Maximum Likelihood and
Robust Maximum Likelihood

Latent Trait Measurement and
Structural Equation Models
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PSYC 948: Lecture 02



Today’s Class

. Areview of maximum likelihood estimation
> How it works
> Properties of MLEs

« Robust maximum likelihood for MVN outcomes
> Augmenting likelihood functions for data that aren’t quite MVN
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Today’s Example Data

- We use the data given in Enders (2010)

> Imagine an employer is looking to hire employees for a job where 1Q
is important

> Two variables:
+ |Q scores
+ Job performance (which potentially is missing)

- Enders reports three forms of the data:
> Complete

> Performance with Missing Completely At Random (MCAR) missingness

+ MCAR = missing process does not depend on observed or unobserved data
» Performance with Missing At Random missingness

+ MAR = missing process depends on observed data only

« For our purposes, we will focus only on the complete data today

> Note: ML (and Robust ML from today) can accommodate missing data
assumed to be Missing At Random
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Descriptive Statistics

Variable Mean SD

1Q 100 14.13
Perf-C 10.35 2.68
Perf-MCAR | 10.60 2.92
Perf-MAR 10.67 2.79

Performance: | Performance: |Performance:
1Q Complete MCAR MAR
78 9
84 13 13
84 10
85 8 8
87 7 7
91 7 7 7
92 9 9 9
94 9 9 9
94 11 11 11
96 7 7
99 7 7 7

105 10 10 10
105 11 11 11
106 15 15 15
108 10 10 10
112 10 10
113 12 12 12
115 14 14 14
118 16 16 16
134 12 12

Covariance Matrix (denom = N)

Complete Data

1IQ

189.6

19.5

Performance

19.5

6.8

MCAR Data (Pairwise Deletion)

1IQ

115.6

19.4

Performance

19.4

8.0

MAR Data (Pairwise Deletion

1IQ

130.2

19.5

Performance

19.5

7.3
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AN INTRODUCTION TO MAXIMUM
LIKELIHOOD ESTIMATION



Why Estimation is Important

- |In “applied” statistics courses estimation is not discussed frequently
» Can be very technical...very intimidating

. Estimation is of critical importance

> Quality and validity of estimates (and of inferences made from them)
depends on how they were obtained

« Consider an absurd example:
> | say the mean for IQ should be 20 — just from what | feel

> Do you believe me? Do you feel like reporting this result?
+ Estimators need a basis in reality (in statistical theory)
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How Estimation Works (More or Less)

Most estimation routines do one of three things:

1. Minimize Something: Typically found with names that have “least” in the
title. Forms of least squares include “Generalized”, “Ordinary”,
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively
Reweighted.” Typically the estimator of last resort...

2.  Maximize Something: Typically found with names that have “maximum”
in the title. Forms include “Maximum likelihood”, “ML”, “Residual
Maximum Likelihood” (REML), “Robust ML”. Typically the gold standard
of estimators.

3. Use Simulation to Sample from Something: more recent advances in
simulation use resampling techniques. Names include “Bayesian Markov
Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis Hastings”,
“Metropolis Algorithm”, and “Monte Carlo”. Used for complex models

where ML is not available or for methods where prior values are needed.
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Properties of Maximum Likelihood Estimators

- Provided several assumptions (“regularity conditions”) are met,
maximum likelihood estimators have good statistical properties:

=

Asymptotic Consistency: as the sample size increases, the
estimator converges in probability to its true value

2. Asymptotic Normality: as the sample size increases, the
distribution of the estimator is normal (with variance given by
“information” matrix)

3. Efficiency: No other estimator will have a smaller standard error

Because they have such nice and well understood properties, MLEs
are commonly used in statistical estimation
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Maximum Likelihood: Estimates Based on Statistical Distributions

. Maximum likelihood estimates come from statistical distributions —

assumed distributions of data

> We will begin today with the univariate normal distribution but quickly
move to other distributions (see this Friday’s class)

- For asingle random variable x, the univariate normal distribution is

. 1 (X o .ux)z
flx) = \2mo 2 P <_ 205 >

> Provides the height of the curve for a value of x, u,, and 2

. Last week we pretended we knew u, and o2
> Today we will only know x (and maybe ¢2)
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Univariate Normal Distribution

ok — -ttt

a H=0, 0?=0.2, == _
H=0, O?=1.0, mm— -

08 H=0, 0%=5.0, =—||
n H=-2, 0?=0.5, ==

0.6

Fx)
™~
_

0.4

For any value of x, 1, and g, f (x) gives the height of the curve (relative frequency)
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Example Distribution Values

