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Today’s Class

. Introduction and overview of the course
> Syllabus information

- Review of prerequisites
> Matrix algebra
> Multivariate normal distribution

. Introduction to Mplus
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Today’s Data Set

- Tointroduce and motivate SEM, and to review some prerequisites,
we will make use of an example data set

- Data come from a sample of 200 (79 men and 121 women)

participants in a study of the role of self esteem and motivation on
achievement test scores

. Participants responded to three tests/surveys:
> 20-item achievement test (each item was scored right/wrong)
> 5-item motivation survey (each item used a 9-point Likert scale for
responses; 1-9 in integers)
> 5-item self esteem survey (each item used a 9-point Likert scale for
responses; 1-9 in integers)

The researchers were interested in the effects of motivation and
self esteem on achievement
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Data File Setup

- The data file (exampledata.xls) has the following variables:
> ID —identification number for each respondent
AchievementScore — Total score for achievement items
SelfEsteemScore — Total score for self esteem items
MotivationScore — Total score for motivation items
SelfEsteem1-SelfEsteemb5 — Self esteem item responses
Motivation1l-Motivation5 — Motivation item responses
Achievementl-Achievement20 — Achievement item responses

vV V V V V V

- Note: In order to use this file with Mplus, you must:
> Save it as a comma-delimited file (.csv)
> Remove the first row containing the variable names
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MOTIVATION FOR LEARNING SEM



The Answer...Don’t Use Aggregates — USE SEM

. Structural Equation Modeling seeks to determine the

relationship between:

> Latent constructs only
+ Latent our example: Achievement, Motivation, and Self Esteem

> Latent and observed constructs
+ From our example: how does gender factor into the model?
> Complex relationships between latent constructs and

observed variables
+ Does motivation mediate the relationship between self esteem
and achievement?
+ Do either/both mediate the relationship between gender
and achievement?

- SEM is a generalization of linear modeling using observed and latent

(sometimes called random) variables

> | tend to think of SEM as a part of a bigger picture...you will see that SEM
people think everything is part of SEM
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Path Diagram of Our Regression Example

- A common way of depicting models in SEM is with a path diagram ::
a pictorial representation of the statistical model

Observed variables: Squares

Latent variables: Circles

Direct effects: Arrows with one head

»
»
»
> Indirect effects: Arrows with two heads

B Self

2
/ Esteem Path Diagram of

Regression Result

Achievement

P Motivation

Error
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A More Accurate Path Diagram
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The (Really) Big Picture

Statistical distributions are what drive the process
> Each distribution is described by a set of parameters
> Think of the normal distribution (mean and variance)

- Each of the lines represents model parameters

> The statistical distribution of the boxes and circles are described by the
model parameters

- Model parameters provide constraints to the statistical
distribution parameters

> Reduce complexity of model
> Provide for meaningful inference

- A model is bound by distributions assumed and, hence, the number
of possible parameters

> We will learn statistics and path models
+ Both are needed to be good at SEM
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MATRIX ALGEBRA



Introduction and Motivation for Matrix Algebra

Structural equation modeling and nearly all other multivariate
statistical techniques are described with matrix algebra
> Itis the language of modern statistics

-  When new methods are developed, the first published work

typically involves matrices
> |t makes technical writing more concise — formulae are smaller

- Have you seen:
> (XTX)~1XTy (from the general linear model)
> ADPAT + W (from confirmatory factor analysis)

. Useful tip: matrix algebra is a great way to get out of conversations
and other awkward moments
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Why Learn Matrix Algebra

- Matrix algebra can seem very abstract from the purposes of this
class (and statistics in general)

- Learning matrix algebra is important for:

> Understanding how statistical methods work
+ And when to use them (or not use them)

> Understanding what statistical methods mean
> Reading and writing results from new statistical methods

- Today’s class is the first lecture of learning the language of
structural equation modeling
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The Data...
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In Excel:

% A = % AlllE x50

Paste —— Font  Alignment Number Styles @ Cells E' #-
v v v v v 2
Clipboard Editing
Al v fe | SATV v

