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Today’s Class

- Putting it all together:

> Path Analysis
+ Observed variables

> Confirmatory Factor Analysis / Measurement Models
+ Latent variables

« Concerns in building structural equation models
> Model-predicted covariance matrices for path analysis with observed and latent variables

- Examples of SEM uses
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UNDERLYING THEORY OF STRUCTURAL
EQUATION MODELS



Structural Equation Models

- Although the term SEM can be applied to many settings, | view the label as being used to
describe analyses with observed and latent variables

« A structural equation model consists of two “parts”:
> Measurement model(s) for each latent variable
> Path analysis between the latent and observed variables

- Up to this point, we have covered both in isolation — today we put them together to show

how the process works
> You will see this extra step is pretty straight forward...
> ...but that added complexity becomes an issue when it comes to model fit
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REVIEW OF PATH ANALYSIS



Types of Variables in the Analysis

- Animportant distinction in path analysis and SEM is between endogenous and
exogenous variables

- Endogenous variable(s): variables whose variability is explained by one or more variables in
a model
> Inlinear regression, the dependent variable is the only endogenous variable in an analysis

- Exogenous variable(s): variables whose variability is not explained by any variables in
a model
> Inlinear regression, the independent variable(s) are the exogenous variables in the analysis
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Direct and Indirect Effects of HSL on MSE
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Path Analysis in Matrix Form

Our path model simultaneous equations were
CC; = + BES HSL; + ef*
MSE; = B"* + /3 (et CC + ﬁ,@”SSEHSLL +¢/"%F

> p =2 endogenous variables
> q =1 exogenous variable

- Alternatively, we could rephrase this in matrix form:
yi=a+By, +TIx; +;
Where:
[HSL;] (matrix of size g x 1 containing observed exogenous variables)

[MSE ] (matrix of size p x 1 containing observed endogenous variables)

Then:
a = MSE] (matrix of size p x 1 containing intercepts for endogenous variables)
0 . . . :
B = |, ,usE 0 (a p x p matrix of coefficients relating the endogenous variables to themselves)
LPcc
0
I' = Z“;lé (matrix of size p x q relating exogenous variables to endogenous variable(s))
|PHSL |
" CC
¢; = 1\14515 ~ N, (0,¥) (where W is the p x p residual covariance matrix)
€]

Here, W will be diagonal (no covariance) as we do not have any more degrees of freedom

PSYC 948: Lecture 11



Path Analysis in Matrix Form

The equations from the previous slide are called the structural form of the path model

Another form that exists in literature is the reduced form, where all endogenous variables
are on the left-hand side

yi=a+By;, +T'x; +{;

yi—Byi=a+TIx;+{; <

I-B)y,=a+Tx;+{; &

yi=0-B)la+(A-B)Irx; + 1—-B)™1{; &
yi =M+ Myx; + {;
Where {; ~ N, (0, ¥*)

The reduced form is not as frequently used in practice, but does arise in some research
areas and in identification

PSYC 948: Lecture 11



Path Analysis with Matrices

- Although not explained by our model, we could state that the mean vector of exogenous
variables was:

iy = [Uyst]

- Likewise, we can state that the covariance matrix of the exogenous variables is
— [~2
® = [045,]

- We will use these terms in our matrix-version of the model predicted mean and covariance
matrix
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Model Predicted Mean Vector and
Covariance Matrix

The unconditional mean of the endogenous variables is:

fi, = (-B)la+1-B) Iy,

The covariance matrix of the exogenous and endogenous variables is then:

g _ [ Yonly Ywith x] B [(1 —B)"1(rer’ +¥)(1-B)T (I-B)re

yXx — |XwithY Xonly or’(1—B)™ b

The point: that model specifications have direct implications for the parameters of the
multivariate normal distribution
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Matching Matrices with Results

- To more specifically link our results to the matrices from the previous page:

Name Matrix Model Estimates
Residual Covariance Matrix p [33.797 0 ]
0 103.128
Regression Weights of Exogenous onto Endogenous r [0.696
4.159
Covariance Matrix of Exogenous Variables Lo [1.743]
Mean Vector of Exogenous Variables Uy [4.912]
Vector of Endogenous Variable Intercepts a [ 6.904
49.313
Matrix of Endogenous Regression Weights B [ 0 O]
0.363 0
Inverse matrix used in calculations (I1-B)! [ 1 0]
—-0.363 1
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Model Predicted Mean Vector and
Covariance Matrix