. Let’s examine the distribution values for the IQ variable

> We assume that we know p,, = 100 and 0 = 189.6
+ Later we will not know what these values happen to be

(]
Forx =100, f(100) =0.0290 S
S
=
= o
Forx = 80, f(80) =0.0101 g
(]
8 —
o | | |

60 80 100 120 140
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Constructing a Likelihood Function

Maximum likelihood estimation begins by building a
likelihood function

> A likelihood function provides a value of a likelihood (think height of a
curve) for a set of statistical parameters

Likelihood functions start with probability density functions (PDFs)
> Density functions are provided for each observation individually (marginal)

The likelihood function for the entire sample is the function that
gets used in the estimation process

> The sample likelihood can be thought of as a joint distribution of all the
observations, simultaneously

> In univariate statistics, observations are considered independent, so the
joint likelihood for the sample is constructed through a product

To demonstrate, let’s consider the likelihood function for
one observation
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A One-Observation Likelihood Function

« Let’s assume the following:
> We have observed 1Q (for the person where x = 112)
> That 1Q comes from a normal distribution

> That the variance of x is known to be 189.6 (6 = 189.6)
+ This is to simplify the likelihood function so that we only don’t know one value
+ More on this later...empirical under-identification

- For this one observation, the likelihood function takes its assumed

distribution and uses its PDF:
1 (x — Uy)?
f(x, :uxr 0-9?) — > eXp <_ Zx )
\ 21O 20y

- The PDF above now is expressed in terms of the three unknowns

that go into it: x, iy, 02
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A One-Observation Likelihood Function

Because we know two of these terms (x = 112; 02 = 189.6), we
can create the likelihood function for the mean:

112 — p,)?
L(u,|x = 112,02 = 189.6) = ( Ha) )

eX —
V2m x 189.6 p( 2 % 189.6

For every value of u, could be, the likelihood function now returns a

number that is called the likelihood
> The actual value of the likelihood is not relevant (yet)

The value of u, with the highest likelihood is called the maximum
likelihood estimate (MLE)

> For this one observation, what do you think the MLLE would be?
> This is asking: what is the most likely mean that produced these data?
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The MLE is...

. The value of u, that maximizes L(u,|x,072) is fi,, = 112
> The value of the likelihood function at that pointis L(112]x,02) = .029

0.035

0.025
0.02 -
0.015
0.01
0.005

O rFrrrrrrrrr1r1r1r 1717 17 17 17 1T 1T T T TTTT1
100103106109112115118121124

P

f(x)
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From One Observation...To The Sample

The likelihood function shown previously was for one observation,
but we will be working with a sample
> Assuming the sample observations are independent and identically
distributed, we can form the joint distribution of the sample

> For normal distributions, this means the observations have the same mean
and variance

Multiplication comes from independence assumption:
Here, L(,ux, a,?|xp) is the univariate normal PDF for x,, iy, and o2

L(MXJ 0-3?|xlliv"'lxN) — L(I{/lx’ O-ngxl) X L(,le, Uagle) X X L(,le, O-DglxN)
2
1 (xp )
[T =T e (-2 )-
pel D1 202 20y

. N (x, — )2
(2ma?)™2 exp —z P~
p=1

2
205
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Maximizing the Log Likelihood Function

. The process of finding the values of u, and ¢ that maximize the
likelihood function is complicated
> What was shown was a grid search: trial-and-error process

- For relatively simple functions, we can use calculus to find the

maximum of a function mathematically

> Problem: not all functions can give closed-form solutions
(i.e., one solvable equation) for location of the maximum

> Solution: use efficient methods of searching for parameter
(i.e., Newton-Raphson)
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Standard Errors: Using the Second Derivative

. Although the estimated values of the sample mean and variance are
needed, we also need the standard errors

- For MLEs, the standard errors come from the information matrix,
which is found from the square root of -1 times the inverse matrix

of second derivatives (only one value for one parameter)
> Second derivative gives curvature of log-likelihood function
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MAXIMUM LIKELIHOOD WITH THE
MULTIVARIATE NORMAL DISTRIBUTION

