self-Concept 7
Gender (MSC) /
(G) %
, / Perceived
e Usefulness (USE)
Mathematics

Self-Efficacy
(MSE)

-3 Direct Effect

College Math &7

Experience (CC) — = => Residual Variance
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Path Model Setup — Questions for the Analysis

- How many variables are in our model? 7
> Gender, HSL, CC, MSC, MSE, PERF, and USE

- How many variables are endogenous? 6
> HSL, CC, MSC, MSE, PERF, and USE

- How many variables are exogenous? 1
> Gender

. Isthe model recursive or non-recursive?
> Recursive — no feedback loops present

PSYC 943: Lectures #3 and 4
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Path Model Setup — Questions for the Analysis

. Isthe model identified?

> Check the t-rule first (and only as it is recursive)
> How many covariance terms are there in the all-variable matrix?
7(7+ 1)
> = 28
> How many model parameters are to be estimated?
+ 12 direct paths
6 residual variances
1 variance of the exogenous variable
(19 model parameters for the covariance matrix)

6 endogenous variable intercepts
— Not relevant for t-rule identification, but counted in Mplus

- The model is over-identified
> 28 total variance/covariances but 19 model parameters
> We can use Mplus to run our analysis

L 4

L 4

L 4

L 4
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Overall Hypothesized Path Model: Equation Form

- The path model from can be re-expressed in the following 6
endogenous variable regression equations:

L HSL; = BYSt + BUSLG, + et

2 CC =pBSC+BLS HSL; + efC

5 MSE; = BMSE + BMSEG; + BNSEHSL, + BMSECC; + eM°F

¢ MSC; = BYSC + BHSEHSL; + BMCCC, + BMSEMSE; + e]'°¢
5. USE; = By°F + BusgMSE; + e/°"

6 PERF; = BYERF 4+ BRERFUSL; + BEERFMSE; + BLERF MSC; + e[ ERF
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Overall Path Model: Matrix Form

- The general path model equation is:
yi =a+By; +I'x; +(;
- The vectors related to endogenous variables for an observation i:

Intercepts Residuals
Data -
— - pHSL - - oHSL -
HSL Occ lcc
CCi 0 €
MSE MSE
o MSE; o = | PO 7, = e;
Yi=| pmsc. "X~ | pmsc [78i = | _msc
l 0 ei
USE; élSE o USE
l
-PERFi— PERF PERF
LP0 . | €; 1
- The vector of exogenous variables for an observation i:
Data

x; = |Gi]

PSYC 943: Lectures #3 and 4 114



Overall Path Model: Matrix Form

The general path model equation is:

yi =a+By; +I'x; +(;
The matrix relating endogenous variables to endogenous variables
(with labels and y; for attempted clarity) is:

HSL cC  MsE MSC  USE PERF
gc 0 0 0 0 0 “HSL, -
£& 0 0 0 0 0 ce,

b ns.  Becw 0 0 0 Of |MSE
WE o BEEC BMss 0 0 o YT Ms
0 0 Yk 0 0 0 USE;

BREET 0 B BEEET o ol LPERE
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Overall Path Model: Matrix Form

- The general path model equation is:
yi =a+By; +I'x; +(;

The matrix relating exogenous variables to endogenous variables
(with labels and x; for attempted clarity) is:

" RHSL7 HSL
G HSL
0 cC
MSE
r =|PéG (MSE - — [G;]
O l l
MSC
0 USE
L 0

PERF
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Overall Path Model: Matrix Form

The general path model equation is:
yi =a+By; +I'x; +{;

The assumption about the residuals is that:

e ] CEE 0 0 0 0
efc 0 02, O 0 0 0
MSE 2
{; = eiMSC ~ Ng(0, %) where ¥ = 0 0 Gemse 20 0 0
e; 0 0 0 Op-MSC 0 0
eUSE 0 0 0 0  olyse 0
| ePERF 0 0 0 0 0  G2pprF.