A B C D E F GO
1 [SATV SATM @
2 520 580
3 520 550
4 460 440
5 560 530
6 430 440
7 490 530
8 570 580
9 530 570
10 490 540
11 450 470
12 510 560
13 480 510
14 470 420
15 500 520
16 480 470
17 450 390
18 500 480
19 510 500
20 610 630
21 450 410
22 410 380
23 460 460
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THE BASICS: DEFINITIONS OF
MATRICES, VECTORS, AND SCALARS



Matrices

- A matrix is a rectangular array of data
> Used for storing numbers

. Matrices can have unlimited dimensions

> For our purposes all matrices will have two dimensions:
+ Row
+ Columns

- Matrices are symbolized by boldface font in text, typically with

capital letters
> Size (r rows x ¢ columns)

520 580
520 550
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Vectors

- A vector is a matrix where one dimension is equal to size 1

»> Column vector: a matrix of sizer x 1
(520]

1520
xq ="

1540 1000 x 1

> Row vector: a matrix of size 1 x c
X1. = [520 580]1x2

- Vectors are typically written in boldface font text, usually with
lowercase letters
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Scalars

- A scalaris just a single number (as we have known before)

- The name scalar is important: the number “scales” a vector — it can
make a vector “longer” or “shorter”
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Matrix Elements

- A matrix (or vector) is composed of a set of elements
> Each element is denoted by its position in the matrix (row and column)

. For our matrix of data X (size 1000 rows and 2 columns), each
element is denoted by:
xij

> The first subscript is the index for the rows: i =1,...,r (= 1000)

> The second subscript is the index for the columns: j=1,...,c (= 2)

- X11 X12
X21 X22

X =

X1000,1  *1000,2] (1000 x 2)
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Matrix Transpose

The transpose of a matrix is a reorganization of the matrix by
switching the indices for the rows and columns

520 580]
X — 5?0 5?0

xT=[520 520 - 540
580 550 - 660): x1000)

An element x;; in the original matrix X is now xj; in the transposed
matrix X’
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Types of Matrices

. Square Matrix: A matrix that has the same number of rows

and columns
> Correlation/covariance matrices are square matrices

- Diagonal Matrix: A diagonal matrix is a square matrix with
non-zero diagonal elements (x;; # 0 for i = j) and zeros

on the off-diagonal elements (x;; = 0 for i # j):

2.759 0 0
A=] 0 1.643 0
0 0 0.879

> We will use diagonal matrices to form correlation matrices

- Symmetric Matrix: A symmetric matrix is a square matrix where all
elements are reflected across the diagonal (a;; = a;;)
> Correlation and covariance matrices are symmetric matrices
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MATRIX ALGEBRA



Moving from Vectors to Matrices

A matrix can be thought of as a collection of vectors
» Matrix operations are vector operations on steroids

Matrix algebra defines a set of operations and entities on matrices
> | will present a version meant to mirror your previous algebra experiences

Definitions:
> ldentity matrix
» Zero vector
» Ones vector

Basic Operations:
> Addition
» Subtraction
» Multiplication
> “Division”
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Matrix Addition and Subtraction

. Matrix addition and subtraction are much like vector
addition/subtraction

.« Rules:
> Matrices must be the same size (rows and columns)

. Method:

> The new matrix is constructed of element-by-element addition/subtraction
of the previous matrices

. Order:

> The order of the matrices (pre- and post-) does not matter

PSYC 948: Lecture 1
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Matrix Addition/Subtraction

A+B-=
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aii

a1
A —

a3l

a4

a1 + b1
as1 + by
az1 + b3y
agy + by

a2

a32

@42

ai12 + b12
@99 + bao
az2 + b2
as2 + by

bi1r bi2
ba1 b2
ba1  bao
| b1 by
a1l — b1y
as1 — by

as1 — bay

agy — by

a2 — b1z
azz — bao
az2 — bao

a2 — bya
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More Matrix Addition

Matrix addition...using our data matrix:

X+X=
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520
520

1540

X =

580
550

660.

