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Today’s Class

- The building blocks: The basics of mathematical statistics:
> Random variables: definitions and types

> Univariate distributions
+ General terminology
+ Univariate normal (aka, Gaussian)
+ Other (continuous) univariate distributions

> Expected values: means, variances, and the algebra of
expectations

> Linear combinations of random variables

» The finished product: How the GLM fits within statistics
> The GLM with the normal distribution
> The statistical assumptions of the GLM

- Estimation of GLMs with Least Squares
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RANDOM VARIABLES
AND STATISTICAL DISTRIBUTIONS
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Random Variables

Random: situations in which the certainty of the outcome is
unknown and is at least in part due to chance

-+

Variable: a value that may change given the scope of a given
problem or set of operations

Random Variable: a variable whose outcome depends on
chance

(possible values might represent the possible outcomes of a
yet-to-be-performed experiment)

Today we will denote a random variable with a lower-cased:
X
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Key Features of Random Variables

- Random variables each are described by a probability
density/mass function (PDF) f (x) that indicates relative

frequency of occurrence

> A PDF is a mathematical function that gives a rough picture of the
distribution from which a random variable is drawn

- The type of random variable dictates the name and nature of

these functions:

> Continuous random variables:
+ f(x) is called a probability density function
+ Area under curve must equal 1 (found by calculus — integration)

+ Height of curve (the function value f(x)):

— Can be any positive number
— Reflects relative likelihood of an observation occurring

> Discrete random variables:
+ f(x) is called a probability mass function
+ Sum across all values must equal 1
+ The function value f (x) is a probability (so must range from 0 to 1)
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Uses of Distributions in Data Analysis

Statistical models make distributional assumptions on
various parameters and/or parts of data

These assumptions govern:
> How models are estimated
> How inferences are made
> How missing data may be imputed

If data do not follow an assumed distribution, inferences
may be inaccurate
> Sometimes a very big problem, other times not so much

Therefore, it can be helpful to check distributional
assumptions prior to (or while) running statistical analyses
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CONTINUOUS UNIVARIATE
DISTRIBUTIONS
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Continuous Univariate Distributions

. To demonstrate how continuous distributions work and

look, we will discuss two:
> Uniform distribution

> Normal distribution

- Each are described a set of parameters, which we will
later see are what give us our inferences
when we analyze data

- What we then do is put constraints on those parameters
based on hypothesized effects in data
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Uniform Distribution

- The uniform distribution is shown to help set up how
continuous distributions work

« For a continuous random variable x that ranges from
(a,b), the uniform probability density function is:

flx) =

b—a

- The uniform distribution has
two parameters:
> a —the lower limit
> b —the upper limit

I

ol e

- x ~U(a,b)
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More on the Uniform Distribution

- To demonstrate how PDFs work, we will try a few values:

X a b f(x)

5 0 1 1
— =1
1-0

.75 0 1 1
— =1
1-0

15 0 20 1

= .05

20—0

15 10 20 1 _ 4
20—10 °

. The uniform PDF has the feature that all values of x are

equally likely across the sample space of the distribution
> Therefore, you do not see x in the PDF f(x)

- The mean of the uniform distribution is % (a + b)

. The variance of the uniform distribution is % (b — a)?
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Univariate Normal Distribution

- For a continuous random variable x (ranging from —oo to o) the
univariate normal distribution function is:
(x — .ux)z)

1
flx) = \/TGD?GXP (‘ 202

- The shape of the distribution is governed by two parameters:
» The mean u,
> The variance o/

> These parameters are called sufficient statistics (they contain all the
information about the distribution)

- The skewness (lean) and kurtosis (peakedness) are fixed

. Standard notation for normal distributions is x ~ N (u,., 02)
» Read as: “x follows a normal distribution with a mean u, and a variance o¢”

. Linear combinations of random variables following normal distributions
result in a random variable that is normally distributed
> You’ll see this later with respect to the GLM...
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Univariate Normal Distribution
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f(x) gives the height of the curve (relative frequency) for any value of x, i, and o2
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More of the Univariate Normal Distribution