- The estimated conditional mean of the endogenous variables is:

Model Estimated Means/Intercepts/Thresholds Residuals for Means/Intercepts/Thresholds
cc MSE HSL cC MSE HSL
1 10.322 73.495 4.912 1 0.000 0.000 0.000

> These values correspond exactly (saturated model)
- The estimated covariance matrix of the exogenous and endogenous variables is:

Model Estimated Covariances/Correlations/Residual Correlations

CcC MSE HSL
CcC 34.641
MSE 17.629 141.526
HSL 1.213 7.692 1.743

- These are mostly exact — small differences

Residuals for Covariances/Correlations/Residual Correlations

CC MSE HSL
cc 0.000
MSE -0.002 -0.018
HSL 0.000 -0.001 0.000
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REVIEW OF CONFIRMATORY FACTOR ANALYSIS



One-Factor Model of Five GRI Items

- The CFA model for the five GRI items:
Yo1 = + 41Fs1 + €51
Yoo =ty + A21Fs1 + e
Yoz = Uz + A31Fs1 + €3
Yoo =ty + A41Fs1 + €5y
Yo5 = Us + A51Fs1 + €5

- Here:
» Yg; - response of subject s on item i
Ui - intercept of item i (listed as a mean as this is typically what it becomes)
A;1 - factor loading of item i on factor 1 (only one factor today)
F¢, - latent “factor score” for subject s (same for all items) to factor 1 (only one today)
es; - regression-like residual for subject s on item i

YV V VYV V

+ We assume es; ~ N(0,1?); 7 is called the unique variance of item i
+ We also assume e,; and F;; are independent

: 2
- Also, we will assume Fy¢; ~ N(,uFl, aFl)
> Typically up, = 0 (but not always)
> Factor variance can be estimated or fixed (more on both in identification)
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Our CFA Model Path Diagram

(Some of these values will have to be
restricted for the model to be identified)
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OF, Measurement Model:
N's = factor loadings

e’s = error variances
lW's = item intercepts

Structural Model:

Ky :
0,2;1 = factor variance

K, = factor mean
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Model Predicted Mean Vector

Combining across all items, the mean vector for the items is given by:

Hy = My + App
Uy, 1 M7 [Aa] (U, + Aa1lr,
Uy, U, o Ui, + Aa1lr,
Hyy [ = | B [+ (231 | |pr, | = [ + 43108,
Hy, K, Agq Ui, + Aa1lp,
Hrsl - W] 1, | (Ur, + As1UF, |
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Model Implied Covariance Matrix

« Combining across all items, the covariance matrix for the items is given by:
Xy = APAT + W

> Get used to seeing this — although you already have (see the regression slides)

B 2
Oy 2
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PUTTING IT TOGETHER: PATH ANALYSIS WITH
LATENT VARIABLES



A Small SEM Example

- To demonstrate how SEM works, we will use a very small example:
> Measurement model: three GRI items forming one latent construct (“gambling”)
+ Note: with three items, the measurement model is just-identified (meaning perfect fit)
> Path model: The prediction of “gambling” by the SOG score

+ Note: here we treat SOGS score as being observed without error
— The reason: the SOGS items are all binary indicators (0/1)...they won’t work with an assumption of MVN
— A better solution: model the SOGS items with a logit link function (called IRT/IFA) — covered if we have time

GRI1

GRI3 & Gambling SOGS

GRI5
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Step #1: Building the Measurement Model

« The first step in a structural equation model is to build the measurement model
> Here, the measurement model is simplified so as to show how SEM works

TITLE:
Gambling Research Instrument Items
Data from 1192 College Students/144 Gamblers
41 Likert Items (1-6): GRI1-GRIZ1
12 SOGS items (S0OGS4-5S0GS15), mostly dichotomous

Identification: Marker Item Factor Variance, Zero Factor Mean

One-Factor GAMBLING tendencies model with 3 GRI items
SEM with SOGS score predicting GAMBLING

DATA:
FILE = gamblingdata.csv;

VARIABLE:
NAMES = GRI1-GRI41l S0GS54-50GS15 Student ID;
USEVARIABLES = GRI1 GRI3 GRIS:
IDVARIABLE = ID;
MISSING = ALL(99):