520 580]
520 550
520 580] [520+ 520 580+ 580
520 550 _ 520+ 520 550+ 550
540 6601 1540+ 540 660+ 660.
1040 1160

1040 1100

11080 1320.
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Matrix Multiplication

Matrix multiplication is a bit more complicated

> The new matrix may be a different size from either of the two multiplying
matrices

A(rx c)B(c xk) — C(rx k)

Rules:

> Pre-multiplying matrix must have number of columns equal to the number
of rows of the post-multiplying matrix

Method:

> The elements of the new matrix consist of the inner (dot) product of the
row vectors of the pre-multiplying matrix and the column vectors of the
post-multiplying matrix

Order:

> The order of the matrices (pre- and post-) matters
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Matrix Multiplication

AB
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“llbll
(L'Zlbll
aBlbll

(l.;lb“

allr ai2
a1 a22
asi as9
aj a42
+ a 12[)-21
+ (1-22})21

+ (13-2’)21

+ (1_1-2})-21

bl 1
b-21

a11b12 + ayabao
a1 bia + azabao
az1b1o + azabog

ajq le + (l.;-zb-z-z

L

~—

)12 b13

bg 3

-
|
N

ay1big + ajobos
az1b13 + azebos
(1.311)13 + (t32b23

aj1 1)1 3 + A42 b23
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Multiplication in Statistics

Many statistical formulae with summation can be re-expressed with
matrices

A common matrix multiplication form is: X7X
> Diagonal elements: YN 1X2
> Off-diagonal elements: Y, X;, Xip

For our SAT example:

z SATV/ z SATV;SATM,;
XTX = '
z SATV;SATM,; z SATM?

=

251 797,800 251, 928 400
251,928,400 254,862,700
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Matrix Multiplication...with Numbers

(520 580]

XTX=[520 520 --- 5407|520 550
580 550 -+ 660!] : :

1540 660

_ [520 * 520 4+ 520 * 520 + -+ 540 * 540 520 * 580 + 520 * 550 + 540 * 660
580 * 520 + 550 * 520 + ---+ 660 * 540 580 * 580 + 550 * 550 + 660 * 660
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|

251,797,800 251,928,400
251,928,400 254,862,700
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Identity Matrix

- The identity matrix is a matrix that, when pre- or post- multiplied by
another matrix results in the original matrix:
Al =A
IA=A

- The identity matrix is a square matrix that has:
> Diagonal elements =1
» Off-diagonal elements =0

100]

1(3x3)=[0 1 0
0 0 1
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Zero Vector

« The zero vector is a column vector of zeros

0
O(le) =10
0

-  When pre- or post- multiplied the result is the zero vector:
A0O=0
0OA=0
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Ones Vector

. A ones vectoris a column vector of 1s:
1

1zx1) = [1]
1

- The ones vector is useful for calculating statistical terms, such as the
mean vector and the covariance matrix

> Next class we will discuss what these matrices are, how we compute them,
and what the mean
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Matrix “Division”: The Inverse Matrix

Division from algebra:

. a 1 _
> First: —==a=b"1a
b b

> Second:= =1
a

“Division” in matrices serves a similar role

> For square and symmetric matrices, an inverse matrix is a matrix that when
pre- or post- multiplied with another matrix produces the identity matrix:
A71A =1
AATl =]

Calculation of the matrix inverse is complicated
> Even computers have a tough time

Not all matrices can be inverted

> Non-invertable matrices are called singular matrices

+ In statistics, singular matrices are commonly caused by linear dependencies
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The Inverse

- In data: the inverse shows up constantly in statistics

> Models which assume some type of (multivariate) normality need an
inverse covariance matrix

« Using our SAT example
> Our data matrix was size (1000 x 2), which is not invertible

> However X7 X was size (2 x 2) — square, and symmetric
XTX — [251,797,800 251,928,400
~1251,928,400 254,862,700
> The inverse is:
Tv—1 _ | 3.61E —7 —3.57E -7
(XTX)™ = [—3.575 —7 3.56E—7
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Matrix Algebra Operations

. (A+B)+C=

A+ (B+C)

. A+B=B+A

- c(A+B)=cA+cB
- (c+d)A=cA+dA
. (A+B) =A" +BT
- (cd)A = c(dA)