PSYC 948: Lecture 02
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ML with the Multivariate Normal Distribution

- The example from the first part of class focused on a single variable
from a univariate normal distribution

> We typically have multiple variables (p) from a multivariate
normal distribution

(] —p) T (x] — )
2

1
Fx) = ———exp |-
(2m)2|3)2
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The Multivariate Normal Distribution

T
T —1(T
__ 1 (xi —1) Z7'(x{ — )
f(x) = ———exp|- .
(2m)2|X|2
_Mxl_
) “xz
- The meanvectorisu =| .
_‘uxp_
(02 O O]
x1 xle xl.'X:p
2
. . o o e O
. The covariance matrixis X = | *1*2 X2 x3xp
2

> The covariance matrix must be non-singular (invertible)
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Multivariate Normal Plot

== =)

O-x1x2 2

Density Surface (3D) Density Surface (2D):
Contour Plot

PSYC 948: Lecture 02 22



Example Distribution Values

. Let’s examine the distribution values for the both variables

> We assume that we know u = [ 100 and X = 189.6 19-5]

10.35 195 6.8

+ We will not know what these values happen to be in practice

- The MVN distribution function gives the height of the curve for
values of both variables: IQ and Performance
> f(x; =[100 10.35]) = 0.0052

+ This is an observation exactly at the mean vector — highest likelihood

> f(xi = [130 13]) = 0.0004
+ This observation is distant from the mean vector — lower likelihood
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From One Observation...To The Sample

. The distribution function shown on the last slide was for one

observation, but we will be working with a sample

> Assuming the sample are independent and identically distributed, we can
form the joint distribution of the sample

N
Fer, o) = F1) X f(62) X 0 X f () = ﬂf(xi) -

N

i exp[ (x] —p) 2 1(X —ﬂ)]

i=1 (27‘[)2|Z|2 _
v (- u)TZ‘l(X-T - )
Cn) IR e |y —

_l=1
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The Sample MVN Likelihood Function

From the previous slide:
LX|w,2) =

Np N i B (xf — M)TZ_l(XiT — u)_

L=(2m) 2 |X| 2exp >

i=1
. For this function, there is one mean vector (i), one covariance
matrix (X), and all of the data (X)

. If we observe the data but do not know the mean vector and/or
covariance matrix, then we call this the sample likelihood function

- Rather than provide the height of the curve of any value of x, it

provides the likelihood for any values ofu and X

> Goal of Maximum Likelihood is to find values of u and X that
maximize this function
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The Log-Likelihood Function

The likelihood function is more commonly re-expressed as the log-
likelihood: log L = In(L)

> The natural log of L

p o w i W)= )|
2

logL =log|=(2m) 2 |Z| 2 exp

X; —u) 2 (x! —p)
2

22 og(2m) — 5 log(I=]) - Z(

The log-likelihood and the likelihood have a maximum at the same
location of gand X
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Log-Likelihood Function In Use

189.6 19.5

Imagine we know that X = 195 68

] but not u

The log-likelihood function will give us the likelihood of a range of

values of u MVN Mean Vector Likelihood Surface

The value of u where
log L is the maximum is
the MLE for u :
~ [ 100

10.35

logL =log5.494e — 55
= —124.9385

-1255 1254 1253 1252 -1251 -1250
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Finding MLEs In Practice

Most likelihood functions do not have closed form estimates
> lterative algorithms must be used to find estimates

. |terative algorithms begin at a location of the log-likelihood surface

and then work to find the peak
> Each iteration brings estimates closer to the maximum
> Change in log-likelihood from one iteration to the next should be small

- If models have latent (random) components, then these
components are “marginalized” — removed from equation
» Called Marginal Maximum Likelihood

- Once the algorithm finds the peak, then the estimates used to find
the peak are called the MLEs

> And the information matrix is obtained providing standard errors for each
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MAXIMUM LIKELIHOOD BY MVN:
USING MPLUS FOR ESTIMATION



Using MVN Likelihoods in MPlus

- In Mplus, the default assumption for variables is a linear (mixed)
models procedure that uses (full information) ML with the

multivariate normal distribution
> Full Information = All Data Contribute

« You can use Mplus to do analyses for all sorts of linear

models including:
> MANOVA
> Repeated Measures ANOVA
> Multilevel models/Hierarchical Linear Models
> (Some) Factor Models

