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Today’s Class

- Anintroduction to confirmatory factor analysis
> The next piece of the structural equation modeling puzzle

« CFA model:

> Specification

> ldentification

> Model fit assessment
> Interpretation

- Today’s data example will use a single factor to familiarize us with the core concepts of CFA
» Concepts overlap with multiple factors
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The Growth of Gambling Access

« In past 25 years:
> An exponential increase in the
accessibility of gambling
> Anincreased rate of with problem

or pathological gambling
(Volberg, 2002, Welte et al., 2009)

- Hence, there is a need to better:
> Understand the underlying causes of the disorder
> Reliably identify potential pathological gamblers
> Provide effective treatment interventions
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Pathological Gambling: DSM Definition

To be diagnosed as a pathological gambler, an individual must meet 5 of 10 defined criteria:

1.  Is preoccupied with gambling 7. Lies to family members, therapist, or
2. Needs to gamble with increasing others to conceal the extent of
amounts of money in order to involvement with gambling
achieve the desired excitement 8.  Has committed illegal acts such as
3. Has repeated unsuccessful efforts to forgery, fraud, theft, or _
control, cut back, or stop gambling embezzlement to finance gambling
4. |s restless or irritable when 9.  Has jeopardized or lost a significant
attempting to cut down or stop relationship, Job{ educational, or
gambling career opportunity because of
5.  Gambles as a way of escaping from gamblmg _
problems or relieving a dysphoric ~ 10.  Relies on others to provide money
mood to relieve a desperate financial

6.  After losing money gambling, often situation caused by gambling

returns another day to get even
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Methods for Assessment of Pathological Gambling

- The most frequently used instrument for assessing pathological gambling is the South Oaks
Gambling Screen (Lesieur & Blume, 1987)
> If you call Gamblers Anonymous, you will be given this screen

- 13 dichotomous (yes/no) items
> Score of 5 or more indicates a probable pathological gambler

- Example items:
> Do you feel you have a problem with betting money or gambling?
> Do you ever gamble more than you intend to?

- Problems with the SOGS in gambling research:
> Very low variability in item responses (many respond “no”
> No mapping of SOGS onto DSM criteria
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Research on Pathological Gambling

- In order to study the etiology of pathological gambling, more variability in responses
was needed

- The Gambling Research Instrument (Feasel, Henson, & Jones, 2002) was created with 41

Likert-type items
> ltems were developed to measure each criterion

- Example items (ratings: Strongly Disagree to Strongly Agree):
> | worry that | am spending too much money on gambling (C3)
> There are few things | would rather do than gamble (C1)

- The instrument was used on a sample of experienced gamblers from a riverboat casino in a

Flat Midwestern State
» Casino patrons were solicited after playing roulette
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Data For Today’s Class

To demonstrate factor analysis concepts, we will use the first five items of the Gambling
Research Instrument:

1. I would like to cut back on my gambling.

2. There are few things | would rather do than gamble.

3. If | lost a lot of money gambling one day, | would be
more likely to want to play again the following day.

4. | enjoy talking with my family and friends about my
past gambling experiences.

5.1 find it necessary to gamble with larger amounts of
money (than when | first gambled) for gambling to be exciting.
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The GRI Items

- The GRIl used a 6-point Likert scale
> 1:Strongly Disagree

2: Disagree

3: Slightly Disagree

4: Slightly Agree

5: Agree

6: Strongly Agree

YV V V VYV V¥V

- To meet the assumptions of factor analysis, we will treat these responses as

being continuous
> This is tenuous at best, but often is the case in factor analysis

> Later we will discuss how to treat these as categorical items
+ Hint: Iltem Response Models
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The Sample

. Data were collected from two sources:

> 112 “experienced” gamblers
+ Many from an actual casino

> 1192 college students from a “rectangular” midwestern state
+ Many never gambled before

- Today, we will combine both samples and treat them as homogenous —
one sample of 1304 subjects

> Later we will test this assumption — measurement invariance (called differential item functioning in item
response theory literature)
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CONCEPTUAL OVERVIEW OF FACTOR ANALYSIS:
LATENT TRAITS



What is a Latent Trait?

- Latent trait: An unobservable ability or characteristic

n u

> e.g., “intelligence”, “extroversion”, or “political idealization”

- A person’s latent trait(s) are estimated (measured) using a measurement model

» Measurement model: A statistical model linking the unobserved latent trait with the observed outcome
+ In social/education research outcomes are generally test items

- Latent traits are measured with multiple observed items
> Models for item responses end up making implicit assumptions about the covariance among items
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A (Very) Brief History of Test Theory

- Modern beginnings date to mid 19" century
> Measurement of intelligence

« 1904 brought about two seminal papers by
Charles Spearman

> One showed how to estimate the amount of error in test scores
+ Led to field of Classical Test Theory (CTT)

> One showed how measure a single trait from a test
+ Led to field of factor analysis
+ Modern versions feature measurement models under the name of Confirmatory Factor Analysis (CFA)
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Development of the Field of Test Theory

- Motivated by problems in education and psychology
> Education: measuring intelligence or achievement
» Psychology: understanding structure of traits; development of scales for measurement of latent traits

- Early theory developed prior to computers
> Work prior to the 1960s relied on approximations
» Most of this was under the heading of “exploratory” factor analysis — more on this after we talk more
about the subject

- Mathematicians and statisticians have advanced the field in recent years
» Brought mathematical rigor and validity to approaches
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Measurement Models

- Measurement models can be divided into two families of models based on response
format alone:

> Continuous responses - Confirmatory Factor Models
> Categorical responses - Item Response Models

- Both of these families fall under a larger framework: Generalized Linear Latent
and Mixed Models

> Provide measurement models for other types of responses

« Other relevant families:
> Structural Equation Models - provides estimates of correlations amongst latent variables in
measurement models
> Path Analysis - simultaneous regression amongst multiple
observed variables
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Confirmatory Factor Analysis (CFA) Models

« Main idea of CFA: Build a measurement model for response variables that
measure the same trait

> CFA = Linear regression model predicting each continuous observed outcome variable
(item, subscale) from a latent trait predictor variable(s)

Yoi = i + Ai1F5q + e

i - item; s - subject; y; is the item intercept; 4;; is the item slope (factor loading for factor
1); e;s is the error for the item and subject; Y, is the item response (assumed continuous)

- Differs from exploratory factor analysis:
> Number and content of factors is decided a priori
> Alternative models are comparable and testable
> We will compare and contrast the two approaches after discussing CFA

- Uses of confirmatory factor analysis models:
> Analyze relationships among subscales that have normal, continuous distributions
> Provide comparability across persons, items, and occasions
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Factor Analysis (Y Observed; F latent)

The prediction of Y is done using a linear regression:

u is the intercept (where the
line crosses the Y axis)

Ais the slope (the
increase in Y for a one unit
increase in F)

e is the error (or residual),
with estimated error variance

Wi
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Confirmatory Factor Analysis (CFA)

