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Today’s Class

« An introduction to matrix algebra
» Scalars, vectors, and matrices
» Basic matrix operations
> Advanced matrix operations

. An introduction to SAS PROC IML

> Interactive matrix language

PSYC 943: Lecture 5



Why Learning a Little Matrix Algebra is Important

- Matrix algebra is the alphabet of the language of statistics
> You will most likely encounter formulae with matrices very quickly

- For example, imagine you were interested in analyzing some
repeated measures data...but things don’t go as planned
> From the SAS User’s Guide (PROC MIXED):

Formulation of the Mixed Model

The previous general linear model is certainly a useful one (Sea
although you still assume normality.

The mixed model is written as
y=XB+Zy+e

where everything is the same as in the general linear model exc
Henderson (1990) and Searle, Casella, and McCulloch (1992) fi

A key assumption in the foregoing analysis is that ¥ and € are
Y |0
S
Y| _| G 0
wl1] =[§ 8
The variance of y is, therefore, V = ZGZ' + R. You can model
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Estimating Covariance Parameters in the Mixed Model

Estimation is more difficult in the mixed model than in the general linear model. Not only do y
(y-XB)V'(y-XB)

However, it requires knowledge of V and, therefore, knowledge of G and R. Lacking such infc

In many situations, the best approach is to use likelihood-based methods, exploiting the ass
(REML). A favorable theoretical property of ML and REML is that they accommodate data tha

PROC MIXED constructs an objective function associated with ML or REML and maximizes i

I I, 1
ML: [(G.R) =-—Zlog|V|— 31’V 'r— % log(2x)

n—p
Elog V| - 3

’ l ’ a—
log X'V 'X| - —r'Vir— —

REML: Ix(G.R) =—

log(2m)}

where r =y — X(X'V"'X)"X'V~'y and p is the rank of X. PROC MIXED actually minimiz
analytical details for implementing a QR-decomposition approach to the problem. Wolfinger, 1
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Introduction and Motivation

- Nearly all multivariate statistical techniques are described with
matrix algebra

-  When new methods are developed, the first published work

typically involves matrices
> |t makes technical writing more concise — formulae are smaller

- Have you seen:

> (XTX)"1XTy
> ADPAT + W

. Useful tip: matrix algebra is a great way to get out of conversations
and other awkward moments
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Definitions

-  We begin this class with some general definitions (from
dictionary.com):
> Matrix:

1. Arectangular array of numeric or algebraic quantities subject to
mathematical operations

2. The substrate on or within which a fungus grows

> Algebra:

1. A branch of mathematics in which symbols, usually letters of the alphabet,
represent numbers or members of a specified set and are used to
represent quantities and to express general relationships that hold for all
members of the set

2. A set together with a pair of binary operations defined on the set. Usually,
the set and the operations include an identity element, and the
operations are commutative or associative
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Why Learn Matrix Algebra

- Matrix algebra can seem very abstract from the purposes of this
class (and statistics in general)

- Learning matrix algebra is important for:

> Understanding how statistical methods work
+ And when to use them (or not use them)

> Understanding what statistical methods mean
> Reading and writing results from new statistical methods

- Today’s class is the first lecture of learning the language of
multivariate statistics
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DATA EXAMPLE AND SAS



A Guiding Example

To demonstrate matrix algebra, we will make use of data

Imagine that somehow | collected data SAT test scores for both the
Math (SATM) and Verbal (SATV) sections of 1,000 students

The descriptive statistics of this data set are given below:

Statistic | SATV | SATM
Mean | 499.3 | 498.3
SD 49.8 81.2
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The Data...