- The MVN is what we will use for the first part of this class
> Later, we will work with distributions for categorical outcomes
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An Unconditional Model in Mplus

- An unconditional model (where no predictors are used) will give us
ML estimates of the mean vector and covariance matrix when using

M pl us VARIABLE:
NAMES = ID IQ perfC perfMCAR perfMaR:;
IDVARIABLE = ID;
USEVARIABLE = IQ perfC;

MISSING = .;

MODEL:
IQ WITH perfC:

- By default Mplus:

> ..Enters all named variables into an analysis
+ The USEVARIABLE command limits the number of variables
> ...Specifies a multivariate normal distribution for all variables
+ If your data are categorical you must change this (see Week 14)
> ...Specifies all variables to be uncorrelated
+ Use the WITH command to estimate the covariance between variables
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Mplus Output: Model Information

SUMMARY OF ANALYSIS

Number of groups
Number of observations

Number of dependent wvariables
Number of independent wvariables
Number of continuous latent variables

Observed dependent variables

Continuous
IQ PERFC

Variables with special functions

ID variable ID
Estimator
Information matrix
Maximum number of iterations
Convergence criterion

Maximum number of steepest descent iterations

Maximum number of iterations for H1l
Convergence criterion for H1l
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2

O o N

ML
CBSERVEL
1000
0.5000-04
20

2000
0.1000-03

Check # of Subjects

/

Check # of
Dependent Variables

\

Check Estimator (ML
should be gold standard)
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Mplus Output: Iteration History

« Mplus uses an iterative algorithm to find MLEs:
> You can see the history using the OUTPUT: TECH5 command

- Important message (if not shown, don’t trust output —not at peak of
log-likelihood function):

« Iteration summary:

THE MODEL ESTIMATION TERMINATED NORMALLY

TECHNICAL 5/6 OUTPUT

TECHNICAL OUTPUT FROM EM ALGORITHM ITERATIONS FOR THE H1 MODEL

ITER FUNCTION ABS CHANGE REL CHANGE
1 0.916846180+01
2 0.88180975C+01 -0.3503643 -0.0382141

3 0.881809750+01 -0.3503643 -0.0382141
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Mplus Output: Covariance Parameters

. Covariance Parameter Estimates w/SEs

> More on the Est./S.E. and Two-Tailed P-Value shortly
(hint: Wald Test) oper resurts

Two-Tailed
Estimate S5.E. Est./S.E. P-Value
IQ WITH
PERFC 19.500 9.151 2.131 0.033
Means
IQ 100.000 3.079 32.478 0.000
PERFC 10.350 0.584 17.714 0.000
Variances
IQ 189.600 59.957 3.162 0.002
PERFC 6.827 2.159 3.162 0.002

- Mean Vector: i = 100'()0]

10.35

. Covariance Matrix: & = [11899'560000 169;207O

This is the “saturated” model: no more
parameters are possible. Consider this to
be the target for the best model
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USEFUL PROPERTIES OF MAXIMUM
LIKELIHOOD ESTIMATES



Likelihood Ratio (Deviance) Tests

- The likelihood value from MLEs can help to statistically test

competing models

> Assuming none of the parameters are at their boundary

+ Boundary issues happen when testing some covariance parameters as a
variance cannot be less than zero

. Likelihood ratio tests take the ratio of the likelihood for two models
and use it as a test statistic

- Using log-likelihoods, the ratio becomes a difference

> The test is sometimes called a deviance test
D=A—-2logl =—-2X (logLyg —logLy,)
> D is tested against a Chi-Square distribution with degrees of freedom equal
to the difference in number of parameters
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Deviance Test Example

- Imagine we wanted to test the hypothesis that the unstructured
covariance matrix in our empty model was different from what we
would have if the data were from independent observations

98.21

. Null Model: R = 61 = 98.21 [(1) (1) = [ 0 98021]

189.6 19.5

« Alternative Model: R = X = [ 195 68

- The difference between the two models is two parameters

> Null model: one variance estimated = 1 parameter
> Alternative model: two variances and one covariance estimated =
2 parameters
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Deviance Test Procedure