- Dimensionality is assumed known

> Local Independence is assumed
+ Errors are independent after controlling for factor(s)

- CFA is a linear model - a one-unit change in latent trait/factor F has
same increase in expected response Y at all points of Y

> Implicitly assume that Y is a continuous variable
> CFA won’t work well for binary or categorical data

. Items are allowed to differ from each other in how much they relate
to the latent trait, but a good item is equally good for everybody

> This is different from assumptions of classical test theory where all items
count the same
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A History of “Common Factor Theory” (CFA)

« 1900’s: Spearman’s G
> Went looking for single-factor model... and “found” it
> Led to development of other 1Q tests (Stanford-Binet, Wechsler)

« 1930’s and 1940’s: Thurstone elaborated Spearman’s model into a
“multiple factor” model

» Beginnings of exploratory factor analysis to do so
> Later applied in other personality tests (e.g., MMPI)

. 1940’s and 1950’s: Guttman’s work

> Factor analysis and test development is about generalizing from measures we
have created to more measures of the same kind

> Thus, need to think about structure before-hand
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Common Factor Theory, continued

- 1940’s: Lawley provided a rigorous foundation for statistical

treatment of common factor analysis
> But had to wait for better computers to be able to implement methods

. 1952: Lawley provided the beginnings of the confirmatory
factor model

> Later extended by Howe and Bargmann (1950’s)
> Further extended by Joreskog (LISREL — 1970’s)
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CONFIRMATORY FACTOR MODELS



Confirmatory Factor Models

- To describe CFA models, we will revisit the gambling data
> The goal: measurement of a “gambling tendency” factor
> Higher levels of the factor = higher ratings on GRI items

« CFA models work at the item level

> Other variants exist at the scale level — called parceling
+ More on this later

Our five items will be described with five equations
> Similar to path analysis, except with a latent factor now involved in the equation for each item

PSYC 948: Lecture #6

21



One-Factor Model of Five GRI Items

- The CFA model for the five GRI items:
Yo1 = + 41Fs1 + €51
Yoo =ty + A21Fs1 + e
Yoz = Uz + A31Fs1 + €3
Yoo =ty + A41Fs1 + €5y
Yo5 = Us + A51Fs1 + €5

- Here:
» Yg; - response of subject s on item i
Ui - intercept of item i (listed as a mean as this is typically what it becomes)
A;1 - factor loading of item i on factor 1 (only one factor today)
F¢, - latent “factor score” for subject s (same for all items) to factor 1 (only one today)
es; - regression-like residual for subject s on item i

YV V VYV V

+ We assume es; ~ N(0,1?); 7 is called the unique variance of item i
+ We also assume e,; and F;; are independent

: 2
- Also, we will assume Fy¢; ~ N(,uFl, aFl)
> Typically up, = 0 (but not always)
> Factor variance can be estimated or fixed (more on both in identification)
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Our CFA Model Path Diagram

(Some of these values will have to be
restricted for the model to be identified)
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OF, Measurement Model:
N's = factor loadings

e’s = error variances
lW's = item intercepts

Structural Model:

Ky :
0,2;1 = factor variance

K, = factor mean
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Parsing the CFA Model: What Each Term Does

- The path diagram for the CFA model is a picture that implies a specific model
> The weights of the paths multiply the quantities from which the paths emanate
» The resulting linear combinations are the predictions for the variables where the paths terminate

- As with all other models we have used to this point, we will assume a multivariate normal
distribution for the data

» The various model terms combine to predict the elements of the mean vector and covariance matrix of
the items

> Understanding this is the key to understanding how the model works — and which terms have to be fixed
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Model Predicted Item Mean

- Using the algebra of expectations, the mean for an item under the our CFA model with a
single factor is:

E(Ysi) = E(Ili + A1 Fsp + esi)
= E(ui) + E(Ai1F51) + E(esi)
Is zero model

= U; + AilE(FSl) —+ E(esi) specification

= i + A lE,
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Model Predicted Mean Vector

Combining across all items, the mean vector for the items is given by:

Hy = My + App
Uy, 1 M7 [Aa] (U, + Aa1lr,
Uy, U, o Ui, + Aa1lr,
Hyy [ = | B [+ (231 | |pr, | = [ + 43108,
Hy, K, Agq Ui, + Aa1lp,
Hrsl - W] 1, | (Ur, + As1UF, |
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Model Predicted Item Variance

Using the algebra of expectations, the variance for an item under the our CFA model with a
single factor is:

Var(Ys;) = Var(u; + A1 Fs1 + eg;)
= Var(4;1Fs1 + es)
= Var(A;;Fs1) + Var(eg) + 2C <1 €si)
= )L121VaT(F51) + Var(es;)
= 2}10%

Is zero by
independence

We define the variance of e to be
the unique variance of the item
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Model Predicted Item Covariances

. Using the algebra of expectations, the covariance for a pair of items i
and j under the single factor model is:

Cov(Ysi, Ysj) = Cov(py + Ay Foy + egi, ptj + Aj1 Fyp + e))

— COU(AilFsl + esi,ﬂlesl + esj)
N
— COU(AilFsl: Alesl)%‘rﬂ» esj) + Cov sl esj +M
= Ail@Fsl» Fle

_ 2
= Ai1/1j1UF1

The covariance of a variable with
itself is its variance
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Model Implied Covariance Matrix

« Combining across all items, the covariance matrix for the items is given by:
Xy = APAT + W

> Get used to seeing this — although you already have (see the path a slides)
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Model Implied Covariance Matrix

110F1 + 1/)1

/111712101:1
2

A114310%,

2
A111410F,

2
A111510F,
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Counting Parameters

- Asin path analysis (and any MVN-assumed data model), the total number of parameters
cannot exceed the number of parameters in a saturated model

- With 5 variables, our saturated model has 20 parameters:
> 5 means
» 5 variances
» 10 covariances

« The 1-factor CFA model we have built has 17 parameters:
> 5 factor loadings

5 unique variances

5 item intercepts

1 factor mean

1 factor variance

vV YV VY VYV

- However, as it is stated, the model is not identified
> “Local” identification is an issue (too many parameters within sub-equations)
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Local Identification Issue #1: Mean Vector

- Examining the mean vector we discover our first issue with local identification:
> We have 5 means in our saturated mean vector (one for each item): uy,, iy, , ly,, Uy, , Uy,

> Disregarding the factor loadings (for a moment — these are used in the covariance matrix), we have 6
mean parameters:

+ Sitemindicators: py , Uy, Uiy, M, B
+ 1factor mean: g,

- This is the source of the mean vector portion of our local independence issue —too many
parameters for our model
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Local Identification Issue #2: Covariance Matrix

Examining the covariance matrix we discover our second issue with local identification:

> We have 5 variances in our saturated covariance matrix (one for each item): oy, , oy, , 0y, 07, 0¥,