DEFINE:
S50GSsum = MEAN (SOGS4-50GS15):

ANALYSIS:
ESTIMATOR = MLR;

MODEL:
GAMBLING by GRI1 GRI3 GRIS:

purpuT:
STANDARDIZED MODINDICES (ALL 0) RESIDUAL;
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Measurement Model Fit Assessment

« Our three-item measurement model fits perfectly

MODEL FIT INFORMATION

Number of Free Parameters

Loglikelihood

HO Value

HO Scaling Correction Factor
for MLR

H1l Value

Hl Scaling Correction Factor
for MLR

-5254.609
2.236

-5254.609
2.236

Chi-Square Test of Model Fit

Value
Degrees of Freedom

P-Value

0.000
0
0.0000

RMSEA (Root Mean Square Error Of Approximation)

CFI/TLI

Estimate

90 Perxcent C.I.
Probability RMSEA <=

CFI
TLI

SRMR (Standardized Root Mean Square Residual)

Value
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Measurement Model Parameter Estimates

MODEL RESULTS

GAMBLING BY
GRI1
GRI3
GRIS

Intercepts
GRI1
GRI3
GRIS

Variances
GAMBLING

Residual Variances
GRI1
GRI3
GRIS
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Estimate

1.000
0.726
0.996

1.823
. 548
1.593

=

0.407

0.648
0.535
0.546

S.E.

0.000
0.062
0.087

0.028
0.024
0.027

0.047

0.042
0.027
0.040

Est./S.E.

999.000
11.792
11.397

64.873
65.364
59.747

8.647

15.246
19.459
13.631

Two-Tailed
P-Value

999.000
0.000
0.000

0.000
0.000
0.000

0.000

0.000
0.000
0.000

STANDARDIZED MODEL RESULTS

STDYX Standardization

Estimate

GAMBLING BY

GRI1 0.621

GRI3 0.535

GRIS 0.652
Intercepts

GRI1 1.77

GRI3 1.788

GRIS 1.63
Variances

GAMBLING 1.000
Residual Variances

GRI1 0.614

GRI3 0.714

GRIS 0.575

S.E.

0.031
0.030
0.032

0.044
0.044
0.042

0.000

0.039
0.032
0.041

Est./S.E.

19.963
17.942
20.596

40.426
40.545
39.090

999.000

15.888
22.354
13.925

Two-Tailed
P-Value

0.000
0.000
0.000

0.000
0.000
0.000

999.000

0.000
0.000
0.000
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Measurement Model Path Diagram
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Measurement Model:
Implied Covariance Matrix

The measurement model implied covariance matrix is:

1.000

— T
L, =A, @A+,

= (0.726([0.407][1.000 0.726 0.996]

10.996
0.648

+1 O
L0
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0
0.535
0

GRI1
GRI3
GRIS

GRI1
GRI3
GRIS

0
0.546

Model Estimated Covariances/Correlations/Residual
GRI1 GRI3 GRIS
1.055
0.295 0.749
0.405 0.294 0.950

0.295 0.749 0.294

0 Hl.OSS 0.295 0.405
0.405 0.297 0.950

Correlations

Residuals for Covariances/Correlations/Residual Correlations

GRI1 GRI3 GRIS
0.000
0.000 0.000
0.000 0.000 0.000
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Step 2: Estimating the
Structural Equation Model

« Once the measurement model is found to fit, the next step is to estimate the full structural
equation model

SOGSsum = MEAN (S0OGS54-5S0GS195) ;

MODEL:
GAMBLING by GRI1 GRI3 GRIS;

GAMBLING on SOGSsum;

« SOGSsum is treated as an exogenous variable
> Also called an independent variable

« GAMBLING (and the items measuring it) are treated as endogenous variables
> Also called dependent variables
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SEM: Model Identification

- As SEM integrates both measurement and path models, the identification rules for SEM
borrow from both

> The measurement model (for all latent variables) must be locally identified
+ Including rules for setting scale of latent factor(s)
> The path model must be identified

- A necessary but not sufficient way of ensuring identification is the t-rule (counting rule)

> The number of parameters must be less than the total number of means + variances/covariances of all
observed variables in the analysis

« Number of observed variables in our analysis: 4
> Number of variances/covariances: 4*(4+1)/2 = 10
> Number of means: 4
> Total: 14

