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Today’s Class

• Recap of covariance/correlation matrices.
• Statistics for quantitatively scored items.
• Test score statistics.
• More “expectations.”
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Carrying on From Last Class…

• If one has multiple items, a matrix of correlations or 
covariances can be constructed.

• This matrix is symmetric – everything in lower 
triangle is repeated exactly in the upper triangle:
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Correlation Matrix Inspection
• As we progress through this class, we will come to 

understand that a lot of information can be culled 
from a correlation matrix.

• Often times, groups of items are highly 
intercorrelated within, but relatively uncorrelated 
between.

• These ideas will serve as a base to answer one of our 
fundamental questions about a test:
– Does one score suffice or should two scores be used?
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Expected Values

• Imagine you have a random variable X.
• The expected value of X is then the mean of 

the variable:
– E(X) = μ

• The variance is also phrased as an expected 
value:
– Var(X) = E[ (X-μ)2 ]
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Covariance as an Expected Value

• As you could probably guess, we can phrase the 
covariance as an expected value, too:
– Cov(X,Y) = E[ (X-μX) (Y-μY) ]

• To demonstrate, consider the following example.
– We have two binary items
– We go out and find proportion of responses to each.
– We put our responses in a 2 x 2 contingency table.
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Counts of Responses to Our Two 
Items

Xk 0 1 Sum

0 35 5 40

1 35 25 60

Sum 70 30 100

μXj = πXj =0.60 μXk = πXk =0.30
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Constructing Covariances from 
Expectations

X_j
X_k 0 1 Sum

0 30 10 40
1 20 40 60

Sum 50 50 100

Xj Xk n P(Xj,Xk) Xj - E(Xj) Xk - E(Xk) [Xj - E(Xj)][Xk - E(Xk)] P(Xj,Xk)*[Xj - E(Xj)][Xk - E(Xk)]
0 0 30 0.3 -0.6 -0.3 0.18 0.054
0 1 20 0.2 -0.6 0.7 -0.42 -0.084
1 0 10 0.1 0.4 -0.3 -0.12 -0.012
1 1 40 0.4 0.4 0.7 0.28 0.112

Covariance 0.07
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Algebra of Expected Values
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Algebra of Expected Values

• Expected values really don’t do us a whole lot of 
good by themselves.

• Really, for our purposes, we must consider what the 
expected values are for functions of variables.

• For instance, imagine if you have a constant, c, what 
would the expected value of X + c be?
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Rules of Expected Values

• Expected value of a constant:
– E(c) = c

• Expected value of a sum of a constant and a 
random variable:
– E(X + c) = μ + c
– This is the same as saying the mean of variable 

that has added
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More Rules

• The variance of a sum of a constant and a 
random variable:
– Var(X + c) = σ2

– Adding a constant to a variable does not change 
the variance of the variable.
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More Rules

• Multiplication of a random variable by a 
constant:
– E(cX) = cμ
– Var(cX) = c2 Var(X) = c2σ2

• Consider a linear combination:
– Y = a + bX
– E(Y) = 
– Var(Y) =
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Even More Rules

• The expected value of a sum of random 
variables is the sum of their expected values:
– E(X+Y) = E(X) + E(Y)

• The variance of a sum of random variables is 
given by:
– Var(X+Y) = Var(X) + Var(Y) + Cov(X,Y)
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What About Covariances?

• All of the things previous to this were geared 
to describe what happens to the covariance…

• Imagine you have two variables Xj and Xk.
• Imagine further that you want to create two 

new variables:
– Yj = a + b Xj

– Yk = c + d Xk

• What is Cov(Yj, Yk)?
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Covariances

• Cov(Yj, Yk)  = 
Cov(a + b Xj, c + d Xk) =
E[ (a + b Xj – a + b μXj) (c + d Xk – c + dμXk) ] =
E[ b (Xj – μXj) d ( Xk – μXk) ] =
b d E[ (Xj – μXj) ( Xk – μXk) ] =
b d Cov(Xj, Xk)

• We will come to appreciate how this will 
function for our models.
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Quantitative Item Scores
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Quantitative Item Scores
• Recall from our first lecture 

the item:
– Assault weapons do not 

belong in private hands.

• Imagine you are interested 
in assessing attitudes toward 
gun control.

• You could collect data on 
this type of item using a 
“Likert” scale.
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Typical “Likert” Scale Responses

• Imagine you use the following scale to assess a 
person’s opinion:
– Strongly agree
– Agree
– Neither agree nor disagree
– Disagree
– Strongly Disagree
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Assigning Integers to Responses

• Likert (1932) showed that complicated scaling 
techniques provided little improvement over the 
assignment of numbers to the responses.