> We have 10 covariance in our saturated covariance matrix (one for each pair of items): Oy, y,, Oy, y,,

Oy, Y, Ovy,Ysr OV, Y50 OY, Y, OY, Yer Ovs v, s Oy Yer Oy, Ye

Our factor model has 11 parameters for the covariance matrix:

> 5 factor loadings: 411, 451, 431, 441, 451

> 5unique variances: %, 3, 3,2, P2

> 1factor variance: of,

The issue, though, is that for every:
» Pair of saturated parameters — 3 factor model parameters
> Triple of saturated parameters — 4 factor model parameters

The CFA model we specified is unidentified
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CFA MODEL IDENTIFICATION



CFA Model Identification

- The CFA model was unidentified as specified

« The issue comes from the nature of the latent variable
> In reality it does not exist

- Because it does not exist, it cannot have its own scale
> Meaning, it does not have a mean and variance by itself

- Therefore, we must identify our model by picking the scale of the factor
» The choice is arbitrary — factors do not exist!
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Options for Selecting Factor Scale and Location

- For both the factor scale (factor variance) and location (factor mean) there are two options

in widespread use:

> Any combination will be equivalent for the CFA model

Estimated Factor Variance
(marker item)

Standardized Factor Variance
(fixed variance)

Estimated Factor Mean
(marker item)

Set one item’s factor loading
to1l

Set one item’s intercept to 0

Set the factor variance to 1

Set one item’s intercept to 0

Standardized Factor Mean
(fixed mean)

Set one item’s factor loading
to1l

Set the factor meanto 0

Set the factor variance to 1

Set the factor meanto 0
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Mplus Default

1

Common in Scale Building
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CFA Model Identification:

Create a Scale for the Latent Variable

“Marker ltem”
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The factor doesn’t exist, so it needs a
scale (a mean and variance):

Two equivalent options to do so

Create a scale for the VARIANCE:

> 1) Scale using a marker item
+ Fix one loading to 1; factor is scaled as
“reliable” variance of marker item

+ Could fix to any value except 0 (but 1
makes interpretation easy)

+ Loading = .9, variance =167
Var(F,) = (.9%)*16 = 12.96

+ Good for models where factors are
predicted (factor variance can change
based on predictors)

> 2) Fix factor variance to 1
+ Factoris interpreted as z-score

+ Good for scale building — although same
results can be had with #1
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CFA Model Identification:
Two Options for Scaling the Factor Mean

“Marker Item” - Fix 1 item intercept “Z-Score” - Fix factor mean to O,
to 0; estimate factor mean estimate all item intercepts
ltem intercept is expected outcome ltem intercept is expected outcome

when factor = 0 (when item = 0) when factor = 0 (when item = mean)
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Unpacking Marker Item
Identification with Equations

« Using the marker item identification for the factor scale and the zero factor mean
identification for the factor location, the CFA model for the five GRI items is:
Yo1 =1 + (DFs1 + €51

Yo = o + AoaFiy eszw\ Choice of marker item is
Yo3 =3+ A31F +es3 N

arbitrary (and equivalent)

Yoa = Uy + Ay1F5q + €54

_ so long as the item
Yos = Us + A51Fgq + g5 &
measures factor

- Here:
» Y; - response of subject s on item i
W; - intercept of item i
A;1 - factor loading of item i
F¢, - latent “factor score” for subject s (same for all items)

YV V VYV V

es; - regression-like residual for subject s on item i
+ We assume es; ~ N(0,1?); 37 is called the unique variance of item i
+ We also assume e,; and F;; are independent

- Because of identification, we will assume F¢; ~ }), aﬁl)\

Fixed Factor Mean Estimated Factor Variance
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Fixed Factor Mean:
Model Predicted Mean Vector

Combining across all items, the mean vector for the items is given by:
py = p; + A0
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* Factor Mean is fixed at O

WO
M, + 421(0) U,
ur, + A31(0) [ = | Ky
ur, +441(0) Hi,

Marker item factor loading
shown as a 1 (but it does
not contribute here as the
factor mean is fixed at zero)

g, + A51(0)] IS

All Item Intercepts Estimated —
And all equal item mean
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Model Implied Covariance Matrix

« Combining across all items, the covariance matrix for the items is given by:
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Marker Item Model Implied Covariance Matrix

(Dog +¢i  (DA08 (DA310%, (DA4107,
(1A 1«21 /12101? /121/13101%1 121/1410131
(143 0131 /121)h°,101~"1 /131/14101«21
(1)A4 UPZ' A217410F, 23108, +
| (D45 F /121/15101;2'1 141/1510131

Marker Item Variance is
Partitioned into variance
due to factor and variance
due to error

Factor Variance becomes
proxy for marker item’s factor
loading (appears in covariance
with other items)
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Our marker-item-fixed-factor-mean CFA Model in Mplus

Mplus syntax:

> The “BY” statement is for factor analysis
+ factorname BY item list

TITLE:
Gambling Research Instrument Items
Data from 1192 College Students/112 Gamblers
41 Likert Items (1-6): GRI1-GRI41l

Identification: Zero Factor Mean, Marker Iten

FILE = alldata _gri.csv;
VARIABLE:

NAMES = GRI1-GRI41:;

USEVARIABLES = GRI1-GRIS;

MISSING = ALL(99):

ANALYSIS:
ESTIMATCR = MLR;

MODEL:
GAMBLING BY GRI1-GRIS;

OUTPUT:
SAMPSTAT STANDARDIZED MODINDICES (ALL 0) RESIDUAL;

FAVEDATA:
SAVE = FSCORES; !saves latent trait estimates
FILE = alldata_gri_person.dat; !puts latent trait estimates into file named *.dat
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Mplus Estimates

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value
GAMBLING BY
GRI1 1.000 0.000 999,000 999,000
GRI2 1.293 0.121 10.652 0.000 | Factor loadings estimates are located
GRI3 0.765 0.077 9,959 0.000
GRI4 1.297 0.138 9.379 0.000 under the name of the factor
GRIS 1.040 0.094 11.042 0.000
Intercepts 1 H 1 1
sres * sos - o 2es S 000 The first factor loading is listed as
GRI2 1.932 0.045 43.1895 0.000 | 1.000, with a standard error 0.000
GRI3 1.551 0.024 64.701 0.000
GRI4 1.926 0.038 51.046 0.000
GRIS 1.577 0.026 59.592 0.000 . . . . .
This indicates the value is fixed
Variances
GAMBLING 0.363 0.052 6.969 0.000
Residual Variances
GRI1 0.666 0.057 1.716 0.000
GRIZ2 2.001 0.138 14.504 0.000
GRI3 0.537 0.040 13.402 0.000
GRI4 1.245 0.094 13.291 0.000
GRIS 0.520 0.047 11.050 0.000
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Mplus Estimates

MODEL RESULTS

GAMBLING BY
GRI1
GRIZ2
GRI3
GRI4
GRIS

Intercepts
GRI1
GRIZ2
GRI3
GRI4
GRIS

Variances
GAMBLING

Residual Variances

GRI1
GRI2
GRI3
GRI4
GRIS
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PO
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Ok ONO

Estimate

.000
.293
.765
.297
.040

.804
.932
.551
.926
.577

.363

.666
.001
.537
.245
.520

S.E.

