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Measurement Invariance in CFA

- Today’s topics:
> What is measurement invariance?

> 2 major types of invariance
+ Measurement and Structural

> Sequence of tests for invariance
+ Metric, Scalar, Residual.... then Structural
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MEASUREMENT INVARIANCE



What is ‘Measurement Invariance’?

. aka ‘factorial invariance’ and ‘measurement equivalence’

- Concerns the extent to which are the psychometric properties of the
observed indicators are transportable (generalizable) across groups
or over time/condition

> In other words, that we are measuring the same construct
in the same way in different groups or over time/condition

> In other words, observed scores should depend only on latent construct
scores, and not on group membership or occasion

> In other words, that observed differences between groups reflect TRUE
differences in the amount or variability of the construct

- Relevant concern in many applied settings
> e.g., across cultures, language, age, modality
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2 Major Types of Factorial Invariance

. Measurement Invariance concerns how the items measure the

latent construct across groups or over time

> Measurement model invariance: same factor loadings,
same item intercepts, (possibly) same residual (co)variances

> Measurement model invariance is a precursor to ANY group comparison
(whether it is tested/acknowledged or not)

- Measurement invariance is often assumed, not tested
» Even a t-test assumes measurement invariance
> Modeling change over time assumes measurement invariance

> People tend to accept this assumption unless you try to use a factor model...
then they usually insist on testing invariance
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2 Major Types of Factorial Invariance

. Structural Invariance concerns how the latent factors are distributed

and related in the separate populations

> Structural model invariance: same factor variances and covariances (or same
higher-order structure) and factor means

. Structural invariance may not hold... and that’s ok
» Assuming measurement invariance holds, structural invariance represents
‘real’ differences in the construct across groups/time

» Structural non-invariance does not indicate a problem with your instrument —
group structural differences may be of interest
+ e.g., real growth of factors over time
+ e.g., differentiation or de-differentiation of latent traits
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Today’s Example

«  We return to our familiar gambling data: our one factor model...but with 10 items

- To demonstrate our invariance example, we will seek to test factorial invariance of the two
groups of people we have: students versus experienced gamblers

- We expect these groups will be different, but we will seek to determine this statistically

> We will use the robust ML correction to the model Chi-Square, which will alter the way we do the
likelihood ratio tests
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Overall Syntax for 10-Item/1-Factor Model

TITLE:
Gamkling Research Instrument Items
Data from 1192 College Students/144 Gamblers
41 Likert Items (1-6): GRI1-GRI41
12 SOGS items (S0GS54-S0GS15), mostly dichotomous

Identification: Marker Item Factor Variance, Zero Factor Mean

One-Factor GAMBLING tendencies model with 10 GRI items
MLR is used to adjust the model Chi-Square

DATA:
FILE = gamblingdata.csv;

VARIABLE:
NAMES = GRI1-GRI41 S0GS4-5S0GS15 Student ID;
USEVARIABLES = GRI1 GRI3 GRIS GRI9 GRI10 GRI13
GRI14 GRI18 GRI21 GRI23;
IDVARIABLE = ID;
MISSING = ALL(99):

ANALYSIS:
ESTIMATCR = MLR;

MODEL:
GAMBLING by GRI1 GRI3 GRIS GRIY9 GRI10 GRI13 GRI14 GRI18 GRI21 GRIZ23;

QUTPUT:
STANDARDIZED MODINDICES (ALL 0) RESIDUAL;

PLOT:
TYPE = PLCT1 PLOTZ2 PLOT3:;
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Overall Analysis Results: Model Fit

MODEL FIT INFORMATION
Number of Free Parameters
Loglikelihood

HO Value

HO Scaling Correction Factor
for MLR

H1l Value

Hl Scaling Correction Factor
for MLR

Chi-Square Test of Model Fit

Value

Degrees of Freedom

P-Value

Scaling Correction Factor

for MLR

* The chi-square value for MLM,
for chi-square difference testing in the regular way. MLM, MLR and WLSM
chi-square difference testing is described on the Mplus website.