. (cA)T = cAT

- c(AB) = (cA)B

. A(BC) = (AB)C
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- A(B+C) =AB+ AC
. (AB)"
- For x; such that ij exists:

— BTAT

N N
ZAX] =AZX]
=1 j=1

Z(A )(ax)" =

XJ J

”MZ
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UNIVARIATE STATISTICAL
DISTRIBUTIONS



Univariate Normal Distribution

. For a continuous random variable x (ranging from —oo to ) the
univariate normal distribution function is:

. 1 (X o .ux)z
FO) =g &P (‘ 2072 )

. The shape of the distribution is governed by two parameter:
» The mean u,
> The variance o/

- The skewness (lean) and kurtosis (peakedness) are fixed

. Standard notation for normal distributions is X ~ N (u,, 0,?)
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Univariate Normal Distribution

1.0

u H=0, 0?=0.2, == _
H=0, O0?=1.0, m—

08 H=0, 0%=5.0, =—||

n H=-2, 0?=0.5, ==

0.6

Fx)
™~
_

0.4

0.0

For any value of x, f(x) gives the height of the curve (relative frequency)
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Uses of Distributions

. Statistical models make distributional assumptions on various
parameters and/or parts of data

- These assumptions govern:
> How models are estimated
> How inferences are made
> How missing data may be imputed

. |f data do not follow an assumed distribution, inferences may
be inaccurate
> Sometimes a problem, other times not so much

- Therefore, it can be helpful to check distributional assumptions
prior to (or while) running statistical analyses

PSYC 948: Lecture 1 39



BIVARIATE STATISTICS AND
DISTRIBUTIONS



Bivariate Statistics

- Up to this point, we have focused on only one of

our variables: height

> Looked at its marginal distribution (the distribution of height independent
of that of weight)

» Could have looked at weight, marginally

. Structural equation modeling is about exploring joint distributions

of multiple variables
> How sets of variables relate to each other

« As such, we will now look at the joint distributions of two variables
(x4, x,) or in matrix form: X (size N x 2)
> Beginning with two, then moving to anything more than two
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Multiple Means: The Mean Vector

. We can use a vector to describe the set of means for our data

X1
1 Xy
Xx=—X"1=1".
N
_fp_

> Here 1isa N x 1 vector of 1s
> The resulting mean vector is a p x 1 vector of means

« For our data:

< — 67 2 ] [xheight]
154 5 Xweight
« From Mplus:
Means
HEIGHT 67.280 0.653 103.029 0.000

WEIGHT 154.500 6.656 23.213 0.000

PSYC 948: Lecture 1

42



Mean Vector: Graphically

. The mean vector is the center of the distribution of
both variables

300

L 2
250 .
L 2 V'S ¢ ¢
— 200 * o * .
2 ¢ $ o .
g o *2.0 )4
£ 150 .« o o %o
- *
@ ¢ L 4
T * S $
2 100 * *
g L g
*s
50 .
O T T T T T 1
50 55 60 65 70 75 80

Height (in inches)
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Covariance of a Pair of Variables

. The covariance is a measure of the relatedness
> Expressed in the product of the units of the two

N
1 _ _
Sxixy — NZ(xu — X1)(xj2 — X3)
=1

> The covariance between height and weight was 155.4
(in inch-pounds)
> The denominator N is the ML version — unbiased is N-1

- Because the units of the covariance are difficult to understand, we
more commonly describe association (correlation) between two
variables with correlation

> Covariance divided by the product of each variable’s
standard deviation
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Covariance in Mplus

- Because Mplus defaults to the multivariate normal distribution,
covariance is the type of parameter natively estimated by

the program

> Additionally, the MODEL RESULTS are maximum likelihood estimates (MLEs,
see next week’s lecture)
+ This means the denominator is N, not N-1

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

HEIGHT WITH

WEIGHT 155.400 37.783 4,113 0.000
Means

HEIGHT 67.280 0.653 103.029% 0.000

WEIGHT 154.500 6.656 23.213 0.000
Variances

HEIGHT 21.322 4,264 5.000 0.000

WEIGHT 2215.007 443.001 5.000 0.000
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Correlation of a Pair of Variables