0.000
0.121
0.077
0.138
0.094

0.028
0.045
0.024
0.038
0.026

0.052

0.057
0.138
0.040
0.094
0.047

Est./S.E.

999.000
10.652
9.958%
9.379
11.042

64.252
43.195
64.701
51.046
59.592

6.969

11.716
14.504
13.402
13.291
11.050

Two-Tailed
P-Value

999.000
.000
.000
.000
.000

0O 0O OO

.000
.000
.000
.000
.000

0O 0000

0.000

.000
.000
.000
.000
.000

00000

MODEL FIT INFORMATION
Number of Free Parameters
Loglikelihood

HO Value

15

-9564.556

1 aof:zaéigg Correction Factor 1.8591
1.293 L Scating Corzection Factor . 1.0828
K: 0.765 I for MLR
1.297
1.040
1.804
1.932
ﬁlz 1.551
1.926
1.577
62 = 0.363
0.666 0 0 0 0
0 2.001 0 0 0
P 0 0 0537 0 0
0 0 0 1.245 0
0 0 0 0 0.520
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Mplus Model Estimated Mean Vector

- From Mplus:

Model Estimated Means/Intercepts/Thresholds
GRI1 GRIZ2 GRI3 GRI4 GRIS

1 1.804 1.932 1.551 1.926

« From the results:
1.804

1.932
ﬁl =1.551
1.926
1.577

« Note: this is a saturated means model
> Historically, this is the case for factor analysis
> This will change in later methods (hence the inclusion here)
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Mplus Model Estimated Covariance Matrix

- From Mplus:

Model Estimated Covariances/Correlations/Residual Correlations
GRI1 GRI2 GRI3 GRI4 GRIS

GRI1 .028

GRIZ2 5.469 2.608
GRI3 0.277 0.359% 0.749
GRI4 0.471 0.609 0.360 1.856
GRIS 0.377 0.488 0.289 0.489 0.913
« Using the estimates:
1 0.666 0 0 0 0
1.293 0 2001 O 0 0
A =|0.765 6% = 0.363 P=| 0 0 0537 0 0
1.297 0 0 0 1245 0
1.040 0 0 0 0  0.520!
10.363 + 0.666 1.293%0.363 0.7650.363 1.297%0.363 1.040*0.363
1.293*0.363  1.293270.363 4+ 2.001  1.293*0.765*0.363 1.293*1.297%0.363 1.293*1.040%0.363
0.7650.363  1.293*0.765"0.363  0.7652°0.363 + 0.537  0.765*1.297*0.363 0.765*1.040%0.363
1.29770.363  1.293*1.297%0.363 0.765*1.297*0.363  1.297270.363 + 1.245  1.297*1.040%0.363
[ 1.04070.363  1.293*1.040%0.363 0.765%1.040%0.363 1.297*1.040%0.363  1.0402°0.363 + 0.520.
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Unpacking Standardized Factor Identification with Equations

« Using the unit variance identification for the factor scale and the zero factor mean
identification for the factor location, the CFA model for the five GRI items is:

Yo1 =1 + A1Fs1 + €51
Yoo = 1z + Aa1 kgt €52

Yo3 = Uz + A31Fs; Tepa

Yoa = Uy + Ay1F5q + €54
Y5 = Us + A51F5q + €55

- Here:
» Y; - response of subject s on item i
W; - intercept of item i
A;1 - factor loading of item i
F¢, - latent “factor score” for subject s (same for all items)
es; - regression-like residual for subject s on item i

YV V VYV V

+ We assume es; ~ N(0,1?); 37 is called the unique variance of item i

+ We also assume e,; and F;; are independent

’fll factor loadings estimated

- Because of identification, we will assume Fy; ~ N(O,l)\

Fixed Factor Mean

Fixed Factor Variance
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Fixed Factor Mean:
Model Predicted Mean Vector

Combining across all items, the mean vector for the items is given by:
py = p; + A0
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_Myl_ _Hll_ _All_
:uYz tulz 121

:uY4 :uI4 /141
Hys1 LHgl [Agq ]

This is the same as the previous
model — the mean vector consists
of the item intercepts when the
factor mean is fixed at zero.

Factor Mean is fixed at O

7.+ 411(0)] Ui,
i, + 121(0) U,
ur, + 431(0) [ = | K,
uy, + A41(0) M,

Uy, + As1(0)] His

All Item Intercepts Estimated —
And all equal item mean
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Model Implied Covariance Matrix

« Combining across all items, the covariance matrix for the items is given by:
Xy = APAT + W
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|0y, Ys

2 -
Oy, Oy, 97y Ovy, Ovys

Oy, Y, Ov, Onys Ovy, Onys

Oy,,Ys

DPA

Factor variance fixed to 1

All factor loadings are estimated
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Marker Item Model Implied Covariance Matrix

A1 (D) +Yi A (1) A11431(1) A11441(1)
A/111/121(1) A5:(1D) +95 Az (1) A21441(1)
A11431(1) A1l31(1) 25 (DB 5 231441 (1)
11241 (1) 121241 (1) A31da|(1) 25, (1) + 5
) 111451(1) 121451 (1) A31451(1) A41 451 (1)

Each item’s variance is
partitioned into portion
due to factor (loading
squared) and portion due
to error

Factor variance term now
disappears from each part of
covariance matrix (1)
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/111A51 (1) ]
/12 1A51 (1)
/131A51 (1)
A41451(1)

A2, (1) + Y]

51



Our Standardized Factor CFA Model in Mplus

«  Mplus syntax:

> The “BY” statement is for factor analysis
+ factorname BY item list

TITLE:
Gambling Research Instrument Items
Data from 1192 College Students/112 Gamblers
41 Likert Items (1-6): GRI1-GRI41l

Identification: Zero Factor Mean, One Factor Variance

DATA:
FILE = alldata gri.csv;

VARIABLE:
NAMES = GRI1-GRI41;
USEVARIABLES = GRI1-GRIS;
MISSING = ALL(99):

ANALYSIS:

ESTIMATOR = MLR; GRI1* frees the default marker item constraint in Mplus
MODEL:

B NGeL. AT GRIETERISS GAMBLING@1 fixes the factor variance to 1
CUTPUT:

STANDARDIZED MODINDICES (ALL 0) RESIDUAL;

SAVEDATA:
SAVE = FSCORES; !saves latent trait estimates
FILE = alldata_gri_person.dat; !puts latent trait estimates into file named *.dat
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Mplus Estimates