. Step #1: estimate null model (get log likelihood)

MODEL FIT INFORMATION

X 3 P

MODEL: Number of Free Parameters 3

IQ WITH perfC @O0;

IQ (1) Loglikelihood

perfc (l); HO Value -148.500
H1l Value -124.939

. Step #2: estimate alternative model (get log likelihood)

> Note: Mplus does this automatically for the unstructured covariance matrix
(we do this here to show the process)

MODEL: MCDEL FIT INFORMATICN
IQ WITH perfC; Number of Free Parameters 5
Loglikelihood
HO Value -124.939
H1l Value -124.939
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Deviance Test Procedure

- Step #3: compute test statistic
D=-2X(logLyy —logLy;) = —2%(—148.500 — —124.939) = 47.122
> Note, this is actually output in Mplus: i -Saquare Test of Model Fic
> From Null Model val 47128

ue
Degrees of Freedom 2
P-Value 0.0000

- Step #4: calculate p-value from Chi-Square Distribution with 2
degrees of freedom (I used =chidist() from Excel)
> p-value <0.0001

- Inference: the two parameters were significantly different from zero
-- we prefer our alternative model to the null model

- Interpretation: the unstructured covariance matrix fits better than
the independence model

PSYC 948: Lecture 02 39



Residual Covariance Matrix

When an reduced form model (not saturated /unstructured) is
estimated a way of determining how “close” the reduced model fits
the full model is to look at the residual covariances

> Residual = Full Model Covariance — Reduced Model Covariance
> Obtained in Mplus by adding the sord “RESIDUAL” under the OUTPUT

section:
- 1 07_7198.21 0
Reduced ModeI.ZIR—ael—98.21[O 1 —[ 0 98.21]
& _ [189.6 19.5
Full Model: £ = | 007
- 1.386 19.5

Residual Covariance =X, — 3p = [919 5 —91.386

OUTPUT:
TECHS RESIDUAL;
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Wald Tests

- For each parameter 8, we can form the Wald statistic:
Omre — 0o
w = —
SE(Omie)

> (typically 85 = 0)

- As N gets large (goes to infinity), the Wald statistic converges to a
standard normal distribution w ~ N(0,1)
» Gives us a hypothesistest of Hy: 6 = 0

. If we divide each parameter by its standard error, we can compute
the two-tailed p-value from the standard
normal distribution
> Exception: bounded parameters can have issues (variances)
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Wald Test Example

« Although the Wald tests for the variance parameters shouldn’t be
used, Mplus computes them:

MCODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

IQ WITH

PERFC 19.500 9.151 2.131 0.033
Means

IQ 100.000 3.07¢9 32.478 0.000

PERFC 10.350 0.584 17.714 0.000
Variances

IQ 189.600 59.857 3.162 0.002

PERFC 6.827 2.159 3.162 0.002

- Similarly, we could test whether the mean job performance was

equal to zero using
10.35

“ = 05843

=17.7; p < 0.0001
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Information Criteria

- Information criteria are statistics that help determine the relative fit

of a model
» Comparison is fit-versus-parsimony
> Often used to compare non-nested models

-  Mplus reports a set of criteria (from unstructured model)

Information Criteria

Akaike (AIC) 259.877
Bayesian (BIC) 264.856
Sample-Size Adjusted BIC 249.442

(n* = (n + 2) / 24)

> Each uses -2*log-likelihood as a base
+ Choice of statistic is very arbitrary and depends on field (I use BIC)

- Best model is one with smallest value
> Information criteria from independence model (unstructured wins):

Information Criteria

Akaike (AIC) 303.001

Bayesian (BIC) 305.988

Sample-Size Adjusted BIC 296.740
(n* = (n + 2) / 24)
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ROBUST ML IN CFA/SEM



Robust Estimation: The Basics

. Robust estimation in ML still assumes the data follow a multivariate

normal distribution

> But that the data have more or less kurtosis than would otherwise be
common in a normal distribution

« Kurtosis: measure of the shape of the distribution
> From Greek word for bulging

> Can be estimated for data (either marginally for each item or jointly across
all items)

- The degree of kurtosis in a data set is related to how incorrect the

log-likelihood value will be
> Leptokurtic data (too-fat tails): ¥2 inflated, SEs too small
> Platykurtic data (too-thin tails): y* depressed, SEs too large
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Visualizing Kurtosis

1 1 I

From: Wikipedia
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Robust ML for Non-Normality in Mplus: MLR

- Robust ML can be specified very easily in Mplus:
> Add ANALYSIS: ESTIMATOR = MLR; to your code

- The model parameter estimates will all be identical to those found

under regular maximum likelihood
> And...if data are MVN — then no adjustment is made (so we can use MLR for
everything!)