- Correlation is covariance divided by the product of the standard

deviation of each variable:
Sx1x2

rx1x2 =
2 2
\/le\/SxZ

» The correlation between height and weight was 0.72

. Correlation is unitless — it only ranges between -1 and 1

» If x; and x, had variances of 1, the covariance between them would
be a correlation
+ Covariance of standardized variables = correlation

PSYC 948: Lecture 1
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Covariance and Correlation in Matrices

- The covariance matrix (for any number of variables p) is found by:

1

S=—(X-1x")'(X-1x") =

"N

Y
le

_lexp

2
Sxp |

. If we take the SDs (the square root of the diagonal of the
covariance matrix) and put them into a diagonal matrix D, the
correlation matrix is found by:

R=D"1SD ! =
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2
le

2 2
\/le\/sxl

2 |2
\[le\/sxp

2 |2
\/le\/sxp

2
S
Xp

2 [c2
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Example Covariance Matrix

For our data, the covariance matrix was:

21.322 154.5

S — MODEL RESULTS

154.5 2,215.007

- The diagonal matrix D was: - wezenT
b _ [V21322 0
0 V2,215.007

Variances

The correlation matrix R was:
R=D1sp1

1
0

Estimate

155.400

V21.322 21.322 154.5

- 1 154.5 2,215.007

0

V2,215.007
R =|
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1.000 0.715
0.715 1.000

Two-Tailed

S.E. Est./S.E. E-Value
37.783 4,113 0.000
0.653 103.029 0.000
6.656 23.213 0.000
4,264 5.000 0.000
443.001 5.000 0.000

V2,215.007
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Correlation and Covariance in Mplus

- Mplus does not directly estimate correlation
> But you can obtain it in two ways with the output section:

SAMPSTAT STANDARDIZED

SAMPLE STATISTICS

STANDARDIZED MODEL RESULTS

Means
HEIGHT WEIGHT STDYX Standardization
1 67.280 154.500 Two-Tailed
Estimate S.E. Est./S.E. P-Value
Covariances HEIGHT WITH
HEIGHT WEIGHT WEIGHT 0.715 0.0689 10.347 0.000
HEIGHT 21.322 Means
WEIGHT 155.400 2215.010 HEIGHT 0.000
WEIGHT 0.000
Correlations Variances
HEIGHT WEIGHT HEIGHT 999.000
WEIGHT 999.000
HEIGHT 1.000
WEIGHT 0.715 1.000
Cov(X,)Y) . MEAN(X)
Cov is Mean is ————
SD(X)SD(Y) SD(X)
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Generalized Variance

The determinant of the sample covariance matrix is called the
generalized variance
Generalized Sample Variance = |S]|

It is @ measure of spread across all variables
> Reflecting how much overlap (covariance) in variables occurs
> Amount of overlap reduces the generalized sample variance

The generalized sample variance is:
» Largest when variables are uncorrelated
> Zero when variables form a linear dependency

In data:

> The generalized variance is seldom used descriptively, but shows up more
frequently in maximum likelihood functions
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Total Sample Variance

- The total sample variance is the sum of the variances of each
variable in the sample

> The sum of the diagonal elements of the sample covariance matrix

> The trace of the sample covariance matrix
4

Total Sample Variance = z S,%l. =1trS
i=1

- The total sample variance does not take into consideration the
covariances among the variables
> Will not equal zero if linearly dependency exists

. In data:

> The total sample variance is commonly used as the denominator (target)
when calculating variance accounted for measures
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BIVARIATE NORMAL DISTRIBUTION



Bivariate Normal Distribution

. The bivariate normal distribution is a statistical distribution for

two variables
> Both variable is normally distributed marginally (by itself)
> Together, they form a bivariate normal distribution

- The bivariate normal density provides the relatively frequency of
observing any pair of observations, x; = [Xi1 Xiz]

fx1,x;) =

1 Z
o _
210y, Oy, 1 — p? Pl 20— PZ)]
Where
;= (xil — .uxl)z _ Zp(xil _ .le)(xiz _ .uxz) n (xiz _ .uxz)
09?1 0102 09?2

2
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Bivariate Normal Plot #1

0.1
0114
0.12

0.08
0.05
004
0.02

oo
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I’lxl _
H= ['ule 0] =

Density Surface (3D)