- To demonstrate how the normal distribution works, we will try
a few values:

X Py & f(x)
5 0 1 0.352
75 0 1 0.301
5 0 5 0.079
75 2 1 0.009
2 2 1 0.399

. The values from f(x) were obtained by using Excel
> The “=normdist()” function
> Most statistics packages have a normal distribution function

- The mean of the normal distribution is u,
. The variance of the normal distribution is g,
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EXPECTED VALUES AND THE
ALGEBRA OF EXPECTATIONS
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Expected Values

. Expected values are statistics taken the sample space of a
random variable: they are essentially weighted averages

. The weights used in computing this average correspond to the
densities for a continuous random variable (the heights of the
distribution)

. Notation: the expected value is represented by: E(x)

> The actual statistic that is being weighted by the PDF is put into the
parentheses where x is now

- Expected values allow us to understand what a statistical
model implies about data, for instance:
> How a GLM specifies the (conditional) mean and variance of a DV
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Expected Value Calculation

For discrete random variables, the expected value is found by:

E(x) = sz(X = X)

X
For example, the expected value of a roll of a die is:

1 1 1 1 1 1
E(x) = (1)E+ (2)g+ (3)E+ (4)5+ (5)g+ (6)82 3.5

For continuous random variables, the expected value is found by:

E(x) =j xf(x)dx

We won’t be calculating theoretical expected values with
calculus...we use them only to see how models imply things about
our data
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Variance and Covariance...As Expected Values

. A distribution’s theoretical variance can also be written as an
expected value:

2
— — 2
V(ix) = E(x — E(x)) = E(x — u,)
> This formula will help us understand predictions made GLMs and
how that corresponds to statistical parameters we interpret

- For aroll of a die, the theoretical variance is:
V) =E(x—35)2=-(1-35)%+:(2-35)2+:(3 -
3.5)2 +<(4—3.5)% +2(5 - 3.5)2 + (6 — 3.5)2 = 2.92
> Likewise, the SD is then v2.92 = 1.71

. Likewise, for a pair of random variables x and z, the
covariance can be found from their joint distributions:
Cov(x,z) = E(xz) — E(X)E(2) = E(x2) — Uity
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LINEAR COMBINATIONS OF
RANDOM VARIABLES
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Linear Combinations of Random Variables

A linear combination is an expression constructed from a set of terms
by multiplying each term by a constant and then adding the results

X =a.v; +a,vy, +--+a,v,

> The linear regression equation is a linear combination

- More generally, linear combinations of random variables have
specific implications for the mean, variance, and possibly covariance
of the new random variable

- As such, there are predicable ways in which the means, variances,

and covariances change
> These terms are called the algebra of expectations

- To guide us through this process, we will use the descriptive
statistics from the height/weight/gender example from our 15t class

PSYC 943: Lecture 3 - Distributions and Estimation



Descriptive Statistics for Height/Weight Data

Variable Mean SD Variance
Height 67.9 7.44 55.358
Weight 183.4 56.383 3,179.095
Female 0.5 0.513 0.263
Above Diagonal:
Diagonal: Variance Covariance
Correlation Height Weight Female
/Covariance
Height 55.358 334.832 -2.263
Weight .798 3,179.095 -27.632
Female -.593 -.955 .263

Correlation

Below Diagonal:
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Algebra of Expectations

Here are some properties of expected values: x and z are
random variables, ¢ and d constants

Sums of Constants:
E(x+c)=E(x)+c
Vix+c)=V(x)
Cov(x +c,z) = Cov(x, z)
Products of Constants:

E(cx) = cE(x)
V(cx) = c?V(x)
Cov(cx,dz) = cdCov(x, z)

Sums of Random Variables:
E(cx +dz) = cE(x) + dE(z)
V(icx +dz) = c?V(x) + d?V(2) + ch(Cov(x, Z))
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Examples for Algebra of Expectations

Image you wanted to convert weight from pounds to kilograms
(where 1 pound = 0.453 kg)

Weighty, = .453Weighty,

The mean (expected value) of weight in kg:
E(Weightkg) = E(.453Weighty,) = .A53E(Weight;,)
= .453Weight;;, = .453 * 183.4 = 83.08kg

The variance of weight in kg:
V(Weighty,) = V(453Weight,) =4532V(Weight,,)
=.453%% 3,179.095 = 652.38kg"

The covariance of weight in kg with height in inches:
Cov(Weightkg,Height) = Cov(.453Weight;,, Height)
= .453Cov(Weighty,, Height) = .453 * 334.832
= 151.68kg * inches
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Don’t Take My Word For It...