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value
GAMBLING BY
GRI1 0.602 0.043 13.939 0.000 . .
GRI2 0.779 0.055  14.086 0.000 | Factor loadings estimates are located
GRI3 0.461 0.040 11.459 0.000
GRI4 0.781 0.050 15.529 0.000 | under the name of the factor
GRIS 0.626 0.044 14.166 0.000
Intercepts
GRI1 1.804 0.028 64.251 0.000
GRI2 1.932 0.045 43.195 0.000
GRI3 1.551 0.024 64.699 0.000
GRI4 1.92¢6 0.038 51.048¢ 0.000
GRIS 1.577 0.026 59.590 0.000 . . .
The factor variance is listed as 1.000,
Variances .
GAMBLING 1.000 0.000 999.000 999.000 Wlth d Standard error O'OOO
Residual Variances
GRI1 0.666 0.057  11.716 0.000 | This indicates the value is fixed
GRI2 2.001 0.138 14.504 0.000
GRI3 0.537 0.040 13.402 0.000
GRI4 1.246 0.094 13.292 0.000
GRIS 0.520 0.047 11.050 0.000
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Mplus Estimates

MODEL RESULTS

GAMBLING BY
GRI1
GRIZ2
GRI3
GRI4
GRIS

Intercepts
GRI1
GRI2
GRI3
GRI4
GRIS

Variances
GAMBLING

Residual Variances
GRI1
GRIZ2
GRI3
GRI4
GRIS

[ I e T e o

e

(RO O =

(=

O K O N O

Estimate

.602
.779
.461
.781
.626

.804
.932
.551
.926
.577

O 0O 000

O 0000

S.E.

.043
.055
.040
.050
.044

.028
.045
.024
.038
.0286

Est./S.E.

64.251
43.195
64.699
51.046
59.590

Two-Tailed
P-Value

0O 0000

0O 0O 000

.000
.000
.000
.000
.000

.000
.000
.000
.000

The item intercepts and unique variances
are the same from the marker item analysis
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MODEL FIT INFORMATICN
Number of Free Parameters 15
602 Hlf:’:lziR -9547.913
.779 Hlfzia;i:g Correction Factor 1.8825
A =|.461
781
626
1.8041
1.932
ﬁl =|[1.551
1.926
1.577.
62 = 1.000
0.666 0 0 0 0
0 2.001 0 0 0
P=| 0 0 0.537 0 0
0 0 0 1.245 0
0 0 0 0 0.520
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Mplus Model Estimated Mean Vector

- From Mplus:

Model Estimated Means/Intercepts/Thresholds

GRI1 GRIZ2

1 1.804 1.932

GRI3

1.551

« From the results:

1.804
1.932

1.926
1.577

« Note: this is a saturated means model

> Historically, this is the case for factor analysis
> This will change in later methods (hence the inclusion here)
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GRI4
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Mplus Model Estimated Covariance Matrix

- From Mplus:

Model Estimated Covariances/Correlations/Residual Correlations

GRI1 GRIZ2
GRI1 1.028
GRIZ2 0.469 2.608
GRI3 0.277 0.359%
GRI4 0.471 0.609
GRIS 0.377 0.488
« Using the estimates:
602
_|779 6% = 1.000
A =].461
781
626
6022 +0.666  .602*.779
602*.779 7792 +2.001
602%.461 779%.461
.602%.781 779%.781
L .602%.626 779%.626
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GRI3

0.749
0.360
0.289

602*.461
779*.461
461?% +0.537
461*.781
461*.626

GRI4 GRIS
1.856
0.489 0.913
0.666 0 0 0 0
R 0 2.001 0 0 0
P=( 0 0 0.537 0 0
0 0 0 1.245 0
0 0 0 0 0.520
602*.781 602%.626 ]
779*.781 779%.626
461*.781 461*.626
7812 +1.245  .781*.626
781*.626  .626% +0.520
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Other Identification Methods

- We could have picked models from the other two cells of our identification table

> Standardized factor variance, estimated factor mean
+ All loadings estimated — one item intercept fixed to 0
> Estimated factor variance, estimated factor mean
+ One item factor loading fixed to 1, one item intercept fixed to 0

- These methods are not typically used (but are equivalent)

« Infact, | did just that...

PSYC 948: Lecture #6
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Standardized Factor Variance
Estimated Factor Mean

MODEL FIT INFCRMATICN

MODEL:
- - -
GAMBLING by GRI1* GRIZ-GRIS; Number of Free Parameters i5
[GRI1GO]:;
[GAMBLING] ; . )
Loglikelihood
GRAMBLINGE1; g
HO Value -9564.556
MODEL RESULTS HO Scaling Correction Factor 1.8591
for MLR
_ Two-Tailed H1l Value -9547.913
Estimate S.E. Est./S.E. P-Value H1 Scaling Correction Factor 1.8825
fnr MI.R
GAMBLING BY
GRI1 1.000 0.000 999.000 999.000
GRI2 1.293 0.121 10.653 0.000
GRI3 0.765 0.077 9,959 0.000 Model Estimated Means/Intercepts/Thresholds
GRI4 1.297 0.138 9.380 0.000 GRI1 GRI2 GRI3 GRI4 GRIS
GRIS 1.040 0.094 11.082 0.000 1.804 1.932 1.551 1.926 T1.577
Means
GAMBLING 1.804 0.028 64.252 0.000
Intercepts
GRI1 0.000 0.000 999.000 999.000 Model Estimated Covariances/Correlations/Residual Correlations
GRI2 -0.402 0.213 -1.888 0.059 GRI1 GRI2 GRI3 GRI4 GRIS
GRI3 0.171 0.127 1.350 0.177
GRI4 -0.414 0.239 -1.730 0.084 ii; 32252 » cos
GRIS -0.299 0.157 -1.909 0.056 a3 0.277 0.359 0.749
T4 0.471 0.609 0.360 1.856
Variances IS 0.377 0.488 0.289 0.489 0.913
GAMBLING 0.363 0.052 6.970 0.000
Residual Variances
GRI1 0.666 0.057 11.716 0.000
GRI2 2.001 0.138 14.505 0.000
GRI3 0.537 0.040 13.402 0.000
GRI4 1.245 0.094 13.292 0.000
GRIS 0.520 0.047 11.050 0.000
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Estimated Factor Variance
Estimated Factor Mean

MODEL:
GAMBLING by GRI1-GRIS;
[GRI1@0];

[GAMBLING] ;

MODEL RESULTS

Estimate S5.E.

GAMBLING BY

GRI1 1.000 0.000

GRI2 1.293 0.121

GRI3 0.765 0.077

GRI4 1.297 0.138

GRIS 1.040 0.094
Means

GAMBLING 1.804 0.028
Intercepts

GRI1 0.000 0.000

GRI2 -0.402 0.213

GRI3 0.171 0.127

GRI4 -0.414 0.239

GRIS -0.299 0.157
Variances

GAMBLING 0.363 0.052
Residual Variances

GRI1 0.666 0.057

GRI2 2.001 0.138

GRI3 0.537 0.040

GRI4 1.245 0.094

GRIS 0.520 0.047
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Est./S.E.