2
O'xl

lexz

Jxlxz [1 0]

Density Surface (2D):

Contour Plot
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Bivariate Normal Plot #2

== =)

O-x1x2 2

Density Surface (3D) Density Surface (2D):
Contour Plot

PSYC 948: Lecture 1 55



MULTIVARIATE DISTRIBUTIONS
(VARIABLES 2 2)



Multivariate Normal Distribution

The multivariate normal distribution is the generalization of the

univariate normal distribution to multiple variables
> The bivariate normal distribution just shown is part of the MVN

The MVN provides the relative likelihood of observing all p variables

for a subject i simultaneously:
Xi — [xl'l xl'z xl'p]

The multivariate normal density function is:
T
1 x] —u) T H(x] —
Fx) = ——exp| - L8 . Sl
(2m)z|Z|2
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The Multivariate Normal Distribution

(x! =) =7 (x{ — )

f(x;) = 1€XpP | —
(2m)2|Z|2
_Mxl_
. l’l‘xz
- The mean vectoris u = :
_‘uxp_
_ O_le
) .. o)
. The covariance matrixis X = | *1*2
_O-xlxp

lexz

2
O'xz

2

> The covariance matrix must be non-singular (invertable)

PSYC 948: Lecture 1

58



Multivariate Normal Notation

- Standard notation for the multivariate normal distribution of p
variables is N, (u, X)

> Our bivariate normal would have been N, (u, X)

. In data:

> The multivariate normal distribution serves as the basis for most every
statistical technigue commonly used in the social and educational sciences
+ General linear models (ANOVA, regression, MANOVA)
+ General linear mixed models (HLM/multilevel models)
+ Factor and structural equation models (EFA, CFA, SEM, path models)
+ Multiple imputation for missing data

> Simply put, the world of commonly used statistics revolves around the
multivariate normal distribution

+ Understanding it is the key to understanding many statistical methods

PSYC 948: Lecture 1



Bivariate Normal Plot #2 (Multivariate Normal)

I e B P

O-x1x2

“Wlf,"a’o'::s\ gy -1t

Density Surface (3D) Density Surface (2D):
Contour Plot
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Multivariate Normal Properties

- The multivariate normal distribution has some useful properties
that show up in statistical methods

« |If X'is distributed multivariate normally:
1. Linear combinations of X are normally distributed
2. All subsets of X are multivariate normally distributed

3. A zero covariance between a pair of variables of X implies that the
variables are independent

4. Conditional distributions of X are multivariate normal
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Sampling Distributions of MVN Statistics

- Just like in univariate statistics, there is a multivariate central
limit theorem

If the set of N observations on p variables is multivariate normal
or not:

. The distribution of the mean vector is:
Xy

X~ Ny (”X' W)

. The distribution of (N — 1)Sx (covariance matrix) is Wishart (a
multivariate chi-square) with degrees of freedom N — 1

W,(N — 1,2y
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The Wishart Distribution

- The Wishart distribution is a multivariate chi-square distribution

(N—-p-2) i -1
S| 2 exp —“"SZZ ]

L) e T e e (v - )

> Input: S (model predicted covariance matrix)
...Output: Likelihood value

> Fixed: X (sample value of covariance matrix)

WN—1 (S; Z) —

. |In statistics and SEM, it appears whenever:
> Data are assumed multivariate normal

> Only covariance matrix-based inferences are needed
+ Mean vector ignored

> Mainly: Initial ML factor analysis and structural equation modeling
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Sufficient Statistics

- The sample estimates X and S are called sufficient statistics

> All of the information contained in the data can be summarized by these
two statistics alone
+ No data is needed for analysis — only these statistics

« Only true when:
> Data truly follow a multivariate normal distribution
> No missing data are present
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INTRODUCTION TO MPLUS



The Mplus Statistical Package

- Mplus provides a general latent variable modeling framework that

allows for combinations of:

> Continuous or categorical latent variables
> Continuous, categorical, count, nominal or censored data