SAS syntax for transforming weight in a DATA step:

DATA htwt;
INPUT id Gender § height weight ;

IF Gender = 'F' THEN female=1;

heightMC = height-67.9;
weightKG = 0.453*weight’

IF Gender = 'M' THEN female=0;

SAS syntax for marginal descriptive statistics and
covariances:

SAM

PROC MEANS DATA=htwt MEAN VAR;
VAR weight weightKG;

RUN;

PROC CORR DATA=htwt COV;

VAR weight weightKG height;

RUN;

SAS output:

The MEANS Procedure

Covariance Matrix, DF =19

Variable| Mean|Variance
weight 183.4000000 3179.09
weightKG 83.0802000 652.3788519

weight| weightKG | height
weight 3179.094737 1440.129916 || 334.831579
weightKG 1440.129916 652.378852 || 151.678705
height 334.831579 151.678705] 55.357895

PSYC 943: Lecture 3 - Distributions and Estimation




Where We Use This...The Dreaded ESTIMATE Statement

- The ESTIMATE statement in SAS computes the expected value and
standard error (square root of variance) for a new random variable

> The new random variable is a linear combination of the original model
parameters (the fixed effects)

> The original model parameters are considered “random” here as their
sampling distribution is used (assuming normal errors and a large N)

MODEL score = Dgroup2 Dgroup3 Dgroup4 experienced4 enthusiasm
Dgroup2*experienced4 Dgroup3*experienced4 Dgroupé4*experienced / SOLUTION:
ESTIMATE 'experience for mini' experience4 1 dgroup2l2*experienced 1;

Estimate = 1 ,Bexperienceél + 1= IBGZ*experienceél

« Where:

_ , 2
> ,Bexperience4 has mean ,Bexperience4 and variance Se(ﬁexperienceél)

—— ) 2
> IBGZ*expe'rienceéLhaS mean IBGZ*experienceéL and variance Se(ﬁGZ*experienceAL)
> There exists a covariance between Boyperiences aNd Beosexperiencea

’ . -
+ We'll call this Cov(ﬁexperienceéb :BGZ*experienceLL)
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More ESTIMATE Statement Fun

. So...if the estimates are:

Parameter Estimate Standard Error tValue Pr> |t
Intercept 75.49934727 0.38707620  195.05 <.0001
Dgroup2 -10.07267266 054896179 -18.35 <.0001
Dgroup3 4.17623925 0.54961852 7.60 <.0001
Dgroup4 -6.04195829 054912685 -11.00 <.0001
experience4 -0.38518388 0.29569936 -1.30  0.1943
enthusiasm -5.00727782 0.18730609  -26.73 <.0001

Dgroup2*experienced4 -0.63103823 0.39198136 -1.61 0.1091
Dgroup3*experienced -0.10925920 041111045 -0.27 0.7907
Dgroup4*experienced  0.16959725 0.41917025 0.40 0.6862

> And COU(IBexp/er;nceéL: IBGZ*experienceLL) = —.08756
..What is:
E(Estimate) = E(1 * Bexperiences + 1 * Bozvexperiences)
= 1% E(,Bexperience4) + 1% E(,BGZ*experience4) = —385—-.631 = —-1.016
V(Estimate) = V(l * ,Bexperience4 + 1= :BGZ*experienceéL)

— 12V(,Bexperience4) + 12V(,BGZ*experience4) + 21 160v(ﬁexperience4:,BGZ*experienceéL) —
2962 4+.391% —2 * .08756 = .0653