999.000
10.653
9.959
9.380
11.042

64.252

999.000

-1.88

1.350
-1.730
-1.909

€.970

11.716
14.505
13.402
13.292
11.050

Two-Tailed
B-Value

999.000
0.000
0.000
0.000
0.000

0.000

999.000
0.059
0.177
0.084
0.056

0.000

0.000
0.000
0.000
0.000
0.000

MODEL FIT INFORMATION

Number of Free Parameters 15
Loglikelihood
HO Value -9564.556
HO Scaling Correction Factor 1.8591
for MLR
Hl Value -9547.913
Hl Scaling Correction Factor 1.8825
fnr MI.R

Model Estimated Means/Intercepts/Thresholds
GRI1 GRI2 GRI3 GRI4 GRIS

1.804 1.9832 1.551 1.926 1.577

Model Estimated Covariances/Correlations/Residual Correlations

GRI1 GRIZ2 GRI3 GRI4 GRIS
1.028
0.469 2.608
0.277 0.358 0.749
0.471 0.609 0.360 1.856
0.377 0.488 0.289 0.489 0.913
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Picking an Identification Method

- The identification methods presented provide a mechanism to estimate the CFA model
> Four alternatives (from table on previous slide)

- All four methods provide identical fit — the log-likelihood and fit statistics are all identical!

» Choice of method depends upon analysis goals
> We will stick with marker item technique

- Interpretation will be identical provided you use standardized estimates
> The key in our future analysis
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Factor Model Identification

- Goal: Reproduce observed covariance matrix among items with as few estimated
parameters as possible

> Maximum likelihood usually used to estimate model parameters
+ Measurement Model: Factor loadings, item intercepts, error variances
+ Structural Model: Factor variances and covariances, factor means

> Global model fit is evaluated as difference between model-predicted matrix and
observed matrix (but only the covariances really contribute)

- How many possible parameters can you estimate (total DF)?
> Total DF depends on # ITEMS = p (NOT on # people)

> Total number of ‘unique elements’ in covariance matrix
+ Unique elements = each variance, each covariance, each mean
+ Total unique elements = (p(p+1) / 2) + p =2 if 5 items, then ((5*%6)/2) + 5 =20

- Model degrees of freedom (df)
> Model df = # possible parameters - # estimated parameters
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CFA Model Identification:
Two Options for Scaling the Factor

- Summary: two options for giving the factor a scale:

> Marker item: Borrow a scale from one of the items
+ Fix that item’s factor loading to 1 and its intercept to O
+ Factor variance is based on part of that item that relates to factor (as opposed to part that
is measurement error)
+ Will cause problems when marker item is unrelated to factor

» Z-score: Put factor on scale of mean=0 and variance=1
+ Allitem factor loadings and all item intercepts are estimated
+ Can’t be used in higher-order factor models or in models

«  Most common approach is a hybrid:
+ Fix factor mean to 0, estimate all item intercepts = “z-score”
+ Estimate factor variance, fix first item factor loading to 1 2 “marker”

- Inreality, all methods of scaling the factor will fit equivalently well, so long as the marker
item loads at all
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Additional Factor Identification Issues

- Beyond setting the factor scale and location, one must also consider the minimum number
of items that can be used for measurement of a factor

- The short story: factors need 3 or more items to be identified (but sometimes two

will work)
> 2 items — need additional factors/items in a model
» 3 items — just identified one-factor model, perfect fit
> 4 items — over-identified one-factor model, not perfect fit

« Next class we will discuss scale building with factor analysis — you will see that more items
are usually better!
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Under-ldentified Factor:
2 Iltems

- Model is under-identified when there are more unknowns then pieces of
information with which to estimate them

> Cannot be solved because there are an infinite number of different parameter
estimates that would result in perfect fit

> Example: Solve x +y =7 ??

Total possible df = unique elements =5
You’d have to set

the loadings to be 0 factor variances 1 factor variance
equal for the 0 factor means 1 factor mean
:L‘Z:teh'citez.be 2 loadings OR 1 item loading
2 item intercepts 1 item intercept
2 error variances 2 error variances
|J1X df=5-6=-1

Ifr,,,, =.64, then:
Ay =.900, A, =.711 ??
Ay, =.750,\,, = .853 ??
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Just-ldentified Factor:
3 Items

- Model is just-identified when there are as many unknowns as
pieces of information with which to estimate them

> Parameter estimates have a unique solution that will perfectly
reproduce the observed matrix

> Example: Solve x+y=7,3x—-y=1

Total possible df = unique elements =9

0 factor variances 1 factor variance

0 factor means 1 factor mean

3 loadings OR 2 item loadings

3 item intercepts 2 item intercepts

3 error variances 3 error variances
df=9-9=0

Not really a model — more like a description
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Solving a Just-ldentified Model

PSYC 948: Lecture #6

1.00

.595 1.00
448 .544 1.00

. Step 1:

. Step 2:

. Step 3:

. Step 4:

. Step 5:

ab =.595
ac =.448
bc =.544

b=.595/a

c=.488/a
(.595/a)(.448/a) = .544
.26656/a%2 = .544
a=.70

.70b=.595 b=.85
.70c=.448 c=.64

Var(e,) = 1-a%2=.51
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Over-ldentified Factor:
4+ ltems

« Model is over-identified when there are fewer unknowns than
pieces of information with which to estimate them

> Parameter estimates have a unique solution that will NOT
perfectly reproduce the observed matrix

> NOW we can test model fit

Total possible df = unique elements = 14

0 factor variances 1 factor variance

0 factor means 1 factor mean

4 loadings OR 3 item loadings

4 item intercepts 3 item intercepts

4 error variances 4 error variances
df=14-12=2

Did we do a ‘good enough’ job reproducing
the matrix with 2 fewer parameters than was
possible to use?
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Assessment of Model Fit in CFA

- As with path analysis (and general multivariate statistics using the multivariate normal
distribution), if the saturated model covariance matrix is not closely approximated,
inferences about the model will be biased (and likely, wrong)

- As the CFA model is covariance-specific, we must make sure a model adequately fits the
data before reporting results and making inferences
> Good news: model fit statistics are the same as in path analysis

- We discuss model fit here — after model specification — as it comes next in the use of CFA

> We will use our marker item (zero factor mean) CFA model to show how these are calculated and
interpreted

PSYC 948: Lecture #6 69



Indices of Global Model Fit

. Primary: obtained model ¥2 (from Chi-Square Test of Model Fit
section of Mplus output) — here we use the MLR rescaled x?

