[tem and Test Statrstles (Chapter 3)
Algebra of Expeetatlons (Appendlx A)

Measurement Methods
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Today’s Class

 Jtem Statistics
— Binary item score statistics

— Quantitative 1item score statistics

e Test Statistics

» Algebra of Expectations
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Prerequisite Conditions

 In the examples we will discuss today, we

assume several things about the test we
administered:

— We have a finite sample with which we wish
to characterize the population.

— Each respondent has been drawn
independently and randomly.

— It 1s our hope that our sample (if not truly
random) behaves as our population of interest.
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Binary Item Statistics:
Initial Example
* To begin our class example, imagine if a

single examinee 1s drawn from a well-
defined population of interest.
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— The examinee takes a single binary item (0/1).

 Now 1magine repeating this process
multiple times.

— Multiple examinees are drawn randomly and
produce similar responses (0/1).
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The Result

TABLE 3.1
A Constructed Binary Variable

Cumulalive
Observations Proportion

01101 00001 01001 8/20 = .40
00100 00010 01111 18/40 = 45
00000 00100 00100 21/60 = .35
00101 01100 00000 26/80 825
00001 10101 00000 30/100 = .30

00100 00000 00101 34/120 = .283
11000 00011 00010 41/140 = 293
00000 10000 10001 46/160 = .287
00101 00000 00101 51/180 = .283
00010 10000 00100 57/200 = .285

Population proportion = .3 (probability)

The result of our sample process can be shown in the table above.

Note here that as N gets large, the proportion correct approaches
0.3 — a nice feature of consistent statistics (from the omnipresent
law of large numbers).
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Why Does This Example Matter?

* The example we just talked about
demonstrates the process we like to think
we are performing when we build tests.
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 This 1s similar to the examples you may
have seen 1n your basic stats courses with

people drawing black and red balls from an
urn (with replacement).

-
-
=
-
-
=
-
-
-
N
-
-
-
-
=
-
-
-
. -
_—
-
-
-
- -
S
-




Expanding Our Example

 Now 1imagine we have a total of m cognitive
items (j = 1,...,m).

— Each 1s binary valued, or scored 0/1.
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* We will use the following notation throughout
the lecture (and the book).
— X1s the jt item score (a random variable).
— x;; is the score of the i examinee (i=1,...,n).

— x;; 18 the realization of random variable X,

-
>
=
-
-
=
-
-
-
-
-
-
-
-
-
-
-
-
-
_
-
-
= -
-
-
-




Binary Item Statistics
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« We represent the population proportion of

examinees passing item j by:
T

 In our sample, the number of examinees
who pass item j 1s thus represented by:

4
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Binary Item Statistics

* The relative frequency of passes for item j in
our sample can be represented by:

P;
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* And also, recall the sample mean:
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Proportion Correct

 What we discover 1s that with binary scoring, in
the sample:
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pj:)?'

J

* And 1n the population:
)= H,

* It 1s comforting to note that as the sample size

increases, p; becomes an increasingly precise
estimate of z,
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Proportion Correct

* We note something that may be obvious,
but 1s important to remember: both p; and

m; are proportions — contined between zero
and one.
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An 1item that everyone passes (7;= 1) 18 too
easy.

An 1item that everyone fails (7; = 0) 18 too
hard.
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Item Difficulty

* Building off of our example of easy and
hard 1items, 1n classical test theory (CTT),
we define item difficulty.
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In CTT, the item difticulty parameter 1s 7.

— Thus, the estimate of item ditficulty 1s p;,
which 1s sometimes noted by p™.
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Terminology

* Ironically, 7 1s an inverse measure of item

difficulty.

— Items are more difficult as =; gets smaller.
— Items are easier as m; gets bigger.
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* You will discover there are a few people
who refer to m; as item easiness.

— Although this 1s not often the case.
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Terminology (continued)

» Another problem with the term “item difficulty”
arises when we consider non-cognitive items.
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* How would you term the 7; for an item such as:

— I often have hallucinations.

* I would hope this would be an “difficult” item
(with a low p;)
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Algebra of Expectations

What we are working toward is characterizing the
distribution of a variable by a set of summary numbers.

The topics presented today should be really basic.

The underlying statistical premise of these topics,
however, 1s a bit more complicated.

The numbers we will use to characterize a distribution are
derived from using expectations in statistics (this 1s
shown 1in Appendix A).




Expectations

 The mean of a binary

variable can be
represented by the uy=m;=EBX) Zp 5%

xeQd
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following notation:

Proportion
For our item (with w; =

0.3), this would be
represented by:
— (1-0.3)*0 + (0.3)*1 =0.3
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Variance

» The variance of a variable can be described by
the following expectation:
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o, =Var(X,)=E|[(X, - u,)]

* For binary values, the variance is a function of
the population mean.
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Variance

\E A O AR AR A A G\ N

« Here, the variance 1s formed by taking:

Oy = 2P(Xj)[(Xj _f“j)z]
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Variance
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Sample Variance

e Qur calculation of the variance formula for
binary items was done for the population.
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* For the sample, the formula 1s found by
inserting the sample proportion p;:

sz —P; (1 'Pj)
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Mean and Variance of Binary Items

* For binary items, the variance is a function of the
mean.