« Number of parameters in our analysis

> 2 factor loadings + 1 factor variance + 3 unique variances + 1 direct effect + 3 item intercepts + 1
exogenous variance = 12
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SEM: Mplus Syntax

« The Mplus syntax is a combination of path and measurement models

VARIABLE:
NAMES = GRI1-GRI41l S0OGS4-S0GS15 Student ID;
USEVARIABLES = GRI1 GRI3 GRIS S0GSsum;
IDVARIABLE = ID;
MISSING = ALL(99);

DEFINE:
SOGSsum = MEAN (SOGS54-5S0GS195) ;

ANALYSIS:
ESTIMATOR = MLR;

MODEL:
GAMBLING by GRI1 GRI3 GRIS;

GAMBLING on SOGSsum;
SOGSsum;

PSYC 948: Lecture 11
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SEM: Model Fit Assessment

-  We have fewer parameters than the total possible 2 we must now assess our model fit

MODEL FIT INFORMATION

Number of Free Parameters 12
Loglikelihood
HO Value -4578.581
HO Scaling Correction Factor 2.383
for MLR
H1l Value -4577.428
H1 Scaling Correction Factor 2.271
fAr MTR

Chi-Square Test of Model Fit

Value

Degrees of Freedom

P-Value

Scaling Correction Factor
for MLR

RMSEA (Root Mean Square Error Of Approximation

Estimate

90 Percent C.I.

Probability RMSEA <= .05
CFI/TLI

CFI
TILI
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0.000
0.000 0.049
0.954

1.000
1.005

1.444~*

0.4859
1.597
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SEM: Model Parameter Output

- Note: our measurement model parameters have changed slightly
> More on why in a moment

MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

GAMBLING BY

GRI1 1.000 0.000 999.000 999.000

GRI3 0.698 0.080 8.763 0.000

GRIS 1.017 0.109 9.320 0.000
GAMBLING ON

SOG55UM 2.243 0.240 9.354 0.000
Means

SO0GSsSUM 0.416 0.005 892.474 0.000
Intercepts

GRI1 0.889 0.096 9.278 0.000

GRI3 0.896 0.066 13.58 0.000

GRIS 0.643 0.092 7.007 0.000
Variances

S0GSsUM 0.027 0.002 11.749 0.000
Residual Variances

GRI1 0.646 0.068 9.519 0.000

GRI3 0.550 0.045 12.117 0.000

GRIS 0.527 0.053 9.897 0.000

GAMBLING 0.272 0.039 7.046 0.000
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SEM Model Path Diagram
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SEM: Standardized Model Parameters

- Here, we see that the SOGS has a correlation of .577 with the GAMBLING latent variable

STDYX Standardization

GAMBLING BY
GRI1
GRI3
GRIS

GAMBLING ON
SOGSSUM

Means
S0OGSSUM

Intercepts
GRI1
GRI3
GRIS

Variances
SCGSSUM

Residual Variances

GRI1
GRI3
GRIS
GAMBLING
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o O

[T R I ]

Estimate

.622
.516
.667

.577

.530

.865
.035
. 660

.000

.613
. 734
.555
.667

S.E.

0.041
0.042
0.039

0.040

0.104
0.095
0.106

0.000

0.052
0.043
0.051
0.047

Est./S.E.

15.
12.
17.

14

29.

w

999.

11.
17.
10.
.316

14

032
401
298

.323

372

.351
. 917
.217

000

g8
109
794

Two-Tailed

P-Value

o o

o

999.

0O 0O 0O

.000
.000
.000

.000

.000

.000
.000
.000

000

.000
.000
.000
.000

R-SQUARE

Cbserved
Variable

GRI1
GRI3
GRIS

Latent
Variable

GAMBLING

Estimate

0.387

0.266

0.445

Estimate

0.333

S.E.
0.052

0.043
0.051

0.047

Est./S.E.

.516
.200
. 649

m on -l

Est./S.E.