30
Estimate
90 Percent C.I.
Probability RMSEA <= .05
-16648.054
2.366 CFI/TLI
-16567.417 CFI
1.938 TLI
102.635*
35
0.0000
1.571
MMV, MLR, ULSMV, WLSM and WLSMV cannot be used

RMSEA (Root Mean Square Error Of Approximation)

and ULSMV difference testing is done using the DIFFTEST option.
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MLMV, WLSMV,

0.038
0.030
0.989

0.969
0.960

0.047



CFA Configural Baseline Model: Marker Item for Factor Variance

For a two-factor model:

COVEqr2

item loadings
item intercepts
item error variances

Measurement Model:
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M1

Ms2

Structural Model:

factor variances
factor covariances
factor means
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Levels of Invariance across Groups

. Step 0: Omnibus test of equality of the overall indicator covariance
matrix across groups
> Do the matrices differ between groups, on the whole?
» If not, game over. You are done. You have invariance. Congratulations.

> Many people disagree with the necessity or usefulness of this test to begin
testing invariance... why might that be?

+ People also differ in whether invariance should go from top-down or bottom-up
directions... | favor bottom-up for the same reason.

. Let’s proceed with an example with our one-factor gambling data
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Logic and Statistics of the Omnibus Test

- The omnibus test compares the full saturated covariance matrix for both groups
> This test is likely to be rejected due to the strictness of its constraints — but if not, we can stop!

- Theidea is to treat each group independently

> Independent groups means that we can represent the covariance matrix for each in a block
diagonal form

PSYC 948: Lecture 13

12



Omnibus Test:
Block Diagonal Covariance Matrix

For both groups, we are building the following:

5 X, 0
B 0 Z,
¥, isthe 10 items x 10 items covariance matrix for group 1 (the students)

X, is the 10 items x 10 items covariance matrix for group 2 (the non-students)

0 in the off diagonal represents independent groups
The omnibus hypothesis test is then:
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Omnibus Test: Null Model Syntax

ANALYSIS:
ESTIMATOR = MLR;

VARIABLE:
NAMES = GRI1-GRI41l S0GS54-S0GS15 Student ID;

USEVARIABLES = GRI1 GRI3 GRIS GRIY9 GRI10 GRI1S3

GRI14 GRI1g8 GRIZ21 GRIZ23;
IDVARIABLE = ID;
MISSING = ALL(99):

MODEL:

GRI1 GRI3 GRIS GRIYS GRI10 GRI13 GRI14 GRIls
GRI1 GRI3 GRIS GRIY9 GRI10 GRI13 GRI14 GRI1S8
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GRI21 GRIZ23 WITH
GRI21 GRI23;

14



Omnibus Test: Alternative Model Syntax

ANALYSIS:
ESTIMATOR = MLR;

VARIABLE:
NAMES = GRI1-GRI41l SOGS4-5S0GS15 Student ID;
USEVARIABLES = GRI1 GRI3 GRIS GRI9 GRI10 GRI13
GRI14 GRI18 GRI21 GRI23:;
IDVARIABLE = ID;
MISSING = ALL(99);

GROUPING = student (1 = student 0 = nonstudent):;

MODEL:
[GRI1] (meanl); [GRI3] (mean3); [GRIS5] (means):
[GRI%] (mean9); [GRI10] (meanl0); [GRI13] (meanl3):
[GRI14] (meanld4); [GRI18] (meanl8); [GRI21l] (mean2l):;
[GRI23] (mean23):;

GRI1 GRI3 GRIS GRIY9 GRI10 GRI13 GRI14 GRI18 GRIZ21 GRI23 WITH
GRI1 GRI3 GRIS GRIY9 GRI10 GRI13 GRI14 GRI18 GRIZ21 GRI23;

MODEL nonstudent:
[GRI1] (meanl); [GRI3] (mean3); [GRIS] (meanl):
[GRI%] (mean9); [GRI10] (meanl0); [GRI13] (meanl3):;
[GRI14] (meanl4); [GRI18] (meanl8); [GRI21] (meanz2l):;
[GRI23] (mean23);

GRI1 GRI3 GRIS GRIY9 GRI10 GRI13 GRI14 GRI18 GRIZ21 GRIZ23 WITH
GRI1 GRI3 GRIS GRIY9 GRI10 GRI13 GRI14 GRI18 GRIZ21 GRI23;
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Omnibus Test: Log-likelihood Results

Null Model:

MODEL FIT INFORMATICN
Number of Free Parameters
Loglikelihood

HO Value

HO Scaling Correction Factor
for MLR

Hl Value

H1l Scaling Correction Factor
for MLR

Null Model Parameters: 10 means +

Alternative Model Parameters: 10 means + 2 *
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65

10(10+1)

10(10+1)

Alternative Model:

MODEL FIT INFORMATION
Number of Free Parameters
Loglikelihood

HO Value

HO Scaling Correction Factor
for MLR

H1l Value

Hl1 Scaling Correction Factor
for MLR

= 55 variances/covariances = 65

-15985.