In Excel: In SAS:

gk VIEWTABLE: Sat.Satdata
Form | Data | Revie | View
satv | satm
A = % A B EI 1 520 580
" | Font Alignment Number Styles = Cells & & 2 520 550
1 A A I 3 460 440
Clipboard Editing 4 560 530
Al - f | SATV 5 430 440
A B € D E F 6 430 530
1 [satv  lsatm 7 570 530
2 520 580 8 530 570
3 520 550 9 490 540
4 460 440 10 450 470
5 560 530 1 510 560
o 430, 440 12 480 510
! 430, 330 13 470 420
8 570 580 14 500 520
9 530 570 15 430 470
10 490 540 16 450 290
11 450 470 17 500 480
12 510 560 18 510 500
13 480 510 19 610 0
14 470 420 20 50 10
g 500 520 21 410 380
16 480 470 = 460 w50
- =] = =
19 510 500 24 540 500
20 610 630 25 500 510
21 450 410 26 530 560
2 410 380 27 540 550
23 460 460 28 500 530
- - - 29 490 570
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Matrix Computing: PROC IML

To help demonstrate the topics we will discuss today, | will be
showing examples in SAS PROC IML

The Interactive Matrix Language (IML) is a scientific computing

package in SAS that typically used for statistical routines that aren’t
programed elsewhere in SAS

Useful documentation for IML:

http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/de
fault/viewer.htm#langref toc.htm

A great web reference for IML:
http://www.psych.yorku.ca/lab/sas/iml.htm
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PROC IML Basics

Proc IML is a proc step in SAS that runs without needing to use a
preliminary data step

To use IML the following lines of syntax are placed in a SAS file:

= PROC IML;
RESET PRINT;

- rv —~ AT W P ~ T AT  TYYn PN TS
e -
e e o 44 45N = 4 W5 WP - o addes SN

QuIT;|

The “reset print;” line makes every result get printed in the
output window

The IML syntax will go between the “reset print;” and the “quit;”
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DEFINITIONS OF MATRICES,
VECTORS, AND SCALARS



Matrices

- A matrix is a rectangular array of data
> Used for storing numbers

. Matrices can have unlimited dimensions

> For our purposes all matrices will have two dimensions:
+ Row
+ Columns

- Matrices are symbolized by boldface font in text, typically with

capital letters SAT Verbal  SAT Math
> Size (r rows x ¢ columns) /(Cy (Column 2)
520 580
x = [520 550
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Vectors

- A vector is a matrix where one dimension is equal to size 1

> Column vector: a matrix of sizer x 1
520]

_ 1520
X1 = .

1540 1000 x 1

> Row vector: a matrix of size 1 x ¢
X1. = [520 580]1x2

- Vectors are typically written in boldface font text, usually with lowercase letters

- The dots in the subscripts x.; and x;. represent the dimension aggregated across
in the vector
> Xq.Iis the first row and all columns of X
> X.1 is the first column and all rows of X

> Sometimes the rows and columns are separated by a comma (making it possible to
read double-digits in either dimension)
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Matrix Elements

- A matrix (or vector) is composed of a set of elements
> Each element is denoted by its position in the matrix (row and column)

.« For our matrix of data X (size 1000 rows and 2 columns), each
element is denoted by:
xij

> The first subscript is the index for the rows: i =1,...,r (= 1000)

> The second subscript is the index for the columns: j=1,...,c (= 2)

- X11 X12
X21 X22

X =

X1000,1  *1000,2] (1000 x 2)
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Scalars

« A scalaris just a single number

- The name scalar is important: the number “scales” a vector — it can
make a vector “longer” or “shorter”

. Scalars are typically written without boldface:
x11 —_ 520

. Each element of a matrix is a scalar
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Matrix Transpose

The transpose of a matrix is a reorganization of the matrix by
switching the indices for the rows and columns

520 580]
X — 5?0 5?0

_ [520 520 - 540
580 550 -+ 6601241000

XT
An element x;; in the original matrix X is now xj; in the transposed
matrix X’

Transposes are used to align matrices for operations where the
sizes of matrices matter (such as matrix multiplication)
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Types of Matrices

« Square Matrix: A square matrix has the same number of rows
and columns
> Correlation/covariance matrices are square matrices

- Diagonal Matrix: A diagonal matrix is a square matrix with non-zero
diagonal elements (x;; # 0 for i = j) and zeros on the off-diagonal

elements (x;; = 0 for i # j):

2.759 0 0
A=] 0 1.643 0
0 0 0.879

> We will use diagonal matrices to form correlation matrices

-  Symmetric Matrix: A symmetric matrix is a square matrix where all
elements are reflected across the diagonal (a;; = a;;)

> Correlation and covariance matrices are symmetric matrices
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VECTORS



Vectors in Space...