> y2 is evaluated based on model df (difference in parameters between your
CFA model and the saturated model)

> Tests null hypothesis that your CFA model (H,) fits equally to saturated model
(H,) so significance is undesirable (smaller x?, bigger p-value is better)

> Just using x? is insufficient, however:

+ Distribution doesn’t behave like a true x? if sample sizes are small
or if items are non-normally distributed

+ Obtained x? depends largely on sample size

+ Some mention this is an unreasonable null hypothesis (perfect fit??)
— | believe it is not unreasonable

- Because of these issues, alternative measures of fit are usually used

in conjunction with the x? test of model fit
> Absolute Fit Indices (besides x?)
> Parsimony-Corrected; Comparative (Incremental) Fit Indices
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Global Chi-Square from Our CFA Model

b FrOm the Mplus Output: MODEL FIT INFORMATION

Number of Free Parameters 15

Loglikelihood

- Here, we reject our model and state that the saturated model fits better

« Calculation:
> 15 parameters in our model; 20 in saturated model
> Scaling correction factor:

(CIrestricted)(Crestricted) _ (qull)(cfull)
(Qrestricted - qull)

(15 x 1.8591) — (20 x 1.8825)
15 — 20

CLrR =

= 1.9526

> x% = —2*(—9564.556 — —9547.913) =
> DF=5

33.285 — 17.047
1.9526

Chi-Square Test of Model Fit

Value 17.047*

Degrees of Freedom 5

F-Value 0.0044

Scaling Correction Factor 1.9526
for MLR
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Indices of Global Model Fit

. Absolute Fit: 2 (from Chi-Square Test of Model Fit section of

Mplus output)
> Does not use ‘ratio rules’ like x2/df > 2 or x?/df >3 (some do — you don’t)

. Absolute Fit: SRMR

> Standardized Root Mean Square Residual

> Get difference of saturated covariance matrix and CFA model covariance
matrix =2 residual matrix

> Standardize the residual matrix (divide by product of standard deviations of
respective variables)

> Sum the squared residuals in matrix, divide by number of residuals summed
» Ranges from 0 to 1: smaller is better
> “.08 or less” = good fit

- See also: RMR (Root Mean Square Residual)
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Indices of Global Model Fit

Parsimony-Corrected: RMSEA
- Root Mean Square Error of Approximation

« Uses comparison with CFA model and saturated model
> y? listed here is from Chi-Square Test of Model Fit section of Mplus output

. Relies on a non-centrality parameter (NCP)

> Indexes how far off your model is = ¥? distribution shoved over
> NCP > d = (x2—df) / (N-1) Then, RMSEA = SQRT(d/df)

+ df is difference between # parameters in CFA model and saturated model
> RMSEA ranges from 0 to 1; smaller is better

> < .05 or .06 = “good”, .05 to .08 = “acceptable”,
.08 to .10 = “mediocre”, and >.10 = “unacceptable”

» In addition to point estimate, get 90% confidence interval

> RMSEA penalizes for model complexity —it’s discrepancy in fit per df left in
model (but not sensitive to N, although Cl can be)

» Test of “close fit”: null hypothesis that RMSEA < .05
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RMSEA from Our Example

- From Mplus:

MODEL FIT INFORMATION

Number of Free Parameters 15
Loglikelihood
HO Value -9564.556
HO Scaling Correction Factor 1.8591
for MLR
H1l Value -9547.913
H1l Scaling Correction Factor 1.8825

for MLR

Find # of parameters in saturated
model, calculate difference

Make -2*(difference in Iog-likelihoo&&{/c}\

Chi-Square Test of Model Fit

Value

Degrees of Freedom

P-Value

Scaling Correction Factor
for MLR

Create Non-Centrality Parameter

d = x%—df _ 17.047-5 _ 0.009
N-1 1304—-1 )

&w' For RMSEA calculation:

o.ooei )(2 = 17.047; df =5

1.952¢

SUMMARY OF ANALYSIS

Number of groups
Number of observations

RMSEA (Root Mean Square Error Of Approximation)

Calculate RMSEA: RMSEA = |- = (2999 _ 043 5 fercen: c..
alculate ' a d_f o 5 Prodability RMSEA <= .0S

PSYC 948: Lecture #6

1304

0.066

74



Indices of Global Model Fit

Comparative (Incremental) Fit Indices

- Fit evaluated relative to a ‘null’ model (of O covariances)
. Relative to that, your model should be great!

« CFIl: Comparative Fit Index

> Also based on idea of NCP (x2— df) T = target model

max(xf-dfr,0) N = null model
> CFI =1 —

maX(X’IZ"_dfTIXIZV_di'O)
> From 0 to 1: bigger is better, > .90 = “acceptable”, > .95 = “good”

« TLI: Tucker-Lewis Index (= Non-Normed Fit Index)

AN _ AT
d d
> TLI = LT

XN
|
afn

> From <0 to >1, bigger is better, >.95 = “good”
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Comparative Fit Index Calculation

The estimated CFA model (the target)

Number of Free Parameters 15

Chi-Square Test of Model Fit

Value 17.047*

Degrees of Freedom 5

P-Value 0.0044

Scaling Correction Factor 1.9526
for MLR

Compute numerator:

max(y7 — dfr, 0)
= max(17.047 — 5,0) = 12.047

The independence model (the null model)

Number of Free Parameters 10

Chi-Square Test of Model Fit

Value 511.548*

Degrees of Freedom 10

P-Value 0.0000

Scaling Correction Factor 1.9629
for MLR

Compute denominator:
max(xf — dfr, xx — dfy, 0)
= max(33.285 — 5,511.548 — 10,0)
= 501.549

Compute CFI:
max(y2 — dfr, 0
crr =1 MG~ df0)
max(x7 — dfr, xy — dfn, 0)
_ 1 12.047 0.97€
501.549

CFI/TLI

CFI 0.976
TLI 0.952
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Tucker-Lewis Index Calculation

The estimated CFA model (the target)

Number of Free Parameters 15

Chi-Square Test of Model Fit

Value 17.047*

Degrees of Freedom 5

P-Value 0.0044

Scaling Correction Factor 1.9526
for MLR

Compute Target Model ratio:
x%  17.047

The independence model (the null model)

Number of Free Parameters 10

Chi-Square Test of Model Fit

Value 511.548*

Degrees of Freedom 10

P-Value 0.0000

Scaling Correction Factor 1.9629
for MLR

Compute Null Model Ratio:
X%  511.548

— = 3.4094 = = 51.1548
dfr 5 dfy 10
Compute TLI:
2 2 CFI/TLI
Ay _ A 51.1548 — 3.4094 :
dfy dfr : — 3. Ti1 5 5es
TLI = = = (0.952
ﬁ B 51.1548 — 1
dfy
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Building a Case for Model Fit

- Model fit statistics can vary widely: some will look like your model fits while others will not

> In fact, the 1980s was the model-fit decade in SEM
> Lots more indices of model fit are available!