120

= 110 variance/covariances = 120



Omnibus Test Statistic Under MLR

To use MLR, we must first get our scale factor:
(Grestrictea) (Crestricted) — (qull)(cfull)

(CIrestricted - qull)
65 %1.938 — 120 * 1.729

65— 120

CLrR =

Then, we compute our LR test statistic

- —2(log Lrestrictea — 108 Lsuy)  —2(—16,567.417 — —15,985.313)
RS = —

CLR 1.482

The p-value (using a Chi-Square with 55 DF) is < .001
> Therefore, these data fail the omnibus test
> We must now further investigate the invariance of the groups
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= 785.565
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Levels of Invariance across Groups

I” H

. Step 1: Test “configural” invariance
» Do the groups have the same factor structure, broadly construed?

> Same number of factors, same pattern of free/0 loadings

— same conceptual definition of constructs being measured

+ We will assume this is the case for our two groups — otherwise we would have to examine
the fit of one-, two-, and three- factor solutions

> Test factor structure within each group separately, pray they are ‘close
enough’ (if not, game over, pretty much)

> Then estimate a combined model in which all model parameters are allowed
to differ across groups
+ This will be the baseline model for further comparisons
+ Model ¥? and df will be additive across groups

— Keep in mind that different sample sizes across groups will result in differential
weighting of the obtained x? across groups
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Configural Invariance Model: Same Factor Structure; All Parameters Separate

Group 1 (subscript = item, group):

DF=65-30=25

Yiu=H + 1F +egy
Y21 = oy + Ay Fy ey
Y31 = Mgy + Ay F; +ey
Ya1 = Hag + Ay Fy +ey
Y51 = Mgy + A Fy +eg
Y1 = Mg + Ag Fy +eg
Y71 = Hyy + Ay Fy ey
Y1 = Hgy + Ag Fy +eg

Yo1 = Mgy + AgsF; + €9y

Group 2 (subscript = item, group):

DF=65-30=25

Y=H,t+ 1F t+eyp
Y22 = Hyp + ApoFy +ey
Y32 = Mgy + AyF; + ey
Ya2 = Hap + ApoFy +eyy
Y5, = Hsy + A Fy +egy
Ye2 = Hey + AgoFy + e
Y72 = Hyp + ApoFy +epy
Yg2 = Hgy + AgoFy + gy

Yo, = Mgy + Ag,F; + €9,

Y101 = Mypr + AjosF1 + €405 Y102 = Migy + AjgoF1 + €40,

Factor 1 has own variance, Factor 1 has own variance,
but mean fixed to O but mean fixed to O
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Configural Invariance Model in Matrices

For both groups, we are buiIding the following:

[ 9 ] [A P, AT +W¥,, 0
YXp = T
92 Agzq)nggz + ‘sz

And, now the mean vector gets involved:
g = ”.91] — ”191]
B ”gz ”Igz

The configural model will essentially become our alternative model in future
model comparisons
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Configural Model Syntax

MODEL:

lintercept 1

abels

[GRI1] (INT1_1):
[GRIZ®] (INT9 1);
[GRI14) (INT14_1); [GRI18)]
[GRI23] (INT23_1):

'loading labels
GAMBLING BY GRI1@1 (L1 1)

GRI3
GRIS
GRIS
GRI1O0
GRI13
GRI14
GRI1S8
GRI21
GRI23

[GRI3] (INT3_1); [GRI5) (INT5_1):
[GRI10] (INT10 1); [GRI13] (INT13 1);

(L3_1)
(L5_1)
(L9_1)
(L10_1)
(L13_1)
(L14_1)
(L18_1)
(L21_1)
(L23_1):

'unique wvariance labels
GRI1 (Ul_1); GRI3 (U3_1):; GRIS (US_1):

GRIS (U9_1); GRI1O0 (U10_1); GRI13 (U13_1):;
GRI14 (Ul4_1):; GRI18 (Uls_1); GRI21 (U21_1):
GRI23 (U23_1):

[GRMBLINGEO)
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(Fmean 1)
GAMBLING (Fvar_1):

(INT18_1); [GRI21)

(INT21 1):