7.161

Two-Tailed
P-Value

0.000
0.000
0.000

Two-Tailed
P-Value

0.000
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SEM: Model Implied Covariance Matrices

- Notice our model-implied covariance matrix:

Model Estimated Covariances/Correlations/Residual Correlations

GRI1 GRI3 GRIS SOGS5UM
GRI1 1.055
GRI3 0.285 0.749
GRIS 0.415 0.290 0.949
SOGSSUM 0.061 0.042 0.062 0.027

« And the residuals from the saturated model:

Residuals for Covariances/Correlations/Residual Correlations

GRI1 GRI3 GRIS SOGSSUM
GRI1 0.000
GRI3 0.010 0.000
GRIS -0.010 0.004 0.000
SCGS5UM 0.001 -0.003 0.001 0.000

- NEW WRINKLES:
> MEASUREMENT MODEL DOES NOT FIT SATURATED MODEL PERFECTLY
> OFF-DIAGONAL OF BLOCK CAN CAUSE MODEL MISFIT
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Equation Form of Overall Structural Equation Model

Our structural equation model simultaneous equations were

For the “measurement” portion:
GRIlS = ,ull + AllGAMBLINGsl + €51

GRIBS = #13 + AglGAMBLINGsl + €53
GRISS = ,uIS + ASlGAMBLINGsl + €55

IH

portion:
GAMBLINGgy = BgAMBHNG 4 BFOGSSOGSs + 8,

For the “structura

» p = 3 endogenous variables
> q = 1 exogenous variable

PSYC 948: Lecture 11
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Matrix Form of Structural Equation Model

- In matrices, the measurement portion of the model is given by:
Y, =u; + An, + KX, + e
with e; ~ N(0,¥,)
« Further, the structural portion of the model is given by:
N, = o+ By, + I'X; + {
with {; ~ N(0,9)

« In terms of our model:
> There are no direct exogenous predictors of our endogenous measurement model parameters
(so K =0)
> There are no direct predictors of our endogenous latent variables by other latent variables (so B = 0)
> We standardized our factor mean to zero (so a = 0)

PSYC 948: Lecture 11
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Putting Values into Matrices: Measurement Model

0.889
n; = 10.896| - item intercepts
0.643

1.000
0.698| - factor loadings for endogenous variables

1.017

A=

0.646 0 0
Y,=( 0 0.550 0 |- unique variances of endogenous variables

0 0 0.527

PSYC 948: Lecture 11
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Putting Values into Matrices: Structural Model

I' = [2.243] - direct regression coefficient of exogenous variable onto endogenous factor

® = [0.272] - residual variance of endogenous factor

® = [0.027] - variance/covariance matrix for the exogenous variables

PSYC 948: Lecture 11
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Model Implied Covariance Matrix

The covariance matrix of the exogenous and endogenous variables is then:

s _|[Yonly Ywith x] _ [Ay(FCDI‘T +0)A, +¥, ATO

yx — [XwithY Xonly (:_)[‘TAg; P

The point: the structural equation model can have significant model misfit due to both the
measurement model and the structural model

PSYC 948: Lecture 11
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Issues in Building Structural Equation Models

- Because of the multiple ways SEMs can exhibit model misfit, the process of building SEMs
can be difficult

- In general, current practice states that measurement models should be built first — then the

full SEM

- Some researchers offer questionable advice:
> Use only just-identified measurement models

+ Why: fewer degrees of freedom where misfit can happen
+ Bad idea: poor reliability for latent constructs

» Build measurement models with SEMs simultaneously
+ Why: full calibration can lead to better overall model fit
+ Bad idea: measurement should happen in absence of exogenous variables

> Use two-stage analyses for SEMs
+ Why: measurement model then cannot change
+ Bad idea: propagation of measurement error for some factor score methods

PSYC 948: Lecture 11
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SEM IN PRACTICE: EXAMPLES FROM REAL
WORLD ANALYSES



SEM in Practice

- To demonstrate the practical side of building structural equation models, | will go over a
couple examples from real data analyses

- In these examples, the model-building process will be discussed, along with varying
methods for analysis

- The data for these examples is not available — but the practice should show how decisions
are made about how SEMs are constructed and interpreted

PSYC 948: Lecture 11
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Example #1: Evaluation of Academic Progress

- This example comes from data from a large southeastern university

- Data include:
> PRE: scores on a pretest of mathematics ability, administered to students when they arrive at the
university
+ Scores are from total number correct — alpha reliability of .81
> POST: scores on a posttest of mathematics ability (using the same items), administered to students after
two years at the university
+ Scores are from total number correct — alpha reliability of .81

» Course Enrollments:
+ If a student had enrolled in one of 29 courses related to math and science education at the university

— Data are binary — 0 = did not enroll; 1 = enrolled

PSYC 948: Lecture 11
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Example #1: Research Questions

- The evaluation sought to answer the following questions:
> Did scores improve on the posttest when compared with the pretest?
» Did coursework significantly affect the posttest scores?
> Did the score on the pretest predict the coursework students took?