« MLR adjusts:

> Model y? (and associated fit statistics that use it: RMSEA, CFI, TLI) — closely
related to Yuan-Bentler T, (permits MCAR or MAR missing data)

> Model standard errors: uses Huber-White “sandwich” estimator to adjust

standard errors

+ Sandwich estimator found using information matrix of the partial first
derivatives to correct information matrix from the partial second derivatives
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Adjusted Model Fit Statistics

- Under MLR, model fit statistics are adjusted based on an estimated

scaling factor:

» Scaling factor = 1.000
+ Perfectly MVN data
» Scaling factor > 1.000
+ Leptokurtosis (too-fat tails; fixes too big y?)
» Scaling factor < 1.000
+ Platykurtosis (too-thin tails; fixes too small x?)

- The scaling factor will now show up in all likelihood ratio tests

(deviance tests)
> So you must add it to your calculations
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Adjusted Standard Errors

- The standard errors for all parameter estimates will be different
under MLR

> Remember, these are used in Wald tests

. If the data show leptokurtosis (too-fat tails):
> Increases information matrix
> Fixes too small SEs

. If the data show platykurtosis (too-thin tails):
> Lowers values in information matrix
> Fixes too big SEs
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Data Analysis Example with MLR

To demonstrate, we will revisit our analysis of the example data for
today’s class using MLR

- So far, we have estimated two models:
» Saturated model
> Independence model

- The results of the two analyses (ML v. MLR) will be compared

- Because MLR is something does not affect our results if we have
MVN data, we should have been using MLR all along
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Mplus Syntax

. Saturated model syntax:

TITLE:

Example of Multivariate Normal Distribution
Using Robust haximum Likelihood
Unstructured Covariance Matrix

DATA:
FILE = jobperf.csv;

VARIABLE:

NAMES = ID IQ perfC perfMCAR perfMaR;
IDVARIABLE = ID;

USEVARIABLE = IQ perfC;

MISSING = .;

ANALYSIS:
ESTIMATOR = MLR;

MODEL:

Listing the wvariable by itself estimates the variance und
IQ; perfC;

The WITH statement provides an estimate of the covariance

~e (1

OUTPUT:
TECHS STANDARDIZED RESIDUAL SAMPSTAT:
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Mplus Output: Log-likelihoods Under ML and MLR

Under ML Under MLR
MCODEL FIT INFORMATION MODEL FIT INFORMATION
Number of Free Parameters 5 Number of Free Parameters 5
Loglikelihood Loglikelihood
HO Value -124.939 HO Value -124.939
H1 Value -124.939 HO Scaling Correction Factor 0.9095
for MLR
H1 Value -124.939
H1l Scaling Correction Factor 0.9095
for MLR

- The actual log-likelihoods are the same
> But, under MLR, the log-likelihood gets re-scaled

- The scaling factor for the saturated model is 0.9095 — indicates
slightly platykurtic data
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Adding Scaling Factors to the Analysis

The MLR-estimated scaling factors are used to rescale the log-

likelihoods under LR test model comparisons
> Extra calculations are needed

The rescaled LR test is given by:
—2(108 Lrestricted _ log qull)

CLR
The denominator is found by the scaling factors (¢) and number of
parameters (q) in each model:

(QTestricted)(Crestricted) _ (qull)(cfull)
(Qrestricted _ qull)

LRRS —_

CLR —

Sometimes ¢, can be negative - so take the absolute value
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Model Comparison: Independence v. Saturated Model

Independence Model Saturated Model
MODEL FIT INFORMATION MODEL FIT INFORMATICN
Number of Free Parameters 3

Number of Free Parameters

Loglikelihood Loglikelihood

HO Value -148.500 HO Valus —124.939

HO Sealing Coxrection Factor 1.2223 HO Scaling Correction Factor 0.9095
for MLR for MLR