Parameter Estimate Standard Error tValue Pr> |t

experience for mini  -1.0162221 0.25685951 -3.96 0.0001

se(Estimate) = \/V(Estimate) = .257
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THE GENERAL LINEAR MODEL WITH
WHAT WE HAVE LEARNED TODAY
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The General Linear Model, Revisited

- The general linear model for predicting Y from X and Z:
Yp = ﬁo + :81Xp + BZZp + ﬁgXpr + ep

In terms of random variables, under the GLM:
. e, is considered random: e, ~ N (0, 2)

- Y,is dependent on the linear combination of Xp, Lo, and ey

- The GLM provides a model for the conditional distribution of
the dependent variable, where the conditioning variables are
the independent variables: f (Y, |X,, Z},)

> There are no assumptions made about X, and Z, - they are
constants

> The regression slopes £y, b1, 52, B3 are constants that are said to be
fixed at their values (hence, called fixed effects)
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Combining the GLM with Expectations

Using the algebra of expectations predicting Y from X and Z:

The expected value (mean) of f(Y,|X,, Z,):
v, =E(Y,) = E(,‘BO + B1 Xy + B2Zy + B3 XpZ +Le',3)

|
IConstants I Random
Variable with
E(ep) =0

= Bo + B1Xp + B2Zy + B3XpZ, + E(ep)
= Po + B1Xp + B2Zy + B3X,Z),

The variance of f(Y,|X,, Z,):
V(Y,) =V(Bo + BiXp + BaZy + B3XpZ, +ey) =V(ey) = 02
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Distribution off(Yp ‘Xp, Zp)

We just found the mean (expected value) and variance implied by

the GLM for the conditional distribution of Y,, given X, and Z,,

- The next question: what is the distribution off(Yp|Xp,Zp)?

. Linear combinations of random variables that are normally
distributed result in variables that are normally distributed

- Because e, ~ N(0, o2) is the only random term in the GLM, the
resulting conditional distribution of Y), is normally distributed:

YplXp, Zp ~ N{Bo + BrXp + BoZy + ,ngpzme'g)

|

Model for the means: from fixed
effects; literally gives mean of

(Y|Xp Zp)

Model for the variances:
from random effects; gives

variance off(Yp |Xp, Zp)
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Examining What This Means in the Context of Data

. |f you recall from our first lecture, the final model we
decided to interpret: Model 5

W, = Bo + B1(Hy, — H) + B2F, + B3(H, — H)E, + ¢,
where e, ~ N(0, o¢)

« From SAS:

Parameter Estimate |Standard Error|t Value |Pr > |t|
|ntercept 2221841718 0.83809108 265.11 <.0001
he|ghtMC 3.1897275 0.11135027 28.65 <.0001
fema'e -82.2719216 1.21108969 -67.93 <.0001
heightMC*female| -'09%%= 0.16777741 652| <0001
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Picturing the GLM with Distributions

The distributional assumptions
of the GLM are the reason why
we do not need to worry if our
dependent variable is normally
distributed

Our dependent variable should
be conditionally normal

We can check this assumption
by checking our assumption
about the residuals, e), ~
N(0,02)

More on this soon...
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More Pictures of the GLM

. Treating our estimated values of the slopes (B, 1, 2, b3)
and the residual variance (g2) as the true values* we can
now see what the theoretical* distribution of

f(WeiahtJHeiahtM. Female..) looks like for a given set

Of p re( Height=62 Female=1 Height=76 Female=0
Tp] (Tp]
o | o |
— 9 —_ O
>< e >< ~— -
B I 5T
[p] [Tp]
S - o -
(en] (e ]
(e ] o
=g o
o | T T T | T = T | T T T |
115 120 125 130 135 140 235 240 245 250 255 260
Weight Weight

*Note: these distributions change when sample estimates
are used (think standard error of the prediction)
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Behind the Pictures...