> Did coursework mediate the relationship between pretest and posttest?

PSYC 948: Lecture 11
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Building the SEM: Modeling Issues

- Because of the nature of the data, several modeling issues must be considered when using
SEM to answer the research questions

- Because pretest and posttest are sum-scores (with a known reliability), each can be used as

a single indicator
> In this case, the posttest single indicator will be problematic because of the residual variance (after
prediction) is less than the overall variance
+ So must put single indicator model in last

- Each of the courses is binary (dichotomous), so including them in the model directly is not

an option
> Model would treat them as normally distributed if not categorical
+ Software won’t allow categorical mediators

> Could use them as:

+ Counts for specific categories (then treat count as approximately normal)
— What we did

+ Indicators of a coursework factor
— Hard to envision
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Modeling Strategy

« Courses:
> Create counts of each course category (3 categories total)

> Treat counts as approximately normal (and use MLR)

> Use all variables in a path model where:
+ Pretest predicts course counts and posttest score
+ Course counts predict posttest score

> Treat pretest and posttest as single indicators where variance of each is weighted by the .81 reliability of

each
+ Final step in the analysis
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Initial Syntax: For Descriptive Statistics

VARIABLE:
NAMES = ID Pre Post PostEff PostImp G1_M103 G1_M10S

G1_M107 G1_M205 G1_M220 G1_M231 G1_M235

G2_C120 G2_C131 G2_G112 G2_G101 G2_G121

G2_P140 G2_P215 G2_P240 G3_Bl114 G3_B270 G3_G196
G3_G103 G3_G110 G3_G200 G3_G211 G3_G102

G3_G113 G3_G122 G3_G115 G3_Al120 G3_Al2l
G4_G104;

USEVARIABLE = Pre Post G1_SUM G2_SUM G3_SUM;

IDVARIABLE = ID;
MISSING = .;

DEFINE:
G1_SUM = SUM(G1_M103 G1_M105 G1_M107 G1_M20S5S G1_M220 G1_M231 G1_M235);

G2_SUM = SUM(G2 _C120 G2 C131 G2 G112 G2 G101 G2 G121 G2 _P140 G2_P215 G2 P240);
G3_SUM = SUM(G3_B114 G3_B270 G3_G196 G3_G103 G3_G110 G3_G200 G3_G211 G3_G102
G3_G113 G3_G122 G3_G115 G3_A120 G3_A121 G4_G104);
ANALYSIS:

ESTIMATOR = MLR;
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Initial Output: Descriptive Statistics

MCDEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value
Means

PRE 46.226 0.278 166.563 0.000
POST 49.264 0.307 160.283 0.000
G1_SUM 1.073 0.021 52.167 0.000
G2_SUM 0.385 0.026 14.998 0.000
G3_SUM 0.513 0.026 20.065 0.000

Variances
PRE 40.206 2.788 14.421 0.000
POST 49.313 4.199 11.744 0.000
G1_SUM 0.221 0.018 12.484 0.000
G2_SUM 0.344 0.024 14.331 0.000
G3_SUM 0.342 0.018 19.030 0.000
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Model

#1: Path Model w/o

Posttest Single Indicator

« The Mplus syntax:

. Model fit:

Chi-Square Test of Model Fit
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MODEL:
PRETEST BY PREE@1;
PRE (varPRE):;

G1_SUM ON PRETEST;
G2_SUM ON PRETEST;
G3_SUM ON PRETEST;

POST ON G1_S5SUM G2_SUM G3_SUM PRETEST:;

Value 6.026% Estimate
Degrees of Freedom 3 90 Percent C.I.
P-Value 0.1104 Probability RMSEA <= .
Scaling Correction Factor 1.063
for MLR
CFI/TLI
CFI
TLI

SRMR (Standardized Root Mean Square Residual)

Value

0.025

RMSEA (Root Mean Square Error Of Approximation)

0.044
0.000
0.497

0.095
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Model #1: Relevant Output