H1 Value 124.939 H1 Value -124.939

H1 Scaling Correction Factox 0.9085 Hl Scaling Correction Factor 0.9095
for MLR for MLR

- To compare the independence model against the saturated model
we must first calculate the scaling factor

druu = 5—number of parameters in saturated model

Crurr = 0.9095 —scaling factor from saturated model

Qreduced = 3 —humber of parameters in one-factor model
Creduced = 1.2223 —scaling factor from one-factor model

vV V VYV V¥V

- The scaling factor for the LR test is then:
3% 1.2223 —5%0.9095 - —0.8806 A

CLR= 3_5 _2 403
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Model Comparison #1: Independence v. Saturated Model

- The next step is to calculate the re-scaled likelihood ratio test using
the original log-likelihoods and the scaling factor:

—2(108 Lyestrictea — 108 LfUll)
LRRS — Cir

 —2(—148.500 — —124.939)

= 2403 = 107.0225

- Finally, we use the rescaled LR test as we would in any other LR test-

compare it to a y* with df = difference in number of parameters

(here 2)
> | use “=chidist(107.0225,1)” in Excel

> Our test has p-value < .001 — so the one-factor model is not preferred to the
H1 saturated model
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Mplus Output: Chi-Square Test of Model Fit

« Our model comparison is what Mplus calculates and reports under
the section “Chi-Square Test of Model Fit”

Chi-Square Test of Model Fit

Value 107.007*

Degrees of Freedom 2

P-Value 0.0000

Scaling Correction Factor 0.4404
for MLR

w The chi-square wvalue for MLM, MILMV, MLR, ULSMV, WLSM and WLSMV cannot be used
for chi-square difference testing in the regular way. MLM, MLR and WLSM
chi-square difference testing is described on the Mplus website. MLMV, WLSMV,
and ULSMV difference testing is done using the DIFFTEST option.
- We will see that in the use of SEM, many caution against using this
test...even so, the MLR version has better performance

> Still not used as frequently as the other fit indices
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Results Unchanged Under MLR

Information criteria are unchanged under MLR:

Under ML Under MLR

" > - ~-
Information Criteria Information Criteria

Akaike (ARIC) 259.877 Akaike (RIC)

Bayesian (BIC) 264.856 3aYESlaﬁ_(31?)A

Sample-Size Adjusted BIC 249.442 Sample-Size Adjusted BIC
(n* = (n + 2) / 24) (n* = (n + 2) / 24)
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Standard Errors/Wald Tests Under MLR

Under ML Under MLR

MCDEL RESULTS
MODEL RESULTS

Two-Tailed

Two-Tailed
Estimate S.E. Est./S.E. P-Value Estimate S.E. Est./S.E. E-Value
IQ WITH IQ WITH
PERFC 19.500 9.151 2.131 0.033 PERFC 19.500 6.578 2.964 0.003
Means Means
IQ 100.000 3.079 32.478 0.000 10 ~ 100.000 3-013 333’9 0.000
PERFC 10.350 0.584 17.714 0.000 FERFC 10.350 0.584 17.714 ©.000
v Variances
ariances . i L IQ 189.600 56.722 3.343 0.001
10 189.600 59.957 3.162 0.002 PERFC 6.827 1.831 3.729 0.000
PERFC 6.827 2.159 3.162 0.002

- The SEs of our model under MLR are smaller than the SEs under ML
> As such, the values of the Wald tests are larger (SEs are the denominator)
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MLR: The Take-Home Point

If you feel you have continuous data that are (tenuously) normally
distributed, use MLR

> Any time you use SEM/CFA/Path Analysis as we have to this point
> In general, likert-type items with 5 or more categories are treated this way

> If data aren’t/cannot be considered normal we should still use different
distributional assumptions

. |If data truly are MVN, then MLR doesn’t adjust anything

If data are not MVN (but are still continuous), then MLR adjusts the
important inferential portions of the results
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WRAPPING UP



Wrapping Up

- Today was a refresher course on ML and “Robust” ML estimation

> These topics will come back to us each week — so lots of opportunity
for practice

- These topics are important when using Mplus as there are quite a
few different estimators in the package
> ML is not always the default

- Homework #2: available on our website — due next Wednesday
(January 23"9) at 11:59am
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