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Today’s Class

• Item Statistics
– Binary item score statistics
– Quantitative item score statistics

• Test Statistics

• Algebra of Expectations



Prerequisite Conditions

• In the examples we will discuss today, we 
assume several things about the test we 
administered:
– We have a finite sample with which we wish 

to characterize the population.
– Each respondent has been drawn 

independently and randomly.
– It is our hope that our sample (if not truly 

random) behaves as our population of interest. 



Binary Item Statistics:
Initial Example

• To begin our class example, imagine if a 
single examinee is drawn from a well-
defined population of interest.
– The examinee takes a single binary item (0/1).

• Now imagine repeating this process 
multiple times.
– Multiple examinees are drawn randomly and 

produce similar responses (0/1).



The Result

• The result of our sample process can be shown in the table above.
• Note here that as N gets large, the proportion correct approaches 

0.3 – a nice feature of consistent statistics (from the omnipresent 
law of large numbers).



Why Does This Example Matter?

• The example we just talked about 
demonstrates the process we like to think 
we are performing when we build tests.

• This is similar to the examples you may 
have seen in your basic stats courses with 
people drawing black and red balls from an 
urn (with replacement).



Expanding Our Example

• Now imagine we have a total of m cognitive 
items (j = 1,…,m).
– Each is binary valued, or scored 0/1. 

• We will use the following notation throughout 
the lecture (and the book).
– Xj is the jth item score (a random variable).
– xji is the score of the ith examinee (i=1,…,n).
– xji is the realization of random variable Xj



Binary Item Statistics

• We represent the population proportion of 
examinees passing item j by:

πj

• In our sample, the number of examinees 
who pass item j is thus represented by:

nj



Binary Item Statistics

• The relative frequency of passes for item j in 
our sample can be represented by:

pj

• And also, recall the sample mean:
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Proportion Correct

• What we discover is that with binary scoring, in 
the sample:

• And in the population:

• It is comforting to note that as the sample size 
increases, pj becomes an increasingly precise 
estimate of μj

jj Xp =

jj μπ =



Proportion Correct

• We note something that may be obvious, 
but is important to remember: both pj and 
πj are proportions – confined between zero 
and one.

• An item that everyone passes (πj = 1) is too 
easy.

• An item that everyone fails (πj = 0) is too 
hard.



Item Difficulty

• Building off of our example of easy and 
hard items, in classical test theory (CTT), 
we define item difficulty.

• In CTT, the item difficulty parameter is πj.
– Thus, the estimate of item difficulty is pj, 

which is sometimes noted by p+.



Terminology

• Ironically, πj is an inverse measure of item 
difficulty.
– Items are more difficult as πj gets smaller.
– Items are easier as πj gets bigger.

• You will discover there are a few people 
who refer to πj as item easiness.
– Although this is not often the case.



Terminology (continued)

• Another problem with the term “item difficulty”
arises when we consider non-cognitive items.

• How would you term the πj for an item such as:
– I often have hallucinations.

• I would hope this would be an “difficult” item 
(with a low pj)



Algebra of Expectations
• What we are working toward is characterizing the 

distribution of a variable by a set of summary numbers.

• The topics presented today should be really basic.

• The underlying statistical premise of these topics, 
however, is a bit more complicated.

• The numbers we will use to characterize a distribution are 
derived from using expectations in statistics (this is 
shown in Appendix A).



Expectations

• The mean of a binary 
variable can be 
represented by the 
following notation:

• For our item (with πj = 
0.3), this would be 
represented by:
– (1-0.3)*0 + (0.3)*1 = 0.3
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Variance

• The variance of a variable can be described by 
the following expectation:

• For binary values, the variance is a function of 
the population mean.
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Variance

Xj P(Xj) Xj – μj (Xj – μj)2
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• Here, the variance is formed by taking:
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Variance

Xj P(Xj) Xj – μj (Xj – μj)2
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Sample Variance

• Our calculation of the variance formula for 
binary items was done for the population.