• So, to make your life simple, you then code each 
response with an integer:
– 5 for strongly agree.
– 4 for agree.
– 3 for neither agree nor disagree.
– 2 for disagree.
– 1 for strongly disagree.
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Now What?

• Recall from our last class the random sampling 
process we did to ask a single question to a 
bunch of people.

• We could do this same process, just with our 
new question.  
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Our Sample

• Above is a sample of 100 responses to the gun control 
attitude item.

• These were generated by a random process where 
each response option had a certain probability (called 
π) of being selected.
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Our Sample, Revisited

• Here, we find that using the population values, we can determine what we 
expect our mean and variance to be.

• Our sample values for the mean and variance will be  slightly different 
because we have a finite sample.

• The law of large numbers still applies, however.
– The sample mean will converge to the population mean.
– The sample variance will converge to the population variance.
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Item Difficulty

• As with binary items, we regard the difficulty 
of an item to be indicated by its mean.  

• Again, we hesitate to call non-cognitive items 
“difficult” or “easy”
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Variance of Integer-valued Items

• One property of Likert scale or integer valued 
items is that the maximum variance is known.

• For an item with k responses, the maximum 
variance is:
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Variance of Integer-valued Items

• Additionally, the variance of these items is not
determined by the mean.
– But the variance and mean are related.

• Variance is a measure of the diversity of the 
response.
– In our item, variance could be regarded as 

diversity of opinion.
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Satisfaction With Life Scale (SWLS) 
Example

• As an example, consider our familiar SWLS 
items:

1. I am satisfied with my life.
2. The conditions of my life are excellent.
3. In most ways my life is close to the ideal.
4. So far I have gotten the important things I want 

from life.
5. If I could live my life over, I would change 

almost nothing.



Psych 892 - Measurement Methods 28 of 40Lecture 5

SWLS Response Options

• The response options for the SWLS were 
integer-valued:

7 - Strongly agree
6 - Agree
5 - Slightly agree
4 - Neither agree nor disagree
3 - Slightly disagree
2 - Disagree
1 - Strongly disagree
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SWLS Sample
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SWLS Covariance and Correlation
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Test Scores
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Test Scores

• We will consider (until otherwise noted) that a 
test score will be a simple sum of the scores of 
all the items of the test.
– Later we will discuss different weighting of each 

item.
• The total test score for examinee i, then (for m

items) is:
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Other Versions of Test Scores

• The relative test score or mean test score is 
given by:

• For binary items:
– The total test score is the number right.
– The relative test score is the proportion right.
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Total Test Score Mean

• The mean of the total test score can be 
computed by either:
– Summing each examinee’s total test score and 

dividing by the sample size.
– Summing the mean of each item. 

• Summing the mean of each item comes from 
the algebra of expectations:
– Y=X1+X2+…+Xm
– E(Y) = E(X1+X2+…+Xm) = 

E(X1) + E(X2) + … + E(Xm)
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Total Test Score Variance

• The variance of the total test score can be computed 
by either:
– Taking the variance of each examinee’s total test score.
– Summing all of the elements of the covariance matrix of 

the items.

• For some purposes, we make a distinction of the 
elements of the covariance matrix:
– We sum the diagonal values – call them D
– We sum the off-diagonal values (all of them) – call them O
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Total Test Score Variance

• From our SWLS 
Example:
– D = 13.63
– O = 21.98

• Then the total test score 
is:
– 6.352 =ys
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Covariance Considerations

• Imagine we have a large pool of potential 
items.
– We want to create a test of a smaller subset of the 

items.
• It can be argued that we should choose the 

items that give the largest ratio of test variance 
to the sum of item variances:
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Covariance Considerations

• To maximize the ratio on the previous slide, it 
makes sense to choose items with large 
positive covariances.
– A test whose items have large positive correlations

is called internally consistent.
• We will revisit this topic later in the class.

• What we are doing, in effect, is making the test 
longer…
– Longer tests are generally better measures of a 

trait.
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Covariance Considerations

• Additionally, adding items with high 
covariances typically means we are adding 
items that measure the same content area.

• For binary items, this means that we may end 
up choosing items with variances near 0.25…
– As we will see, we will end up with a test that 

measures the middle of a scale well.
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Next Time

• Chapter 4 – the concept of a scale.

• Discussion about class projects.
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