TABLE 3.2
Binary Item Variance and Difficulty

3 4 5 6 7 )
21 24 .25 24 21 16
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[tem Association

« Up to this point, we have talked about

characterizing the distribution of a single binary
item.
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e We will now consider measure of item
association.

— These measures characterize the joint distribution of
two binary items.
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* You will find that for binary items, there are a
multitude of measures of 1tem association.
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Two Items

e For two binary items,
j and k, there are four
different possible
response
combinations:

X. = 0 (fail)

X; =1 (pass)

X. = 0 (fail)

X; =1 (pass)




Independence

* From elementary probability, recall that 1f
two events A and B were independent,
then:
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P(A and B) = P(A)*P(B)
 If we 1imagine that responses to our two

items are independent, we have the same
result:

P(X;= 1 and X, = 1) = P(X;= 1)*P(X, = 1)
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Item Independence

* On cognitive tests, however, we do not think
items are necessarily independent.
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— We like to think that examinees getting one item

correct would tend to have a higher chance of getting
the other item correct.

 The 1dea 1s that we should take the difference:
P(Xj =land X, =1) - P(Xj=1)*P(X, = 1)

T - T
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Correlation

e Recall from basic statistics the 1dea of
correlation as a measure of association
between two variables.
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* Here, we define the Pearson product-
moment correlation:

(1/n) Y5, (xi — &) (yi — )
V(@) (s — 22/ /n) 2, (v — §)?
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More Correlation

e The Pearson correlation takes values from
-1 to 1, with 0 indicating no association.
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Because of this uniform range, the
correlation 1s thought of as being
“dimensionless” or “scale-free.”
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Covariance

e The numerator of the Pearson correlation 1s
the sample covariance:
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T
sey = (1/n) ) (@i — %) (yi — §)
i=1
n
Spy = (l/n)z Tiyi — TY
—

* The scale of the sample covariance 1s often
difficult to understand (it 1s in the product
of the scales of x and y).
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Covariance of Binary Items

\E A O AR AR A A G\ N

» The covariance of binary items can be

defined similarly.
— In the population — 6;, = m; - T, T;
— In the sample — s;, = py — Py

* Here, p,=P(X;= 1 and X, = 1)

-
)
-
=
>
E 3
=
-
-
-
-
-
e
-
e
s
=
=
e
| »
-
-
e
-
N
2 >




Covariance Example

TABLE 3.4
Computation of Binary Itern Covariances

Htems

—.X:] = 5/10= .5
%= 4/10 = 4

—
o

1/10(X xp) = 3/10 = 3
sp=3-5x.4=.1

[ R

count of (1,1) pairs
i"l‘.’ = 10 =

3

count of Isin item1 5
10 o

=
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_ count of 1s initem2
b= 10 -

[y

4

Po—pifp=3—-5x 4=y
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Correlation Example

* From the covariance and variance of j and
k, we can derive our correlation:

Fao= Sy [(881)° = 0.1/(.25*.24)> = 0.408.
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Correlation 1n Binary Items

e Correlation 1n binary 1tems represents a problem
in that the range 1s bounded.

— This bound occurs when the marginal proportion
correct for each item 1s different.

 If two items j and & have different difficulty

parameters, but otherwise were perfectly
associated:

— We could perfect predict the easier item from the more
difficult one.

— But, the correlation 1s not 1.0 1n this case.
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Correlation Bounds
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* In our thought example, imagine =, > m,.

* The maximum possible covariance
between the two 1items would then be:

Gy = m(1 —m)

e The maximum possible correlation would

then be:
fJ'kZ TTj[:]_—TTk)
! (1l — ;)
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More Correlations

 Because of the bounds on the Pearson

correlation, people have developed other
measures of binary item association:

— Cohen’s Kappa
— Tetrachoric Correlation
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e We will cover tetrachoric correlation once
we revisit binary items 1in Chapter 11.
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Correlation/Covariance Matrices

 If one has multiple items, a matrix of correlations
or covariances can be constructed.

e This matrix is symmetric — everything in lower
triangle 1s repeated exactly in the upper triangle:

TABLE 3.6
Binary Covariance and Correlation Matrices

(a) Covariance Matrix

3

10 15
00

.25

10

-05

(b} Corvelatiom Matrix

3

600

000
1

500
-.333
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Correlation Matrix Inspection

* As we progress through this class, we will come
to understand that a lot of information can be
culled from a correlation matrix.

Often times, groups of items are highly

intercorrelated within, but relatively uncorrelated
between.
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These 1deas will serve as a base to answer one of
our fundamental questions about a test:

— Does one score suffice or should two scores be used?
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Next Time

» Continuous/quantitative item statistics.

e Test scores.

* Algebra of expectations for continuous
distributions.
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