MODEL nonstudent:
'intercept labels

[GRI1] (INT1_2); [GRI3] (INT3_2); [GRIS5] (INTS_2);
[GRI9] (INT9_2); [GRI10] (INT10_2); [GRI13] (INT13_2):;
[GRI14] (INT14_2); [GRI18] (INT18_2):; [GRI21]) (INT21_ 2):
[GRI23] (INT23_2):
'loading labels
GAMBLING BY GRI1@1 (L1_2)

GRI3 (L3_2)

GRIS (L5_2)

GRI®S (L9_2)

GRI10 (L10_2)

GRI13 (L13_2)

GRI14 (L14_2)

GRI1g (Lig_2)

GRI21 (L21_2)

GRI23 (L23_2):

'unique wvariance labels

GRI1 (Ul_2); GRI3 (U3_2); GRIS (US5_2):

GRI9 (U9_2); GRI1O0 (U10_2):; GRI13 (U13_2):
GRI14 (Ul14_2); GRI1g& (Uls_2); GRIZ1 (U21_2);

GRI23 (U23_2);

[GAMBLING@O) (Fmean 2):

GAMBLING (Fvar_2):
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Levels of Invariance across Groups

. Step 2: Test “metric” invariance
> Also called “weak factorial invariance”

> Do the groups have the same factor loadings?

+ Each congeneric item is still allowed to have a different loading
(i.e., this is not a tau-equivalent model)

+ Loadings for same item are constrained to equality across groups

> Marker items (that are fixed=1 for identification) are assumed invariant —
because they are already fixed, they cannot be tested

+ For this reason, | suggest moving to an alternative specification: Estimate all factor
loadings, but fix the factor variance(s) to 1 in the reference group only (still free
them in the alternative group)

+ This allows us to evaluate ALL loadings and still identify the model
(see Yoon & Millsap, 2007)
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Metric Invariance Model:

Same Factor Loadings (saves +9 df here)

Group 1 (subscript = item, group):

Y11= Hyg +AFy
Y21 = Hyy + ASF,
Y31 = Mg + AsF,
Y41 = Hag + AgF,
Y51 = Mgy + AsFy
Y61 = Mgy + AgFy
Y71 = Hyg + ASF,
Yg1 = Mgy + AgFy
Yo1 = Hoy + AgF,

Yi01 = Mypr + AgoFy + €101

Factor 1 has variance fixed to 1,

t€
+ €y
+ €3
+ €4
+ €5
+ €59
+ €y
+ €5y

+ €9q

but mean fixed to 0
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Group 2 (subscript = item, group):

Y = My tAFy ey
Y2 = Hpy +AF; + ey
Y3, = U3y +AsF; + ey
Yar = Mgy Ay ey
Y5, = Hsy + AsFy +eg,
Ye2 = Mgy + AgFy + g
Y72 = Hyp + AsFy +epy
Yg2 = Hgy + AgFy + gy
Yo, = Hop + AgFy + gy

Y102 = Mygy + AgoFy + €90,

Factor 1 has freely estimated variance,
but mean fixed to O (for now)
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Metric Invariance Model in Matrices

For both groups, we are building the following:

T
o _[Fn O] _[A®AT 4,
B 0 I, 0

And, now the mean vector gets involved:
g = ”.91] — ”191
B ”gz ”Igz

The metric model hypothesis test is:

Hy: Ay, = Ay, = A (metric invariance model)

Hi: A4, # Ay, (configural invariance model)
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0
T
A®, AT +W,

|
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Metric Invariance Syntax

MODEL:
'intercept labels
[GRI1] (INT1_1):; [GRI3] (INT3_1); [GRIS] (INIS5_1):
[GRI9] (INT9_1); [GRI10] (INT10_1); [GRI13] (INT13 1):
[GRI14] (INT14_1):; [GRI18] (INT18_1):; [GRIZ21] (INT21_ 1)
[GRI23] (INT23_1):
!loading labels
GAMBLING BY GRI1@1 (L1_1)
GRI3 (L3_1)
GRIS (L5_1)
GRIS (Le_1)
GRI10 (L10_1)
GRI13 (L13_1)
GRI14 (L14_1)
GRI18 (Li18_1)
GRI21 (L21_1)
GRI23 (L23_1):

'unique variance labels

GRI1 (Ul_1); GRI3 (U3_1):; GRIS (US_1):

GRI® (U9_1); GRI1O0 (U10_1): GRI13 (U13_1):
GRI14 (Ul4_1): GRI1g& (Ul8_1); GRI21 (U21_1):
GRI23 (U23_1):