- Vectors (row or column) can be represented as lines on a Cartesian
coordinate system (a graph)

- Consider the vectors: a = B] and b = [g]

- A graph of these vectors would be:

« Question: how would a column vector for each of our example
variables (SATM and SATV) be plotted?
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Vector Length

The length of a vector emanating from the origin is given by the
Pythagorean formula

> This is also called the Euclidean distance between the endpoint of the
vector and the origin

L. — fol Fx2 4o+ 22 = |x)

From the last slide: ||a]| = V5 = 2.24; ||b|| = V13 = 3.61

From our data:
ISATV]|| = 15,868.138; ||SATM|| = 15,964.42

In data: length is an analog to the standard deviation

> In mean-centered variables, the length is the square root of the sum of
mean deviations (not quite the SD, but close)

PSYC 943: Lecture 5
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Vector Addition

- Vectors can be added together so that a new vector is formed

- Vector addition is done element-wise, by adding each of the

respective elements together:
> The new vector has the same number of rows and columns

c=arv=[} [~ [J

» Geometrically, this creates a new vector along either of the previous two
+ Starting at the origin and ending at a new point in space

- In Data: a new variable (say, SAT total) is the result of
vector addition

SATroraL = X1 + X

PSYC 943: Lecture 5
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Vector Addition: Geometrically

PSYC 943: Lecture 5
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Vector Multiplication by Scalar

- Vectors can be multiplied by scalars
> All elements are multiplied by the scalar

o=2a=2[}] [}

. Scalar multiplication changes the length of the vector:
1]l = v/22 + 42 = V20 = 4.47

- This is where the term scalar comes from: a scalar ends up
“rescaling” (resizing) a vector

- In Data: the GLM (where X is a matrix of data) the fixed effects
(slopes) are scalars multiplying the data

PSYC 943: Lecture 5
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Scalar Multiplication: Geometrically

v scalar multipication

fre >

au

vector addition

u+tv
scalar multipication

»

vector addition

alu+v)=auav

PSYC 943: Lecture 5
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Linear Combinations

. Addition of a set of vectors (all multiplied by scalars) is called a
linear combination:
V=aXq +a;X, + -+ a;X,

- Here, y is the linear combination
> For all k vectors, the set of all possible linear combinations is called
their span
> Typically not thought of in most analyses — but when working with things
that don’t exist (latent variables) becomes somewhat important

- In Data: linear combinations happen frequently:
> Linear models (i.e., Regression and ANOVA)
> Principal components analysis (later today)

PSYC 943: Lecture 5
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Linear Dependencies

A set of vectors are said to be linearly dependent if
a1X1 +aX, + -+ apX, =0
-and-
a,a,, ..., a, are all not zero

Example: let’s make a new variable — SAT Total:
SATioty1 = 1 * SATV 4+ 1 * SATM

The new variable is linearly dependent with the others:
(1) * SATV + (1) * SATM + (—1) * SATytq = 0

In Data: (multi) collinearity is a linear dependency. Linear
dependencies are bad for statistical analyses that use matrix
inverses (discussed soon).

PSYC 943: Lecture 5 27



Inner (Dot) Product of Vectors

An important concept in vector geometry is that of the inner
product of two vectors
> The inner product is also called the dot product

N
a-b=a"b=ay,by; +az by + -+ ayiby, = z a;1biy
i=1

- The dot or inner product is related to the angle between vectors
and to the projection of one vector onto another

- Fromourexample:ta-b=1%x2+4+2+x3 =28
« Fromourdata:x;-x, = 251,928,400

- In data: the angle between vectors is related to the correlation
between variables and the projection is related to
regression/ANOVA/linear models
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Angle Between Vectors

As vectors are conceptualized geometrically, the angle between two
vectors can be calculated

a-b
0, = COS_1< )
lal|{Ib]|

From the example:

0,, = cos™1 (

8
\/E\/ﬁ) = 0.12

From our data:

251,928,400
Osarv,sarm = €OS™* = 0.105
/15,868.138,/15,946.42
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In Data: Cosine Angle = Correlation

. |If you have data that are:
> Placed into vectors
> Centered by the mean (subtract the mean from each observation)

. ..then the cosine of the angle between those vectors is the
correlation between the variables:

a-b Zliv=1(ai1 - a)(bil — E)

Tap = €0S(Ogp) =

For the SAT example data (using mean centered variables):
3,132,223.6

TSATV,SATM = COS(HSATVC,SATMc) = COS (1,573.956 x 2.567.0425
=.775
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)
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Vector Projections

- A final vector property that shows up in statistical terms frequently
is that of a projection

- The projection of a vector a onto b is the orthogonal projection of a
onto the straight line defined by b
> The projection is the “shadow” of one vector onto the other:

a‘'b
Aprojb = |12

|A| cos6
- In data: linear models can be
thought of as projections
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Vector Projections Example

To provide a bit more context for vector projections, let’s consider

the projection of SATV onto SATM:

SATV - SATM

SATV ;o = SATM
proj SATM ”SATM”Z

The first portion turns out to be:
SATV - SATM 251,928,400

= = 475
|ISATM ||? 115,964.42||4

This is also the regression slope f;:
SAT‘/p —_ IBO + ﬁ]_SATMp + ep

The GLM Procedure

Dependent Variable: satv

Parameter Estimate

Intercept 262 .4819995
satm 0.4753206

32
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MATRIX ALGEBRA



Moving from Vectors to Matrices

>

>

>
>
>

>

>
>
>

A matrix can be thought of as a collection of vectors

Matrix operations are vector operations on steroids

Matrix algebra defines a set of operations and entities on matrices

| will present a version meant to mirror your previous algebra experiences

Definitions:

Identity matrix
Zero vector
Ones vector

Basic Operations:

Addition
Subtraction
Multiplication
“Division”

PSYC 943: Lecture 5
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Matrix Addition and Subtraction

. Matrix addition and subtraction are much like vector
addition/subtraction

.« Rules:
> Matrices must be the same size (rows and columns)

. Method:

> The new matrix is constructed of element-by-element addition/subtraction
of the previous matrices

. Order:

> The order of the matrices (pre- and post-) does not matter

PSYC 943: Lecture 5
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Matrix Addition/Subtraction

A+B-=

PSYC 943: Lecture 5

aii

a1
A —

a3l

a4

a1 + b1
as1 + by
asz1 + b3y
ayy + by

a2

a32

@42

ai12 + b12
@99 + bao
az2 + b2
as2 + by

bi1 bi2
ba1  baa
ba1  bao
| b1 by
a1l — b1y
as1 — by

as1 — bay

agy — by

a2 — b1z
azz — bao
az2 — bao

a2 — bya

36



Matrix Multiplication

Matrix multiplication is a bit more complicated

> The new matrix may be a different size from either of the two
multiplying matrices

A(rx c)B(c xk) — C(rx k)

Rules:

> Pre-multiplying matrix must have number of columns equal to the number
of rows of the post-multiplying matrix

Method:

> The elements of the new matrix consist of the inner (dot) product of the
row vectors of the pre-multiplying matrix and the column vectors of the
post-multiplying matrix

Order:

> The order of the matrices (pre- and post-) matters
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Matrix Multiplication

AB
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“llbll
(L'Zlbll
aBlbll

(l.;lb“

allr ai2
az; a22
asi as9
aj a42
+ a 12[)-21
+ (1-22})21

+ (13-2’)21

+ (1_1-2})-21

bl 1
b-21

a11b1a + ayabo
a1 bia + azabao
az1byo + azabog

aj le + (l.;-zb-z-z

L

~—

/12 b13

b-z 3

-
|
N

ay1by1s + ajobos
az1b13 + azebos
(1.311)13 + (L32b-23

aj1 1)1 3 + ago bgg
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Multiplication in Statistics

Many statistical formulae with summation can be re-expressed
with matrices

A common matrix multiplication form is: X7X

> Diagonal elements: YN 1X2
> Off-diagonal elements: Y, X;, Xip

For our SAT example:

z SATV/ z SATV;SATM,;
XX =| ,°

z SATV;SATM,; z SATM?