Finally, the covariance matrix of the exogenous variables is:
® = [0¢]

From these matrices, you can construct the model-implied covariance matrix for all
variables (X, )
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Path Model Estimation in Mplus

- Having (1) constructed our model and (2) verified it was identified
using the t-rule and that it is a recursive model, the next step is to
(3) estimate the model with Mplus

MODEL:
hsl ON gender:;
cc ON hsl:;
mse ON hsl gender cc:
msc ON hsl cc mse;
use ON mse;
perf ON mse msc hsl;

perf WITH use@0;

OUTPUT:
STANDARDIZED MODINDICES (ALL 0) RESIDUAL;

« NOTE: Gender is not listed under the model statement
> It is a categorical variable (dummy coded 0/1)

- |If added, Mplus treats it as continuous and plugs it into the MVN
log-likelihood

> This is a big no-no as it cannot be MVN
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Model Fit Evaluation

- First, we check convergence:
THE MODEL ESTIMATION TERMINATED NORMALLY

> Mplus’ algorithm converged

- Second, we check for abnormally large standard errors
> None too big, relative to the size of the parameter
> Indicates identified model

- Third, we look at the model fit statistics:
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Model Fit Statistics

Chi-Square Test of Model Fict

This is a likelihood ratio (deviance) test

Valu 58.913~ . .

Degrees of Freedom ° comparing our model (H,) with the

P-Value 0.0000 H

Scaling Correction Factor > 000y saturated model — The saturated model fits
for MLR

much better (but that is typical).

RMSEA (Root Mean Square Error Of Approximation)

o0 Peseent C.1. 022, ..s7The RMSEA estimate is 0.126. Good fit is
Probability RMSEA <= .05 0.000 Considered 005 or IeSS.

CFI/TLI
gii 2909 The CFl estimate is .918 and the TLI is .809.

Good fit is considered 0.95 or higher.

Chi-Square Test of Model Fit for the Baseline Model

This compares the independence model (H,) to

Value 629.882 . .
Degrees of Freedom 21 the saturated model (H,) — it indicates that there
P-Value 0.0000

is significant covariance between variables
SRMR (Standardized Root Mean Square Residual) . . . .
The average standardized residual covariance is

0.056. Good fit is less than 0.05.
Based on the model fit statistics, we can conclude that our model does not do a good

job of approximating the covariance matrix — so we cannot make inferences with these
results (biased standard errors and effects may occur)

Value 0.056
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Model Modification

- Now that we have concluded that our model fit is poor we must

modify the model to make the fit better

> Our modifications are purely statistical — which draws into question their

generalizability beyond this sample

- Generally, model modification should be quided

by theory

> However, we can inspect the normalized residual covariance matrix (like z-

scores) to see where our biggest misfit occurs

Normalized Residuals for Covariances/Correlations/Residual Correlations

HSL CC MSE MSC USE
HSL 0.039%
cC -0.034 0.046
MSE 0.085 -0.377 -0.086
MSC 0.105 -0.161 -0.038 -
USE 0.559 0.720 -0.110 0.041
PERF 0.006 = — -0.071 . = -0.159
GENDER 0.091 -0.422 ~1.452 -0.027
Normalized Residuals for Covariances/Correlations/Residual Correlations
PERF GENDER
PERF -0.0786
GENDER -1.522 0.000
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covariances are bigger
than +/-1.96:
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Our Destination: Overall Path Model

L/ < The largest normalized covariances suggest relationships that may
High School be present that are not being modeled: ,
Math / , /7
Experience (HSL) —— L
/ T T~ Mathematics
4 Performance
., / Mathematics .. QRF)
N\ Self-Concept 7
Gender (MSC) '~
(G) /4 ‘.
~ .. / Perceived
. 1z 7, ~ Usefulness (USE)
\ Mathematics ..
g Self-Efficacy - .
\ (MSE)
" ;‘ ~ For these we could:
\ College Math |& \ e Add a direct effect between G and CC
. Experience (CC) . * Addadirect effect between MSC and USE OR Add a residual
. ~ - * covariance between MSC and USE

* .-/

—
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Modification Indices: More Help for Fit

- As we used Maximum Likelihood to estimate our model, another
useful feature is that of the modification indices

> Modification indices are actually Score (LaGrangian Multiplier) tests that
attempt to suggest the change in the log-likelihood for adding a given model
parameter (larger values indicate a better fit for adding the parameter)