.  Mplus is commercial software that is available through the Holland

Computing Center

> See document on course main page for how to:
+ Create a an account
+ Run Mplus

- Mplus is also available for purchase:

» Available at http://www.statmodel.com
> From $195 to S350 (student)
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Mplus Data File Input Format

- Mplus input files must be ASCII text based (so not binary)
> Text-based file formats: *.txt, *.dat, *.csv
> Not-text-based file formats: *.xlsx, *.sas7bdat, *.sav

- The easiest way to get data files into Mplus is to use “free-

formatting” (some type of delimiter between columns)

> | prefer comma-delimited files and will only use
those in this course

» Cannot start with variable names in first row of data

- Typically, | store data in Excel and save as a

comma-delimited file

> Save As...*.csv...
+ (then click OK to the first question)...(then click YES to the second)
+ lgnore the warning (click NO) to re-save when closing the Excel Workbook
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Mplus Syntax Conventions

- Most syntax must have a semi-colon end each line (;)
> Exceptions: TITLE section, comments, and continuing lines

.  Comments are denoted with an exclamation point (!)

- Syntax is organized by sections; headings of sections end with colons (:)
> TITLE:, DATA:, VARIABLE:, DEFINE:, and MODEL: are what we use this week

- Syntax cannot exceed 90 characters per row (?)

-  Mplus input files are typically saved with the extension *.inp

- Mplus output files are typically saved with the extension *.out
> Both are ASCII text (i.e., you can open with text editors)

- The default location for the data file and output file are the folder
containing the input file
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Mplus TITLE Section

The TITLE section contains the label of the analysis

- You can type whatever you want here...it will appear verbatim at
the top of the output file

. You do not have to terminate this section with a
semi-colon

- This section is optional

PSYC 948: Lecture 1



Mplus DATA Section

The DATA section is where data files are defined

Define the name (and path if different from input file folder) by
using the command:

FILE = mydata.csv

POTENTIAL MISTAKES:

> Data must be numeric — if not errors happen
> First row of data should not contain variable names

This section is NOT OPTIONAL
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Mplus VARIABLE Section

- The Mplus VARIABLE section defines the names of the variables in
the data file, variable types, and variables in your analysis

> NAMES = provides variable names
+ Names cannot be more than 8 characters
+ Lists of variables can be created (i.e., X1-X10 makes 10 variables)

+ By default all variables listed in the NAMES section are assumed to be part of
the analysis

> USEVARIABLE = provides names of variables used in the analysis (optional)
> IDVARIABLE = provides the ID variable name (optional)

. This section is NOT OPTIONAL
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Mplus DEFINE Section

. The DEFINE section is where new variables are created

- To test our equal slopes hypothesis we created interaction variables
by the following syntax:
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TITLE: 'title section puts text below

ANCOVA MODEL WITH GENDER, MOTIVATICON, AND ACJIEVEMENT
TESTING INTERACTIONS - DIFFERENT SLOPES WITHIN GENDER GROUP

DATA: '!'data section defines data file

FILE = exampledata.csv;

m

Hh

VARIABLE: !variable section defines wvaribles in d: f
NAMES = ID achieve selfest motivate gender sel-seS
motivli-motiv5 achl-ach20;
IDVARIABLE = ID;

W

m

USEVARIABLE = achieve selfest gender motivate femaleSE femaleM;

DEFINE:
femaleSE = gender*selfest;
femaleM = gender*motivate;

MODEL:
achieve ON selfest gender motivate femaleSE femaleM;
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Mplus MODEL Section

- The MODEL section is where you define the model

- The only models we ran this week were GLMs
> These models use the ON statement (ON = REGRESSION)

achieve ON selfest motivate

- And an empty model to figure out the covariance matrix of the

MOTIVATION items
> This used the WITH statement (WITH = COVARIANCE)

motivl-motive5 WITH motivel-motive5
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WRAPPING UP



Wrapping Up

Today was an introduction to...
> Our course structure
> Mplus

...and a review of:
» Topics in matrix algebra
> Multivariate normal distributions

All of these topics will follow us throughout the semester

Homework #1: available online — due next Wednesday at 11:59am
(before class); submitted via email only
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