[GAMBLING@0] (Fmean 1);
GAMBLING (Fvar 1):
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YODEL nonstudent:

'intercept labels

[GRI1] (INT1_2): [GRI3] (INT3_2):; [GRIS] (INIS_2):
[GRI9] (INT9_2); [GRI10] (INT10_2); [GRI13] (INT13_2):;
[GRI14] (INT14_2); [GRI18] (INT18_2); [GRIZ21] (INT21_2):
[GRI23] (INT23_2):
'loading labels
GAMBLING BY GRI1@1 (L1_2)

GRI3 (L3_2)

GRIS (L5_2)

GRIS (L9_2)

GRI10 (L10_2)

GRI13 (L13_2)

GRI14 (L14_2)

GRI1g (L18_2)

GRI21 (L21_2)

GRI23 (L23_2):

'unique variance labels

GRI1 (U1_2); GRI3 (U3_2); GRIS (U5_2):

GRI9 (U9_2):; GRI1O0 (U10_2); GRI13 (U13_2):
GRI14 (Ul4_2):; GRI18 (Ul8_2): GRIZ21 (U21_2):
GRI23 (U23_2):

[GAMBLING@O] (Fmean 2):;
GAMBLING (Fvar_2):
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Metric Invariance Test: Log-likelihood Results

Null (Metric Invariance) Model:

Alternative (Configural) Model:

MODEL FIT INFCRMATICN MODEL FIT INFORMATION
Number of Free Parameters 51 Number of Free Parameters
Loglikelihood Loglikelihood
HO Value -16244.476 HO Value -16029.
HO Scaling Correction Factor 2.042 HO Scaling Correction Factor ]
for MLR for MLR
H1l Value -15909.738 H1 Value -15909.
H1l Scaling Correction Factor 1.661 H1l Scaling Correction Factor ]
for MLR for MLR

Null (Metric Invariance) Model Parameters:
2*10 intercepts + 10 loadings + 2*10 unique variances + 1 Factor Variance = 51

Alternative (Configural) Model Parameters:
2*10 intercepts + 2*9 loadings + 2*10 unique variances + 2 Factor Variance = 60
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062
968

738

661
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Metric Invariance Test Statistic Under MLR

To use MLR, we must first get our scale factor:
(Grestrictea) (Crestricted) — (qull)(cfull)

(CIrestricted - qull)
51 % 2.042 — 60 % 1.968

51 -60

CLrR =

Then, we compute our LR test statistic

e ~2(108 Lyestrictea — 108 Layy)  —2(—16,244.476 — —16,029.062)
RS = —

CLR 1.549

The p-value (using a Chi-Square with 9 DF) is < .001
> Therefore, these data fail the metric invariance test
> Across all items, the groups do not have invariant factor loadings
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Metric Invariance

- Compare fit of metric invariance to configural invariance model:

> Does the model fit not get worse (-2LL diff not significant)?
+ We are taking parameters away, so it can only get worse...

+ Don’t forget to fix variance=1 in reference group only (free in other group)!
Otherwise you are imposing a structural constraint too by accident!

> Either way, inspect the modification indices to see if there are any items whose
loadings want to differ between groups
+ Retest the model as needed after releasing one loading at a time

- Do you have at least partial* metric invariance?
> Congrats! Your construct is measured in the same way across groups

> If not, it doesn’t make sense to evaluate how relationships involving the factor differ
across groups (because the factor itself differs)

* No real consensus on how much is “partial”, but at least 1 per factor!
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Inspection of Modification Indices for
Partial metric Invariance

- The modification indices can help us determine if we have partial metric invariance
> MiIs are about the same for each parameter, in both groups

Non-Students: Students:

M.I. E.P.C. 5td E.P.C. S5tdy¥X E.P.c. Group STUDENT

Group NONSTUDENT

ON/BY Statements
CN/BY Statements

GRI1 ON GAMBLING /
GRI1 ON GAMBLING / GAMBLING BY GRI1 0.293 -0.007 -0.007 -0.008
GAMBLING BY GRI1 , 0.293 0.031 0.058 0.043 GRI3 ON GAMBLING /
GRI3 ON GAMBLING
GAMBLING BY GRI3 13.971 -0.208 -0.395 0.206 _MUSLING BY GRE3 .972 2037 0037 9.0%e
GRIS ON GAMBLING /
GRIS ON GAMBLING / A ) GAMBLING BY GRIS 0.286 -0.004 -0.004 -0.005
giﬁr,ms 2;; g;i;ums , 0.287 0.036 0.068 0.044 oo ON GAMBLING /
GAMBLING BY GRI9 10.759 0.134 0.254 0.233  CRAMBLING BY GRI9 10.752 -0.01%9 -0.019 -0.032
GRI10 ON GAMBLING / GRI1O ON GAMBLING /
GAMBLING BY GRI10 0.527 0.039 0.074 0.055 [GAMBLING BY GRI1O 0.526 =0.006 =0.006 =0.008
GRI13  ON GAMBLING / GRI13  ON GAMBLING /
GAMBLING BY GRI13 3.490 0.085 0.161 0.121  GAMBLING BY GRI13 3.491 -0.020 -0.020 -0.024
GRI14 ON GAMBLING / GRI14 ON GAMBLING /
GAMBLING BY GRI14 24.029 -0.390 -0.740 -0.404 GAMBLING BY GRI14 24.021 0.117 0.117 0.083
GRI18 ON GAMBLING / GRI18 ON GAMBLING /
GAMBLING BY GRI1S 0.384 -0.025 -0.048 -0.037 GAMBLING BY GRI18 0.384 0.017 0.017 0.014
GRI21 ON GAMBLING / GRI21 ON GEMBLING /
GAMBLING BY GRI21 0.529 0.035 0.066 0.053  GAMBLING BY GRI21 0.529 -0.006 -0.006 -0.008
GRI23 ON GAMBLING / GRI23 ON GAMBLING /
GAMBLING BY GRIZ23 6.552 -0.175 -0.332 -0.207 GAMBLING BY GRI23 6.549 0.020 0.020 0.024
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Modification Index Specifications

The modification indices showed that the following items are likely to be non-invariant

(different between groups):
> 1,3,9,14,23

- The modification indices also showed that the following items are likely to be invariant (not

different):
> 5,10, 13, 18,21

- Therefore, we may have partial metric invariance, which is important if we wish to
compare factor means

- Because Modification Indices are one-DF tests, we must add each one-at-a-time
> If some items are not invariant (different) — no further tests can be conducted on these items
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Testing Partial Invariance
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Test of -2ALL Difference

Model Model I;SalL(I; # Free | Diffin LL Sc?all?cn Abs Value DF Exact
HO LL Parms *-2 g Scaled Difff  Diff P-Value
Factor Correction
Da. Metric Invariance (All Loadings) -16,069.590 2.090 51
1.Configural Model -16,029.062 1.968 60
81.056 1.277 63.490 0.0000
Db. Metric Invariance (No 14) -16,052.342 2.068 52
1.Configural Model -16,029.062 1.968 60
46.560 1.318 35.326 0.0000
Dc. Metric Invariance (No 14 or 3) -16,041.131 2.061 53
1.Configural Model -16,029.062 1.968 60
24.138 1.264 19.099 0.0079
Dd. Metric Invariance (No 14 or 3 or 23) |-16,033.941 2.039 54
1.Configural Model -16,029.062 1.968 60
9.758 1.329 7.342 0.2903
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Levels of Invariance across Groups

. Step 3: Test “scalar” (“strong”) invariance

» Do the groups have the same item intercepts?
+ Each congeneric item is allowed to have a different intercept
+ Intercepts for same item are constrained to equality across groups
+ Scalar invariance model says factor mean differences cause the item mean
differences (but the item intercepts should still be the same)
> If you use marker intercepts (that are fixed=0 for identification), they are
assumed invariant — because they are already fixed

+ So we will estimate all intercepts, but constrain the factor mean(s) to 0 in the
reference group so we can evaluate all intercepts

> Some folks might say that scalar invariance is not really necessary unless you
plan on comparing mean differences...
+ Scalar invariance doesn’t always get tested as a result
+ Probably better to error on the side of caution and examine it anyway
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Scalar Invariance Model:
Same Indicator Intercepts (saves +4 df here)