MODEL MODIFICATION INDICEﬂ

Minimum M.I. value for printing the modification index 0.000
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M.I. E.P.C. Std E.P.C. Std¥X E.P.C. WITH Statemencs
ON Statements
cc WITH HSL 6.480 15.132 15.132 1.974
—— o cC 6.480 0.447 0.447 1.992 MSC WITH HSL 1.268 14.378 14.378 0.914
S, ON MSE 6. 495 1.139 1.139 10.270 USE WITH HSL 0.362 0.817 0.817 0.040
HSL ON MSC 4.093 0.165 0.165 2.14€ USE WITH CC 0.635 4,253 4,253 0.047
HSL ON USE 0.374 0.003 0.003 0.042 l—iﬁi—iﬂﬂiﬁi - i i i
HSL ON PERF 5.293 1.228 1.228 2.763 e e - uEaCwL] el Bak el Bkl eIt
cc ON MSE 6.477 -0.410 -0.410 -0.829 PERF WITH HSL 2.219 3.213 3.213 1.251
cc ON MSC 6.479 -0.568 -0.568 -1.654 PERF WITH CC 0.075 0.207 0.207 0.018
cc ON USE 0.481 0.016 0.016 0.042 PERF WITH MSE 0.751 3.528 3.528 0.183
cc ON PERF 0.059 -0.047 -0.047 -0.024 PERF WITH MSC 0.075 -1.567 -1.567 -0.067
cc ON GENDER 6.478 -1.756 -1.756 -0.142 PERF WITH USE 2.573 -2.994 -2.994 -0.100
MSE ON MSC 1.268 0.266 0.266 0.383 GENDER WITH CC 6.479 -0.397 -0.397 -0.144
MSE ON USE 0.808 -0.060 -0.060 -0.080 GENDER  WITH MSC 1.269 -0.378 -0.378 -0.067
- — — —— — — GENDER  WITH USE 0.004 0.025 0.025 0.003
M3c ON USE 1528 0.233 0.232 0.2705 GENDER WITH PERF 2.219 -0.084 -0.084 -0.091
MSC ON PERF 0.075 -0.414 -0.414 -0.072
MSC ON GENDER 1.269 -1.669 -1.669 -0.046
USE ON HSL 0.374 0.482 0.482 0.040
IS AN~ N _T78C [a 141 [a] 41 n_Nc
l USE ON MSC 40.043 0.451 0.451 0.490
USE ON PERE 0.002 0.019 0.019 0.004
PERF ON cC 0.075 0.006 0.006 0.012
PERF ON USE 2.573 -0.013 -0.013 -0.067
PERF ON GENDER 2.219 -0.373 -0.373 -0.060
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Modification Indices Results

The modification indices have three large values:
> Adirect effect predicting MSC from USE
> A direct effect predicting USE from MSC
» A residual covariance between USE and MSC

- Note: the Ml value is -2 times the change in the log-likelihood and the EPC
is the expected parameter value

> The Ml is like a 1 DF Chi-Square Deviance test
+ Values greater than 3.84 are likely to be significant changes in the log-likelihood

- Because all three happen for the same variable, we can only
choose one
> This is where theory would help us decide

- As we do not know theory, we will choose to add a residual covariance
between USE and MSC

> Their covariance is unexplained by the model — not a great theoretical
statement (but will allow us to make inferences if the model fits)

> MI=41.529
» EPC=70.912
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Modified Model

-’
L7
High School ,
Math / , Ve
Experience (HSL) . J 24
/ Mathematics
v Performance
Mathematics (PERF)
Gend Self-Concept ~
ender
(MSC) N
(G)

P \
7 \
2 \

Mathematics \\
Self-Efficacy \
(MSE) \ //
774
College Math &7 Perceived

Experience (CC) Usefulness (USE)
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Assessing Model fit of the Modified Model

- Now we must start over with our path model decision tree
> The model is identified (now 20 parameters < 28 covariances)
> Mplus estimation converged; Standard errors look acceptable

. Model fit statistics:

Chi-Square Test of Model Fit

Value 14.393*
Degrees of Freedom 8 . .
P-Value 0.0722  The comparison with the saturated model
Scaling Correction Factor 1.0302 . . .
for MLR suggests our model fits statistically
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.048 1 1 1 1 1
e et 2% e, The RMSEA is 0.048, which indicates good fit
Probability RMSEA <= .05 0.483
CFI/TLI
e s aso  The CFland TLI both indicate good fit
TLI 0.972

SRMR (Standardized Root Mean Square Residual)