251, 797 800 251,928, 400
251,928,400 254,862,700
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Identity Matrix

- The identity matrix is a matrix that, when pre- or post- multiplied by
another matrix results in the original matrix:
Al =A
IA=A

- The identity matrix is a square matrix that has:
> Diagonal elements =1
» Off-diagonal elements =0

100]

1(3x3)=[0 1 0
0 0 1
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Zero Vector

« The zero vector is a column vector of zeros

0
O(le) =10
0

-  When pre- or post- multiplied the result is the zero vector:
A0O=0
0OA=0

PSYC 943: Lecture 5
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Ones Vector

A ones vector is a column vector of 1s:
1

1zx1) = [1]

1

The ones vector is useful for calculating statistical terms, such as the
mean vector and the covariance matrix
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Matrix “Division”: The Inverse Matrix

Division from algebra:

. a 1 _
> First: —==a=b"1a
b b

> Second:= =1
a

“Division” in matrices serves a similar role

> For square and symmetric matrices, an inverse matrix is a matrix that when
pre- or post- multiplied with another matrix produces the identity matrix:
A71A =1
AATl =]

Calculation of the matrix inverse is complicated
> Even computers have a tough time

Not all matrices can be inverted

> Non-invertible matrices are called singular matrices

+ In statistics, singular matrices are commonly caused by linear dependencies
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The Inverse

- In data: the inverse shows up constantly in statistics

> Models which assume some type of (multivariate) normality need an
inverse covariance matrix

« Using our SAT example
> Our data matrix was size (1000 x 2), which is not invertible

> However X7 X was size (2 x 2) — square, and symmetric
XTX — [251,797,800 251,928,400
~1251,928,400 254,862,700
> The inverse is:
-1 _ | 3.61E —7 —3.57E -7
(XTX)™ = [—3.575 —7 3.56E-—7

PSYC 943: Lecture 5
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Matrix Algebra Operations

. (A+B)+C=

A+ (B+C)

. A+B=B+A

- c(A+B)=cA+cB
- (c+d)A=cA+dA
. (A+B) =A" +BT
- (cd)A = c(dA)

. (cA)T = cAT

- c(AB) = (cA)B

. A(BC) = (AB)C
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- A(B+C) =AB+ AC
. (AB)"
- For x; such that ij exists:

— BTAT

N N
ZAX] =AZX]
=1 j=1

Z(A )(ax)" =

XJ J

”MZ
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ADVANCED MATRIX OPERATIONS



Advanced Matrix Functions/Operations

-  We end our matrix discussion with some advanced topics
> All related to multivariate statistical analysis

. To help us throughout, let’s consider the correlation matrix of our

SAT data:
00 0.78

R = [(1):78 1.00

PSYC 943: Lecture 5
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Matrix Trace

.- For a square matrix A with p rows/columns, the trace is the sum of

the diagonal elements:
14
trA = Z Aji
i=1

- For our data, the trace of the correlation matrix is 2

> For all correlation matrices, the trace is equal to the number of variables
because all diagonal elements are 1

. The trace is considered the total variance in multivariate statistics
> Used as a target to recover when applying statistical models

PSYC 943: Lecture 5
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Matrix Determinants

- A square matrix can be characterized by a scalar value called a
determinant:

detA = |A]

. Calculation of the determinant is tedious
> Our determinant was 0.3916

- The determinant is useful in statistics:
> Shows up in multivariate statistical distributions
> |s a measure of “generalized” variance of multiple variables

- If the determinant is positive, the matrix is called positive definite
> Isinvertible

- |If the determinant is not positive, the matrix is called
non-positive definite
> Not invertible
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MULTIVARIATE STATISTICS
AND DISTRIBUTIONS



Multivariate Statistics

- Up to this point in this course, we have focused on the prediction (or
modeling) of a single variable
> Conditional distributions (aka, generalized linear models)

- Multivariate statistics is about exploring joint distributions
> How variables relate to each other simultaneously