- For building a single indicator out of posttest:
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Residual Variances
PRE
POST
G1_SUM
G2_5UM
G3_SuM

0O 0 0O 0O -l

.639
.586
.218
. 344
. 342

O O O Wo

.000
.847
.017
.024
.018

999

.000
.950

12.574

14.390
.116

999.

o O O

000

.000
.000
.000
.000
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Model #2: Pre/Post Single Indicators

« Mplus Syntax:

MCODEL:
PRETEST BY PRE@1;
POSTTEST BY POSTE1;

PRE (varPRE):
POST (varPOST):

Gl _SUM ON PRETEST;
G2_SUM ON PRETEST:
G3_5SUM ON PRETEST:
POSTTEST ON G1_SUM G2_SUM G3_SUM

MODEL CONSTRAINT:
varPRE = (1-.81)*%40.,206;
varPOST = (1-.81)*30.586;

MCODEL INDIRECT:
POSTTEST IND PRETEST:
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PRETEST;
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Model #2: Model Fit Assessment

Chi-Square Test of Model Fit

Mplus Output:

RMSEA (Root Mean Square Error Of Approximation)

Value 6.026~ Estimate 0.044
Degrees of Freedom 3 90 Percent C.I. 0.000
P-Value 0.1104 Probability RMSEA <= .05 0.497

Scaling Correction Factor 1.063

° for MLR
CFI/TLI
SRMR (Standardized Root Mean Square Residual) CFI 0.982
TLI 0.939
Value 0.025

PRE
POST

G1_SUM
G2_suM
G3_SUM
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0.000

0.000
0.005
0.020
0.019

Need for residual covariances between coursework sums

Normalized Residuals for Covariances/Correlations/Residual Correlations
PRE

POST G1_SUM G2_SUM G3_SUM
0.000

-0.009 0.000

-0.019 0.426 0.000
0.019 1.370 1.977 0.000

0.095
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Model #3: Single Indicators with
Residual Covariances

«  Mplus syntax:

MODEL:
PRETEST BY PRE@1;
PCSTTEST BY POST@1;

PRE (varPRE):
POST (varPOST):;

G1_SUM ON PRETEST;

G2_SUM ON PRETEST;

G3_SUM ON PRETEST;

POSTTEST ON G1_SUM G2_SUM G3_SUM PRETEST;

G1_SUM G2_SUM G3_SUM WITH G1_SUM G2_SUM G3_SUM;
MODEL CONSTRAINT:

varPRE = (1-.81)%40.206;

varPOST = (1-.81)%30.586;

MODEL INDIRECT:
POSTTEST IND PRETEST:

- Note: this model has no degrees of freedom left — it is just-identified
> Therefore model fit is perfect
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Model #3: Results

MODEL RESULTIS

PRETEST BY
PRE

POSTTEST BY
POST

POSTTEST ON
PRETEST

POSTTEST ON
G1_SUM
G2_suM
G3_suM

Residual Variances
PRE
POST
G1_SUM
G2_SUM
G3_SUM
POSTTEST
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Estimate

1.000

1.000

0.756

-0.106
0.163
-0.123

7.639
5.811
0.218
0.344
0.342
24.775

0.000

0.000

0.055

0.446
0.526
0.448

0.000
0.000
0.017
0.024
0.018
3.847

Est./S.E.