The SRMR also indicates good fit

Value 0.035

Therefore, we can conclude the model adequately approximates the covariance
matrix — meaning we can now inspect our model parameters...but first, let’s check

our residual covariances and modification indices

PSYC 943: Lectures #3 and 4
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Normalized Residual Covariances

with Gender
> Given the number of covariances we have, this is likely okay

Normalized Residuals for Covariances/Correlations/Residual Correlations

HSL cC MSE MSC USE
HSL 0.017
cC 0.037 0.034
MSE 0.020 -0.356 -0.103
MSC 0.154 0.050 -0.104 0.054
USE 0.638 0.771 0.064 0.337 0.020
PERF 0.062 0.018 -0.113 -0.003 -0.990
GENDER 0.051 -2.568 -0.359% -1.456 0.026
Normalized Residuals for Covariances/Correlations/Residual Correlations
PERF GENDER
PERF -0.062
GENDER -1.499 0.000
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Only one normalized residual covariance is bigger than +/- 1.96: CC
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Modification Indices

ON Statements

HSL
HSL
HSL
HSL
HSL
cc
cC
cc
cc
cc
MSE
MSE
MSE
MSC
MSC
USE
USE
USE
USE
USE
PERF
PERF
PERF

ON
CN
ON
ON
CN
CN
ON
CN
CN
ON
ON
ON
ON
CN
ON
ON
CN
ON
ON
CN
CON
ON
CN

meaningful)
ccC 6.503
MSE 6.427
MSC 1.355
USE 0.479
PERF 4.274
MSE 6.518
MSC 0.012
USE 0.423
PERF 0.022
GENDER 6.501
MSC 0.023
USE 0.904
PERF 0.601
PERF 1.907
GENDER 1.817
HSL 0.480
cc 0.710
MSC 1.148
PERF 2.491
GENDER 0.295
cc 0.083
USE 3.114
GENDER 1.923
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.441
.117
.022
.004
773
.429
.008
.015
.029
.788
.0286
.064
.831
.150
.887
.554
.135
.222
.732
. 947
.0086
.015
.350

.441
.117
.022
.004
773
.429
.008
.015
.029
.788
.026
.064
.831
.150
.887
.554
.135
.222
.732
. 947
.006
.015
.350

.965
.068
.289
.048
. 737
.869
.023
.040
.015
.144
.038
.085
.207
.199
.052
.046
.050
.241
.138
.028
.013
.081
.0586

WITH Statements

cc

MSC
MSC
USE
USE
USE
PERF
PERF
PERF
PERF
PERF
GENDER
GENDER
GENDER
GENDER

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

HSL
HSL
MSE
HSL
cc
MSE
HSL
cc
MSE
MSC
USE
cc
MSC
USE
PERF

HORFNMWEKEOOKKEOORPRFE®M

.505
.B24
.815
.404
.556
.288
.924
.083
.580
.903
.056
.501
.817
.295
.923

.968
.821
.019
.877
.039
.046
.933
.219
.159
.324
.087
.acks
.427
214
.079

.968
.821
.019
.877
.039
.046
.933
.219
.159
.324
. 087
.404
. 427
.214
.079

OOk OO0 O KPRk

[} [ |
000000

Now, no modification indices are glaringly large, although some are
bigger than 3.84

> We discard these as our model now fits (and adding them may not be

.949
.004
.373
.043
.045
.118
-147
.019
.165
.186
.103
.146
.075
.029
.086
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More on Modification Indices

.« Recall from our original model that we received the following
modification index values for the residual covariance between MSC
and USE

> MI=41.529
> EPC=70.912

. The estimated residual covariance between MSC and USE in the
modified model is: 70.247

PSYC 943: Lectures #3 and 4 129



Model Parameter Investigation

MCDEL RESULTS

Two-Tailed

Estimat S.E. Est./S.E. P-Valu .
Treers } e There are two direct effects that are

HSL CN . . e .

GENDER 0.208 0.154 1.348 0.178 non-SIgnlflcant'
cC CN

HSL 0.662 0.247 2.686 0.007 é—ISL = 0.208

PERF

MSE CN e 0.153

HSL 4,138 0.4086 10.203 0.000 HSL

GENDER 4,168 1.160 3.5983 0.000

cC 0.393 0.105 3.723 0.000 .

We can leave these in the model, but

MSC CN

ssr 5 aas o ses s 7ee 5 000 the overall path model seems to

C 0.519 0.117 4,433 0.000 Suggest they are not needed

MSE 0.736 0.0686 11.120 0.000
USE ON . .