- Therefore, we must adapt our conditional distributions to have multiple
variables, simultaneously (later, as multiple outcomes)

- We will now look at the joint distributions of two variables f (x4, x,) orin
matrix form: f(X) (where X is size N x 2; f(X) gives a scalar/single
number)

> Beginning with two, then moving to anything more than two

> We will begin by looking at multivariate descriptive statistics
+ Mean vectors and covariance matrices

- Today, we will only consider the joint distribution of sets of variables —
but next time we will put this into a GLM-like setup
> The joint distribution will the be conditional on other variables
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Multiple Means: The Mean Vector

. We can use a vector to describe the set of means for our data

1 X
X =—X"1=|"
*TN

> Here 1isa N x1vector of 1s
> The resulting mean vector is a v x 1 vector of means

- For our data:

[499.32] _ FSATV]
XSATM

- In SAS PROC IML:

T ATAD ITTL O SRAME TTMNATI RS AMITIMRTD N AR O DIIA T TANMS

LA NOWLlD oL LLNoLD Ao NWNUDNDLN Vi VOQLANVAL LUNOD,

ONES = J(N,1,1); *J function (built in) creates a new matrix with (#rows, #cols, value of element):;
meanvec = (1/N)*t (X)*ONES; *t () function (built in) transposes the matrix in the parentheses;

PSYC 943: Lecture 5
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Mean Vector: Graphically

. The mean vector is the center of the distribution of
both variables

800

600

SATV

400

200
200 400 600 800

SATM
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Covariance of a Pair of Variables

. The covariance is a measure of the relatedness
> Expressed in the product of the units of the two variables:

N
1
Sxyx; = NZ(xpl — %1 ) (Xp2 — %2)
p=1

> The covariance between SATV and SATM was 3,132.22
(in SAT Verbal-Maths)

> The denominator N is the ML version — unbiased is N-1

- Because the units of the covariance are difficult to understand, we
more commonly describe association (correlation) between two
variables with correlation

> Covariance divided by the product of each variable’s standard deviation
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Correlation of a Pair of Varibles

- Correlation is covariance divided by the product of the standard

deviation of each variable:
Sx1x2

rx1x2 =
2 2
\/le\/SxZ

> The correlation between SATM and SATV was 0.78

. Correlation is unitless — it only ranges between -1 and 1

» If x; and x, both had variances of 1, the covariance between them would
be a correlation
+ Covariance of standardized variables = correlation

PSYC 943: Lecture 5
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Covariance and Correlation in Matrices

- The covariance matrix (for any number of variables v) is found by:

1 i,
=—X-1xDHIX-1x") =] :
N
_lexV
« In SAS PROC IML:
OJE;:=.:(N )‘ P il :H = :i:" e i 1
méa;vé; ;—( /N) t(;) ;JLS )
n'ea.:-r;';t-;z—.x = C*Jr_;—t(r;é;;;;;)-— *for covariance matrix;
cov_matrix = (1/N)*t(X - mean matrix)* (X - mean matrix):
cov_matrix 2 rows

2,477.34 3,123.22

S — 3,132.22 6,589.71 3132.2236 6589.7071
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From Covariance to Correlation

. If we take the SDs (the square root of the diagonal of the covariance
matrix) and put them into a diagonal matrix D, the correlation
matrix is found by:

le o0 0 lexp
2 2 _ i
\/le\/sxl \/le\[SXV 1 cee T'xle

_rx1xV coo 1

R=D"1SD1 =

lexV

2

SxV
2 2 2 2
mfn
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Example Covariance Matrix

For our data, the covariance matrix was:
2,477.34 3,123.22

3,132.22 6,589.71

S =

The diagonal matrix D was:

]

0

\V2,477.34

0

\/6,589.71

The correlation matrix R was:

R=D"1SD1 =
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49.77

0

0
1

81.18-

. [1.7080 78

5
3

477.34 3,123.22
132.22 6,589.71

1.00

] - [49677 81(.)18]

49.77

81.18-



In SAS:

*DTACONAT MATRTY OF STANDAR TUTTATT o FROM COUVARTANCE MATRTW - -
DIAGONAL MATRIX OF STANDARD DEVIATIONS FROM COVARIANCE MATRIX:
SORT TAKES STANDARD DEVIATIOMN AATIAD TAMAE MATDTY 3 TADTAMAT S
=104 ) TAKES STANDARD 14110 [uv-:‘x\_:‘x.zx.« MATRIX HAS -'.-:\-...Ix_,..._‘l H

atrix = SQRT (DIAG(cov_matrix));

U
'5‘

D_matrix 2 rouws 2 cols (numeric)

49.77286 0
0 81.177011

INVERSE OF e .
* TNV S ) Matrix:;

EROoL Or

D matrix inv = INV(D matrix);

D_matrix_inv 2 rous 2 cols (numeric)

0.0200913 0
0 0.0123188

AT T T BT AN M T e
*CORRELATICON MATRIX::

corr matrix = D matrix_inv*cov_matrix*D matrix_inv;

orr_matrix 2 rows 2 cols (numeric)

1 0.7752238
0.7752238 1
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Generalized Variance

- The determinant of the covariance matrix is the generalized variance
Generalized Sample Variance = |§|

- Itis a measure of spread across all variables
> Reflecting how much overlap (covariance) in variables occurs in the sample
> Amount of overlap reduces the generalized sample variance
> Generalized variance from our SAT example: 6,514,104.5
> Generalized variance if zero covariance/correlation: 16,324,929

*GENERALIZED VARIANCE:; EN_VAR 1 row 1 col (numeric)

GEN_VAR = DET (cov_matrix):;

6514104.5

- The generalized sample variance is:
» Largest when variables are uncorrelated
> Zero when variables form a linear dependency

. In data:

> The generalized variance is seldom used descriptively, but shows up more
frequently in maximum likelihood functions
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Total Sample Variance

The total sample variance is the sum of the variances of each
variable in the sample

> The sum of the diagonal elements of the sample covariance matrix

> The trace of the sample covariance matrix
14

Total Sample Variance = Z S,%i =1trS

v=1

Total sample varlance for our SAT example:

TOT_VAR 1 row 1 col (numeric)

:-._ _._.:_._. e NCE;

TOT_VAR = TRAC:(COJ matrix):;
9067 .0447

The total sample variance does not take into consideration the
covariances among the variables
> Will not equal zero if linearly dependency exists

In data:

> The total sample variance is commonly used as the denominator (target)
when calculating variance accounted for measures
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(VARIABLES 2 2)



Multivariate Normal Distribution

The multivariate normal distribution is the generalization of the

univariate normal distribution to multiple variables
> The bivariate normal distribution just shown is part of the MVN

The MVN provides the relative likelihood of observing all V variables

for a subject p simultaneously:

The multivariate normal density function is:
T
1 (xD —p) T7H(xE — )
f(xp) = v 1°XP| T : > :
(2m)z|Z[2
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The Multivariate Normal Distribution

T
T —1(+T
f(X)_ . ex —(Xp_ﬂ)z (Xp_”)
p) — Vv 1 p 2
(2m)z|Z|2
-l/lxl-
. H.’)Cz
- Themeanvectorisu =1| .
_.uxV_
-2 T
O-xl O-xle O-xle
2
. ' . O- O— PP O'
- The covariance matrix is & = | “*1%2 X2 r2tv
e 00 2

> The covariance matrix must be non-singular (invertible)
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Comparing Univariate and Multivariate Normal Distributions

The univariate normal distribution:
f(x ) . 1 ex . (X T ‘U)Z
b/ V2mo? P 20%

The univariate normal, rewritten with a little algebra

[ (x — u)a‘i(x - m]

f(xp) = 1 1¢XP
(27T)2|02|2

The multivariate normal distribution

1 T _ ) s-1(xT —
f(x,) = —exp |- (xp — 1) . (xp — 1)
(21m)2|Z|2

> When V = 1 (one variable), the MVN is a univariate normal distribution
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The Exponent Term

- The term in the exponent (without the — %) is called the squared
Mahalanobis Distance

d?(x,) = (x5 — ) TH(x5 — )
> Sometimes called the statistical distance

> Describes how far an observation is from its mean vector, in
standardized units