- The best course of action is to ensure your model fits well under most of these indices
> The more that are favorable — the more you can believe in your result — the better chance you will have
to publish your findings

- Be sure to report all fit statistics — it gives the reader a better picture of your model
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Evaluating Model Fit for our CFA model

- From Mplus:

Chi-Square Test of Model Fit

Value 17.047*
Degrees of Freedom S
P-Value 0.0044
Scaling Correction Factor 1.952¢6
for MLR
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.043
90 Percent C.I. 0.022 0.066
Probability RMSEA <= .05 0.8657
CFI/TLI
CFI 0.976
TLI 0.952
SRMR (Standardized Root Mean Square Residual)
Value 0.024

Our model is rejected when compared
with saturated model — no surprise

RMSEA indicates “good” model fit
(<.05)

CFl indicates good model fit (> .95)
TLI indicates acceptable model fit (>.90)

Standardized root mean squared
residuals (average “miss” for
correlations) indicates good model fit

Based on these results, we will claim our model fit to be acceptable
and move on to model interpretation
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CFA Model Parameter Interpretation

- Give that (1) our model was identified and (2) our model fit well, we can now
move onto (3) model interpretation

« In CFA, there are several sets of parameters:
> Factor mean — usually set to zero — not interpreted
> Factor variance — can be fixed or estimated, but in general is arbitrary — not interpreted
> |tem Intercepts — usually saturated (equal to item means) — not interpreted
> Unigue variances — depend on the scale of the item — not interpreted directly
+ but will be indirectly through other measures — i.e., item information and variance accounted for
> Factor loadings — key statistics of the analysis — heavily interpreted
+ Typically through standardized coefficients
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Interpretation of Factor Loadings

- Unstandardized item factor loadings are interpreted as you would

regression slopes:
Yo = py + A1 Fq + e

« A one-unitincrease in F¢q brings about a A;; increase in the

predicted response Y;
> The covariance between the item and the factor

- The issue: the scale of the factor is arbitrary and depends on the

identification method
> The marker-item method of identification will produce different results from the
standardized factor method of identification
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Comparison of Results

The marker-item CFA model

GAMBLING BY
GRI1
GRIZ2
GRI3
GRI4
GRIS

Estimate

2O e

.000
.293
.765
.297
.040

S.E.

00O 000

.000
121
.077
.138

.094

Est./S.E.

999

10.
.959
.379
.042

.000

652

The standardized factor CFA model

GAMBLING BY
GRI1
GRI2
GRI3
GRI4
GRIS
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Estimate

O 0O 0 0o

.602

.779

.461

781

« 104

.626

O 0O 0O 0O

S.

E.

.043
.055
.040
.050
.044

Est./S.E.

13.
14.
15.
14.

939
086
459
529
166

i1wo-lailed
F-Value

999.000

0.000
.000
.000
.000

o O O

lwo-l1raileq
P-Value

.000
.000
.000
.000
.000

00000

The marker item 1,4 indicates that
a response to item 1 increases by 1
for every one-unit increase in F
(but F has a variance of 0.363 —so a
one-unit increase in Fis nearly 1.5
SD)

The standardized factor A4
indicates that a response to item 1
increases by .602 for every one-unit
increase in F

(F has a variance of 1- so a one-unit
of F is nearly 1 SD)
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Standardized Factor Loadings

.« As in regression, the solution to comparing, interpreting, and
reporting factor loadings is to use the standardized loadings

> Standardized loading = 4; gg((:))

> Represents the correlation between item and factor

> Makes it so items with scales (variances) can be comparable

> Essentially gives results that would be obtained by using z-scored variables
>

>

Standardized error variance = 1 — standardized A? = “variance due to not factor”
R? for item = standardized A? = “variance due to the factor”
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More on Standardized Factor Loadings

« You will note that Mplus provides more than one version

of standardization:

> STDYX — use these for standardized coefficients
+ Here Y is your item and X is the factor
> STDY — don’t use (only standardizes by Y — good for dichotomous X)

> STD — only standardizes by F — these are equivalent to the results from the
standardized factor identification method

- The key is to be clear as to which standardized coefficients

you are reporting because many exist
> We will use the STDYX standardization
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Interpreting Standardized Factor Loadings

The marker-item CFA model

STDYX Standardization

Estimate

GAMBLING BY

GRI1
GRIZ
GRI3
GRIA4
GRIS

O 0O 0O 0o

.594
.482
.532
.573
.656

5.E.

O 0O O 0 o

.035
.034
.036
.035
.033

Est./S.E.

S =Y

o)
W N b Wb

o |

b mm N O
] = W M M

|

=) o U0 »n

The standardized factor CFA model

STDYX Standardization

GAMBLING
GRI1
GRIZ2
GRI3
GRI4
GRIS

Estimate

BY

0O 0O 000

.594

.482
.532
.573
.656

O OO OO0

S.E.

.035
.034
.036
.035
.033

Est./S.E.

Two-Tailed

P-Value

0O 0O 000

Two-Tailed

.000
.000
.000
.000
.000

P-Value

O O 0O OO0

.000
.000
.000
.000
.000

The marker item 1,4 indicates that
a response to item 1 increases by
.594 SD (of item 1) for every one-SD
increase in F

The correlation between item 1 and
the gambling factor is .594

The standardized factor A4
indicates that a response to item 1
increases by .594 SD (of item 1) for
every one-SD increase in F

The correlation between item 1 and
the gambling factor is .594

The results are identical for both identification methods!
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Item R? - Variance “Accounted For”

- With the standardized solution, we can also calculate the

variance of each item accounted for by each factor

> Take caution — factors do not exist!

> The R? reports partitioned item variance
+ This is not EXPLAINED like in regression — only the part that the factor has in

common with the item

> The R? is equal to the squared standardized loading
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R-SQUARE

Observed

Variable Estimate
GRI1 0.353
GRIZ2 0.233
GRI3 0.283
GRI4 0.329
GRIS 0.430

5.E.

0.041
0.033
0.038
0.040
0.043

Est./S.E.

8.535
7.144
7.448
8.208

9.939

Two-Tailed

P-Value

O 0O 0 00O

.000
.000
.000
.000
.000
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Wrapping Up

- The measurement model portion of structural equation modeling covers factor
analysis
> Each SEM with latent variables has a measurement model

- Today’s class covered the details of factor analysis
> How it works
> Where terms come from

- As in path analysis we had:
> A series of simultaneous regression equations
> A need to establish an identified model
> A need to make sure a model fit before interpreting results
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Factor Analysis: Big Picture

- Unlike path analysis, our factor analysis regression equations contained latent

(unobserved) variables
> Itis important to remember these factors do not exist
> Don’t factorpomorphize!

- This point is overlooked in measurement, psychometrics, and SEM analyses
> There is an arbitrary nature to constructs/factors

- Items that do not “fit” are discarded
> Sometimes they are bad items (poorly written)
> Sometimes they do not measure the factor
> Sometimes the factor model does not work

« What does exist are the items
> The factors are culled from the covariances between items

> CFA models are re-expressions of covariances into meaningful terms (factor loadings, unique
variances)

- The methods of CFA are limited by the items — and their covariance matrix
> Limited by the laws of statistics (sample size) and variability of estimates of covariances
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