MSE 0.277 0.073 3.803 0.000 So, | will remove them and re-estimate
PERE on the model

MSE 0.139 0.013 10.700 0.000

MSC 0.037 0.009% 4,147 0.000

HSL 0.153 0.107 1.432 0.152
PERF WITH

USE 0.000 0.000 999,000 999,000
MSC WITH

USE 70.247 10.358 6.782 0.000
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Modified Model #2

High School ,
I\/Iath / , Ve
Experience (HSL) / L
/ Mathematics
Vv
Performance
Mathematics (PERF)
Self-Concept ~
Gender (MSC) .
(G) \
e \
2 \
Mathematics \\
Self-Efficacy \
(MSE) Vo, /
774
College Math &7 Perceived

Experience (CC) Usefulness (USE)
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Model #2: Model Fit Results

- We have: an identified model, a converged algorithm, and stable

standard errors, so model fit should be inspected
> Next —inspect model fit
> Model fit seems to not be as good as we would think

Chi-Square Test of Model Fit RMSEA (Root Mean Square Error Of Approximation)
Value 18.293% Estimate 0.049
Deg:ees of Freedom 10 90 Percent C.I. 0.000 0.083
P-Value 0.0502 Probability RMSEA <= .05 0.477
Scaling Correction Factor 1.0156
for MLR

- Again, the largest normalized residual covariance is that of GENDER

and CC

> Ml for direct effect of GENDER on CC is 6.494, indicating that adding this
parameter may improve model fit

- So, we will now add a direct effect of Gender on CC
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Modified Model #3

High School ,
I\/Iath / , Ve
Experience (HSL) / L
/ Mathematics
Vv
Performance
Mathematics (PERF)
Self-Concept ~
Gender (MSC) .
(G) \
e \
2 \
Mathematics \\
Self-Efficacy \
(MSE) Vo, /
774
College Math &7 Perceived

Experience (CC) Usefulness (USE)
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Model #3: Model Fit Results

- We have: an identified model, a converged algorithm, and stable
standard errors, so model fit should be inspected
> Next —inspect model fit
> Model fit seems to be very good

Chi-Square Test of Model Fit
RMSEA (Root Mean Square Error Of Approximation)

Value 11.616~*

Degrees of Freedom g Estimate 0.029
P-Value 0.2358 90 Percent C.I. 0.000 0.070
Scaling Correction Factor 1.0235 Probability RMSEA <= .05 0.757

for MLR
- No normalized residual covariances are larger than +/- 1.96 — so we
appear to have good fit

- No Modification Indices are larger than 3.84
> We will leave this model as-is and interpret the results
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Model #3 Parameter Interpretation

Interpret each of these parameters as you would in regression:

MODEL RESULTS

A one-unit increase in
HSL brings about a .707

c
(L

HSL

unit increase in CC, holding GENDER

gender constant HSE

HSL

GENDER

cec
e

MSC
HSL
cC
MSE

USE
MSE

PERF
MSE
MSC

PERF
USE

MSC
USE
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Estimate

ON
0.707
-1.779

ON
4,158
4,283
0.398

ON
2.831
0.528
0.733

ON
0.276

ON
0.145
0.041

WITH
0.000
WITH

70.596

5.

E.

.593
.116
.066

.073

.000

10.376

Est./S.E.

.879

.653

10.305

9499.

.796

.775
.545
.076

1.425
.671

000

Two-Tailed

P-Value

0.
.008

999.

004

.000
.000
.000

.000
.000
.000

.000

.000
.000

000

.000

135



Model #3 Standardized Parameter Estimates

- We can interpret the STDYX standardized parameter estimates for

all variables except gender

> Itis not continuous so SD of gender does not make sense

STDYX Standardization

« A 1-SDincrease in HSL
means CC increases by . N
0.158 SD e 01

Estimate

GENDER -0.143
MSE ON

HSL 0.466

GENDER 0.172

cc 0.199
MSC ON

HSL 0.220

cc 0.183

MSE 0 8
USE ON

MSE 0.206
PERF ON

MSE 0.578

MSC 0.234
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.054
.053

.042
.045
.052

.045
.040
.042

.054

.046
.049

11.032

.792
. 795

.851
. 587

.136

. 680

. 758

Two-Tailed
P-Value

0.004
0.007

0.000
0.000
0.000

0.000
0.000
0.000

0.000

0.000
0.000
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Model #3 STDY Interpretation