> Like a multivariate Z score (but, if data are MVN, is actually distributed as a
x*2variable with DF = number of variables in X)

> Can be used to assess if data follow MVN
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Multivariate Normal Notation

. Standard notation for the multivariate normal distribution of v
variablesis N, (u, X)

> Our SAT example would use a bivariate normal: N, (u, X)

. In data:

> The multivariate normal distribution serves as the basis for most every
statistical technigue commonly used in the social and educational sciences
+ General linear models (ANOVA, regression, MANOVA)
+ General linear mixed models (HLM/multilevel models)

+ Factor and structural equation models (EFA, CFA, SEM, path models)
+ Multiple imputation for missing data

> Simply put, the world of commonly used statistics revolves around the
multivariate normal distribution

+ Understanding it is the key to understanding many statistical methods
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Bivariate Normal Plot #1
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Bivariate Normal Plot #2 (Multivariate Normal)

I e B P

O-x1x2

“Wlf,"a’o'::s\ gy -1t

Density Surface (3D) Density Surface (2D):
Contour Plot
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Multivariate Normal Properties

- The multivariate normal distribution has some useful properties
that show up in statistical methods

« |If X'is distributed multivariate normally:
1. Linear combinations of X are normally distributed

2. All subsets of X are multivariate normally distributed

3. A zero covariance between a pair of variables of X implies that the
variables are independent

4. Conditional distributions of X are multivariate normal
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Multivariate Normal Distribution in PROC IML

- To demonstrate how the MVN works, we will now investigate how

the PDF provides the likelihood (height) for a given observation:

> Here we will use the SAT data and assume the sample mean vector and

covariance matrix are known to be the true:
_ [499'32]'8 _[2,477.34 3,123.22

498.27 ~ [3,132.22 6,589.71

-  We will compute the likelihood value for several observations (SEE
EXAMPLE SAS SYNTAX FOR HOW THIS WORKS):
> Xg31, = [590 730]; f(x) = 0.00000087528
> X717. = [340 300]; f(x) = 0.00000037082
> X =X =[499.32 498.27]; f(x) = 0.0000624

- Note: this is the height for these observations, not the joint
likelihood across all the data

> Next time we will use PROC MIXED to find the parameters in g and X using
maximum likelihood
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Likelihoods...From SAS

#WMTIT TTULADTATE AL T ATETODTRITTTAM TIINATTAM AAT ATIT AT TAMS
Visd L Ml Aal L o AL VALQANLIOVI LU LV e e N iVl A -
UNO L4 ANl UK ALL CALUULAL LUVNO

PI = CONSTANTI('pi'); *the constant pi;
NVAR = NCOL (X); *the number of wvariables in X; 1 v

f(xp) = T
pi_constant = (2*PI)**(NVAR/2)a -
sigma constant = DET (cov_matrix) **(1/2) _’> (277:) |Z | 2

sigma_inverse = INV(cov_matrix):;

(8]

et s SNV 2L L LN ap

obs = X[631,]:

mean diff = t(obs)-meanvec,

exponent_term = (-1/2)*c (mean diff)*sigma inverse*mean diff,
likelihood = (l/pi_co::sta::t) w (1/31grr.a_co:‘.sta::t) *exp (exponent_term);
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Wrapping Up

- Matrix algebra is the language of multivariate statistics
> Learning the basics will help you read work (both new old)

- Over the course of the rest of the semester, we will use matrix

algebra frequently
> It provides for more concise formulae

. |In practice, we will use matrix algebra very little

> But understanding how it works is the key to understanding how statistical
methods work and are related
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Wrapping Up

- The last two classes set the stage to discuss multivariate statistical
methods that use maximum likelihood

- Matrix algebra was necessary so as to concisely talk about our
distributions (which will soon be models)

- The multivariate normal distribution will be necessary to
understand as it is the most commonly used distribution for
estimation of multivariate models

- Next week we will get back into data analysis — but for multivariate

observations...using SAS PROC MIXED
> Each term of the MVN will be mapped onto the PROC MIXED output
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