Group 1 (subscript = item, group): Group 2 (subscript = item, group):
Yi1= My + A Fy ey « Yo =Hp AR e
Y21 = oy + Ay Fy ey o« Yy = Hy AR ey
Y31 = M3+ AF, + ey « Y =Hg+ AR +ey,
Ya1 = Hag + Ay Fy +ey © Yoo = Hy +AuF ey
Y51 = Ms + Ak, +eg, « Yo, = M5+ AF, e,
Ye1= Mg+ Ak, +eg, « Yea = Mg+ AF, +eg
Y71 = Hyy + Ay Fy +egy © Y =Hy +AuF ey
Ys1= Mg+ AgFy + g « Yo = Mg+ AgF, +eg,
Yo1 = Mo + AgF; + g, © Yo = Mo+ ASF, +ey,
Yi01 = Mio1 + MoFy + €403 * Yi02 = Mg + MiioFy + €405
Factor 1 has variance fixed to 1, - Factor 1 has estimated variance,
but factor mean fixed to O (for group 1) but factor mean now free (for group 2)

and represents factor mean diffs
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Implications of Non-Invariance
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Scalar Invariance

- Only test those intercepts for which metric invariance holds
> Different slopes can create different intercepts as an artifact

- Compare fit of scalar invariance to metric invariance model:
> Does the model fit not get worse (-2LL diff not significant)?

> Either way, inspect the modification indices to see if there are any items whose
intercepts want to differ between groups
+ Retest the model as needed after releasing one intercept at a time

- Do you have at least partial* scalar invariance?
> Your construct accounts for the item mean differences across groups

> If not, it doesn’t make sense to evaluate mean differences in the factor across groups
(because other things create item mean differences)

* No real consensus on what is “partial”, but at least 1 per factor!
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Testing Scalar Invariance

Test of -2ALL Difference

Diff

Model Model HO LL # Free Diff in LL scalin Abs Value DF Exact
HO LL Scale Factor] Parms * -2 g Scaled Diff Diff P-Value
Correction
3a. Scalar Invariance (All Intercepts) -16,081.299 2.153 48]
2d. Metric Invariance (No 14 or 3 or 23) -16,033.941 2.039 54
94.716 1.127 84.043 0.0000
3b. Scalar Invariance (No 1) -16,058.009 2.140 49
2d. Metric Invariance (No 14 or 3 or 23) -16,033.941 2.039 54
48.136 1.049 45.879 0.0000
3c. Scalar Invariance (No 1 or 5) -16,041.250 2.128 50
2d. Metric Invariance (No 14 or 3 or 23) -16,033.941 2.039 54
14.618 0.927 15.778 0.0033]
3d. Scalar Invariance (No 1 or 5 or 18) -16,034.189 2.128 51
2d. Metric Invariance (No 14 or 3 or 23) -16,033.941 2.039 54
0.496 0.526 0.943 0.8150
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Levels of Invariance across Groups

. Step 4: Test “residual variance” invariance
> Also called “strict factorial invariance”

» Do the groups have the same item residual variances?
+ Each congeneric item is still allowed to have a different residual variance
+ Residual variances for the same item are constrained to equality across groups
+ Testing residual variances is the last step in assessing measurement invariance
— People disagree as to whether or not this is necessary

— Note: Equal residual variances are commonly mis-interpreted to mean “equal
reliabilities” — this is ONLY the case if the factor variances are the same across
groups, too

» We test that one next...
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Residual Variance Invariance Model:

—Same Error \ariances (saves +4 df here)

Group 1 (subscript = item, group): Group 2 (subscript = item, group):
Yi1= My + A Fy ey © Yo =Hyp HALF ey
Y21 = oy + Ay Fy ey © Yo = Hyy +HAnF; ey
Y31 = Mgy + Ay F; +ey © Y3 = Hgy + AR +ey
Yar =My + AFy ey * Y =Mt My ey
Y51 = Hs + AsFy +eg + Y5, = Hs +AsFy +eg
Ye1= Mg+ Ak, + g * Ye2 = HgtAFy +eg
Y71 = Hyy + Ay Fy +egy © Y =Hyp +AnF ey
Y1 = Hgy + Ag Fy +eg * Yg = Hgy + AgoFy +eg
Yo1 = Ho + AgF; + €4 * Yo = Ho + AgFy + g
Yi01 = Mio1 + MoFy + €403 * Yioa = Mg + MioFy + €45
Factor 1 has variance fixed to 1, - Factor 1 has estimated variance,
but factor mean fixed to O (for group 1) and factor mean is estimated (for group 2)

and represents factor mean diff
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Residual Invariance

- Only test those residual variances for which metric and scalar invariance
already hold

- Compare fit of residual invariance to scalar invariance model:
> Does the model fit not get worse (-2LL diff not significant)?