- The STDY standardization does not standardize by the SD of the X

variable
> Soit’s interpretation makes sense for Gender (1 = male)

Here, males have an
average CC (intercept) STDY Standardization

Two-Tailed

that |S ‘.301 SD Iower Estimate S.E. Est./S.E. P-Value
h f | cc ON
t an ema es HSL 0.158 0.054 2.911 0.004
GENDER -0.301 0.111 -2.719 0.007
MSE CN
HSL 0.466 0.042 11.032 0.000
GENDER 0.363 0.095 3.800 0.000
CC 0.199 0.052 3.795 0.000
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Overall Model Interpretation

- High School Experience and Gender are significant predictors of

College Experience
> Men lower than women in College Experience
> More High School Experience means more College Experience

- High School Experience, College Experience, and Gender are

significant predictors of Math Self-Efficacy
> More High School and College Experience means higher Math Self-Efficacy
> Men have higher Math Self-Efficacy than Women
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Overall Model Interpretation, Continued

High School Experience, College Experience, and Math Self-Efficacy
are significant predictors of Math Self-Concept

> More High School and College Experience and higher Math Self-Efficacy
mean higher Math Self-Concept

Higher Math Self-Efficacy means significantly higher Perceived
Usefulness

Higher Math Self-Efficacy and Math Self-Concept result in higher
Math Performance scores

Math Self-Concept and Perceived Usefulness have a significant
residual covariance
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Model Interpretation: Explained Variability

- The R? for each endogenous variable:
» CC—-0.046

MSE — 0.306

MSC - 0.509

USE — 0.042

PERF —0.568

vV V V V

- Note how college experience and perceived usefulness both have
low percentages of variance accounted for by the model

> We could have increased the R? for USE by adding the direct path between
MSC and USE instead of the residual covariance
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Looking at the Indirect Effect of
_Gender on Performance

- Gender had a significant indirect effect on performance:

ICTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value
Effects from GENDER to PERF
Total 0.586 0.212 2.771 0.006
Total indirect 0.586 0.212 2.771 0.006

- This means that overall, men have a PERF score that is .586 higher
than women (or .198 SD of PERF from below)

STDY Standardization

Two-Tailed
Estimate S.E. Est./S.E. P-Value

Effects from GENDER to PERF
Total 0.19
Total indirect 0.19

m
o O
o O
] =)
R
NN
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ADDITIONAL MODELING
CONSIDERATIONS IN PATH ANALYSIS



Additional Modeling Considerations

- The path analysis we just ran was meant to be an introduction to
the topic and the field
> Itis much more complex than what was described

. In particular, our path analysis assumed all variables to be
> Continuous and Multivariate Normal
> Measured with perfect reliability

. In reality, neither of these are true

. Structural equation models (path models with latent variables) will
help with variables with measurement error
> We begin next week

. Modifications to model likelihoods or different distributional
assumptions will help with the normality assumption
> Last week of class
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About Causality

- You will read a lot of talk about path models indicating causality, or
how path models are causal models

- |tis important to note that causality can rarely, if ever, be inferred
on the basis of observational data

> Experimental designs with random assignment and manipulations of factors
will help detect causality

- With observational data, about the best you can say is that IF your
model fits, then causality is ONE reason

» But realistically, you are simply describing covariances of variables in more
fancy ways/parameters

. |If your model does not fit, the causality is LIKELY not occurring
> But still could be possible if important variables are omitted
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CONCLUDING REMARKS



Path Analysis: An Introduction

. In this lecture (spanning multiple weeks), we discussed the basics of

path analysis
> Model specification/identification
> Model estimation
> Model fit (necessary, but not sufficient)
> Model modification and re-estimation
> Final model parameter interpretation

- There is a lot to the analysis — but what is important to remember is
the over-arching principal of multivariate analyses: covariance

between variables is important
> Path models imply very specific covariance structures

> The validity of the results hinge upon accurately finding an approximation to
the covariance matrix
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Where We Are Heading...

- Over the next few weeks, we will be doing path models, but with
unobserved latent variables

> These are more commonly called factor models or structural equation
models

- As with path models, structural equation models are multivariate
analysis techniques
> Models make specific implications for the covariance matrix

- Factor models shift the focus from prediction of observed variables
to measurement of unobserved variables

+ In the end, we will combine both — factor models for measuring
unobserved variables and path models for predicting observed and
unobserved variables

> But all will fall under a common multivariate framework
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