• For the sample, the formula is found by 
inserting the sample proportion pj:

sj
2 =pj (1 - pj)



Mean and Variance of Binary Items

• For binary items, the variance is a function of the 
mean. 



Item Association

• Up to this point, we have talked about 
characterizing the distribution of a single binary 
item. 

• We will now consider measure of item 
association.
– These measures characterize the joint distribution of 

two binary items.

• You will find that for binary items, there are a 
multitude of measures of item association.



Two Items

• For two binary items, 
j and k, there are four 
different possible 
response 
combinations:

Xj = 0 (fail) Xk = 0 (fail)

Xj = 1 (pass) Xk = 0 (fail)

Xj = 0 (fail) Xk = 1 (pass)

Xj = 1 (pass) Xk = 1 (pass)



Independence

• From elementary probability, recall that if 
two events A and B were independent, 
then:

P(A and B) = P(A)*P(B)
• If we imagine that responses to our two 

items are independent, we have the same 
result:
P(Xj = 1 and Xk = 1) = P(Xj = 1)*P(Xk = 1)



Item Independence

• On cognitive tests, however, we do not think 
items are necessarily independent.
– We like to think that examinees getting one item 

correct would tend to have a higher chance of getting 
the other item correct.

• The idea is that we should take the difference:
P(Xj = 1 and Xk = 1) - P(Xj = 1)*P(Xk = 1)

πj - πkπj 



Correlation

• Recall from basic statistics the idea of 
correlation as a measure of association 
between two variables.

• Here, we define the Pearson product-
moment correlation:



More Correlation

• The Pearson correlation takes values from  
-1 to 1, with 0 indicating no association.

• Because of this uniform range, the 
correlation is thought of as being 
“dimensionless” or “scale-free.”



Covariance

• The numerator of the Pearson correlation is 
the sample covariance:

• The scale of the sample covariance is often 
difficult to understand (it is in the product 
of the scales of x and y).



Covariance of Binary Items

• The covariance of binary items can be 
defined similarly.
– In the population – σjk = πjk - πkπj 

– In the sample – sjk = pjk – pjpk

• Here, pjk= P(Xj = 1 and Xk = 1) 



Covariance Example



Correlation Example

• From the covariance and variance of j and 
k, we can derive our correlation:

rjk = sjk /(sjsk).5 = 0.1/(.25*.24).5 = 0.408.



Correlation in Binary Items

• Correlation in binary items represents a problem 
in that the range is bounded.
– This bound occurs when the marginal proportion 

correct for each item is different.
• If two items j and k have different difficulty 

parameters, but otherwise were perfectly 
associated:
– We could perfect predict the easier item from the more 

difficult one.
– But, the correlation is not 1.0 in this case.



Correlation Bounds

• In our thought example, imagine πj > πk.

• The maximum possible covariance 
between the two items would then be:

σjk = πj(1 – πk)
• The maximum possible correlation would 

then be:



More Correlations

• Because of the bounds on the Pearson 
correlation, people have developed other 
measures of binary item association:
– Cohen’s Kappa
– Tetrachoric Correlation

• We will cover tetrachoric correlation once 
we revisit binary items in Chapter 11.



Correlation/Covariance Matrices

• If one has multiple items, a matrix of correlations 
or covariances can be constructed.

• This matrix is symmetric – everything in lower 
triangle is repeated exactly in the upper triangle:



Correlation Matrix Inspection

• As we progress through this class, we will come 
to understand that a lot of information can be 
culled from a correlation matrix.

• Often times, groups of items are highly 
intercorrelated within, but relatively uncorrelated 
between.

• These ideas will serve as a base to answer one of 
our fundamental questions about a test:
– Does one score suffice or should two scores be used?



Next Time

• Continuous/quantitative item statistics.

• Test scores.

• Algebra of expectations for continuous 
distributions.
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