999.000

999.000

13.839

-0.237
0.310
-0.275

999.000
999.000
12.571
14,392
19.111
6.440

Two-Tailed
P-Value

999.000

999.000

0.000

0.813
0.756
0.784

999.000
999.000
0.000
0.000
0.000
0.000

G1_SUM ON
PRETEST

G2_SUM  ON
PRETEST

G3_SUM CN
PRETEST

G1_SUM WITH
G2_SuM
G3_SUM

G2_SUM WITH
G3_SUM

Intercepts
PRE
POST
G1_SuM
G2_sUuM
G3_SUM

Variances
PRETEST

-0.008

0.003

-0.002

0.005
0.018

0.031

46.226
49.378
1.073
0.385
0.513

32.566

0.004

0.005

0.00S

0.012
0.013

0.015

0.278
0.615
0.021
0.026
0.026

-2.139

0.597

-0.498

0.432
1.384

166.563
80.270
52.167
14.998
20.065

11.681

0.032

0.551

0.619

0.665
0.166

0.047

0.000
0.000
0.000
0.000
0.000

0.000



Model #3 Results

STDYX Standardization

PRETEST BY
PRE

POSTTEST BY
POST

POSTTEST ON
PRETEST

POSTTEST ON
G1_SuM
G2_SUM
G3_SUM

G1_SUM ON
PRETEST

G2_SUM ON
PRETEST

G3_5SUM ON
PRETEST

G1_SUM WITH

G2_SuM
G3_suM

G2_5UM WITH

G3_SuM
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Estimate

0.900

0.939

0.654

-0.008
0.015
-0.011

-0.101

0.030

-0.024

0.020
0.064

S.E.

0.007

0.005

0.044

0.032
0.047
0.040

0.047

0.050

0.048

0.045
0.046

0.045

Est./S.E.

122.95¢6

175.828

14.932

-0.237
0.309
-0.275

-2.171

0.599

-0.498

0.432
1.396

1.984

Two-Tailed
P-Value

0.000

0.000

0.000

0.030

0.549

0.666
0.163

0.047
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Model #3 Path Diagram

32.566 (2.788) | pretest

1.000 (.000)

7.639 (.000) —» pre
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-.008 (.004)

ol sum 218 (.017)
06 (.446)
.005{(.012)
756 (.055)

.003 (.005)

-.002 (.005)

g2 sum

031 (.015)

g3_sum

ZZZ (.018)

24.775 (3.847)

018 (.013)

1.000 (.000)

post

e 5.811 (.000)




Model #3 Results
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R-SQUARE

Observed
Variable

PRE
POST

G1_SUM
G2_SUM
G3_SuM

Latent
Variable

POSTTEST

Estimate

.810
.88

.010
.001
.001

O 0O 0O 00O

Estimate

0.430

S.E.

0.013
0.010
0.009
0.003
0.002

0.058

Est./S.E.

61.478
87.914
.085
.300
.249

-

O oM

Est./S.E.

7.408

Two-Tailed
B-Value

.000
.000
.278
.764
.803

0O 0O 0O 0 0o

Two-Tailed
P-Value

0.000
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Model #3 Results

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Effects from PRETEST to POSTITEST

Total
Total indirect

Specific indirect

POSTTEST
G1_SUM
PRETEST

POSTTEST
G2_SuM
PRETEST

POSTTEST
G3_SUM
PRETEST

Direct

POSTTEST
PRETEST
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Estimate

0.758
0.002

0.001

0.001

0.000

0.756

0.054
0.004

0.004

0.002

0.001

0.055

Est./S.E.

13.941
0.403

13.839

Two-Tailed
P-Value

0.000
0.687

0.775

0.797

0.000
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Model #3 Results

STDYX Standardization

Estimate S5.E.
Effects from PRETEST to POSTTEST

Total 0.656 0.044
Total indirect 0.001 0.004

Specific indirect

POSTTEST
G1_SUM
PRETEST 0.001 0.003

POSTTEST
G2_SUM
PRETEST 0.000 0.002

POSTTEST
G3_SUM
PRETEST 0.000 0.001

Direct

POSTTEST
PRETEST 0.654 0.044
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Est./S.E.

14.895
0.402

14.932

Two-Tailed
B-Value

0.776

0.796

0.000
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Example #1: Research Questions...Answered

- The evaluation sought to answer the following questions:

> Did scores improve on the posttest when compared with the pretest?

+ Yes, posttest scores improved by .654 SD for every one SD increase in the pretest score (p <.001), holding
coursework constant

> Did coursework significantly affect the posttest scores?
+ No, no coursework was significantly related to the posttest

> Did the score on the pretest predict the coursework students took?

+ The G1 coursework was significantly reduced, with -.101 SD in number of courses taken for every SD increase
in the pretest score (p =.030)

> Did coursework mediate the relationship between pretest
and posttest?
+ No, there was no indirect effect of pretest on posttest as mediated by coursework (p = .687)
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CONCLUDING REMARKS



Wrapping Up...

- Today was about putting it all together: path analysis and measurement models

- The SEM framework allows for powerful inferential analyses to be conducted in a

statistically rigorous manner
> But with the power comes a lot of frustration — data do not always cooperate

- You will find that people take great liberties with how they conduct SEM analyses
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