> Either way, inspect the modification indices to see if there are any items whose
residual variances want to differ between groups
+ Retest the model as needed after releasing one residual variance at a time

- Do you have at least partial* residual invariance?
> Your groups have the same amount of “not the factor” in each item
> If not??? Ongoing debate about the necessity of this

* No real consensus on what is “partial”, but at least 1 per factor!
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Testing Residual Invariance

Test of -2ALL Difference

Model Model HO LL # Free Diff in LL Sczll]icfw Abs Value DF Exact
HO LL Scale Factor|] Parms *-2 g Scaled Diff Diff P-Value
Correction
a. Residual Invariance -16,102.165 2.024 47
Bd. Scalar Invariance (No 1 or 5 or 18) -16,034.189 2.128 51
135.952 3.350 40.583 0.0000
la. Residual Invariance (no 9) -16,087.266 2.003] 48
Bd. Scalar Invariance (No 1 or 5 or 18) -16,034.189 2.128 51
106.154 4,128 25.716 0.0000
a. Residual Invariance (no 9 or 10) -16,052.902 2.049 49
Bd. Scalar Invariance (No 1 or 5 or 18) -16,034.189 2.128 51
37.426 4.064 9.210 0.0100
a. Residual Invariance (no 9 or 10 or 21) -16,035.809 2.077, 50
3d. Scalar Invariance (No 1 or 5 or 18) -16,034.189 2.128 51
3.240 4,678 0.693 0.4053
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Next, Structural Invariance

Are the factor variances the same across groups? (+1 df/factor)
> Fix the factor variance in the alternative group to 1 (as in the ref group)
> Did model fit get worse? If so, the groups differ in their factor variances

Is the factor covariance the same across groups? (+1 df per pair)
> Fix the factor covariances equal across groups, did model fit get worse?

> Factor correlation will only be the same across groups if the factor variances are the
same, too

Are the factor means the same across groups? (+1 df/factor)
> Fix the factor mean in the alternative group to 0 (as in the ref group)
> Did model fit get worse? If so, the groups differ in their factor means

It is not problematic if structural invariance doesn’t hold.

> Given measurement invariance, this is a substantive issue about differences in the
latent trait amounts and relations (and that’s ok).
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Testing Structural Invariance

Test of -2ALL Difference

Model Model HO LL # Free Diff in LL 5c2||1;:1 Abs Value DF Exact
HO LL Scale Factor] Parms *-2 g Scaled Diff Diff P-Value
Correction
5a. Structural - Factor Variance -16,105.850 2.093 49
Na. Residual Invariance (no 9 or 10 or 21) -16,035.809 2.077 50
140.082 1.293 108.339 0.0000
5a. Structural - Factor Mean -16,056.329 2.121 49
a. Residual Invariance (no 9 or 10 or 21) -16,035.809 2.077 50
41.040 -0.079 519.494 0.0000
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Final Results: Factor Mean/Variance

Factor Variance

Factor Variance

Group Factor Mean Factor Mean

SE SE
Non-Student 1.329 0.215 4.649 0.719
Student 0.000 0.000 1.000 0.000
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Setting up the Invariance Model

. Testing invariance across independent groups?
You need a multiple-group model:

> Estimate factor model for each group at once, but only the variables per group are
related within each subgroup model

> An alternative approach, MIMIC models, in which the grouping variable is entered as a
predictor, do not allow testing of equality of factor loadings or factor variances (so
MIMIC may be less useful)

. Testing invariance across repeated measures time/condition?

> Put all the observed indicators into the SAME MODEL
+ Correlate errors from same indicators across time (an accepted freebee)
+ Model gets big and complicated quickly

> Multiple group approach is not appropriate because observations from same person
are not independent
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CONCLUDING REMARKS



Wrapping Up Measurement Invariance in CFA

- The process of testing factorial invariance has two distinct parts:

> Measurement invariance: Is your construct being measured in the same way? Let’s
hope so!
+ Better hope for at least “partia
> Structural invariance: Do your groups differ in their distribution and/or means of the
construct? Let’s find out!

+ Structural differences are real and interpretable differences
given measurement invariance of the constructs

III

invariance... otherwise, game over.

- Measurement invariance is always assumed in any statistical analysis...
> But can be tested explicitly in a latent trait modeling framework
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Up Next...

« No homework this week!

- Next week: Putting it all together — Measurement models, structural models, and path
models
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