To emphasize the point that PDFs provide the height of the line, here is the normal PDF
(with numbers) that produced those plots:

~ N2
1 w, —Ww,
f(Wp|Hp,Fp) = Wexp (— ( p20€2 p) ) Model for the Means
e

B ( (W, — [Bot Ba(H, — H) + BaFy + Bty — H)Fp>)1>
RET 7

1 ( (Wp —(222.18 + 3.19(H, — H) — 82.27F, — 1.09(H,, — H)Fp))2>
} V2m(4.73) TP 2(4.73)

Model for the Variance

The plots were created using the following value for the predictors:

H =679
Left plot: H, = 62;F, =1
Right plot: H), = 76; F, = 0

PSYC 943: Lecture 3 - Distributions and Estimation



ESTIMATION OF GLMS
USING LEAST SQUARES
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Why Estimation is Important

- In “applied” statistics courses, estimation is not discussed
very frequently
> Can be very technical...very intimidating

- Estimation is of critical importance

> Quality and validity of estimates (and of inferences made from
them) depends on how they were obtained

> New estimation methods appear from time to time and get
widespread use without anyone asking whether or not they are
any good

- Consider an absurd example:
> | say the mean for IQ should be 20 — just from what | feel

> Do you believe me? Do you feel like reporting this result?
+ Estimators need a basis in reality (in statistical theory)
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How Estimation Works (More or Less)

Most estimation routines do one of three things:

1. Minimize Something: Typically found with names that have “least” in the
title. Forms of least squares include “Generalized”, “Ordinary”,
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively
Reweighted.” Typically the estimator of last resort...

2.  Maximize Something: Typically found with names that have “maximum”
in the title. Forms include “Maximum likelihood”, “ML”, “Residual
Maximum Likelihood” (REML), “Robust ML”. Typically the gold standard
of estimators (and next week we’ll see why).

3. Use Simulation to Sample from Something: more recent advances in
simulation use resampling techniques. Names include “Bayesian Markov
Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis Hastings”,
“Metropolis Algorithm”, and “Monte Carlo”. Used for complex models

where ML is not available or for methods where prior values are needed.
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Estimation of General Linear Models

Recall our GLM (shown here for the prediction of a

dependent variable Y), by two independent variables X,,
and Z,):

Yp —_ ﬁ() + ,lep + ﬁzZp + ﬁ3Xpr + ep

. Traditionally (dating to circa 1840), general linear models
can be estimated via a process called least squares

- Least squares attempts to find the GLM parameters (the
fs) that minimize the squared residual terms:
(N A

min
Bor B o B} 2. 5 ¢

\P=1

PSYC 943: Lecture 3 - Distributions and Estimation



Where We Are Going (and Why We Are Going There)

- Because the basics of estimation are critical to understanding
the validity of the numbers you will use to make inferences
from, we will detail the process of estimation

> Today with Least Squares and then ending with Maximum Likelihood

- The LS estimation we will discuss is to get you to visualize
functions of statistical parameters (the s here) and data in
order to show which estimates we would choose

> To be repeated: In practice LS estimation for GLMs does not do this
(by the magic of calculus and algebra)

. In the end, we would like for you to understand that not all
estimators are created equally and that some can be trusted

more than others

> We would also like for you to see how estimation works so you can
fix it when it goes wrong!
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How Least Squares Estimation Works

- How Least Squares works is through minimizing the squared
error terms...but its what goes into error that drives the
process:

e, =Y, — Y, =Y, — (Bo + B1Xp + B2Zy + B3XpZy)

. If you were to do this (and you wouldn’t), the process called
optimization would go like this:

1. Pick values for regression slopes

2. Calculate ?p and then e, for each person p

3. Calculate OF = Y5_; e} (letters OF stand for objective
function)

4. Repeat 1-3 until you find the values of regression slopes that
lead to the smallest value of OF
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Today’s Example Data

- Imagine an employer is looking to hire employees for a job
where 1Q is important
> We will only use 5 observations so as to show the math behind
the estimation calculations

- The employer collects two variables:

> |Q scores Observation | 1Q Performance
» Job performance 1 112 10

- Descriptive Statistics: 2 113 12
Variable Mean SD 3 115 14
1Q 114.4 2.30 4 118 16
Performance | 12.8 2.28 5 114 12

Covariance Matrix
1Q 5.3 5.1

Performance | 5.1 5.2
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Visualizing the Data

Class Example Data

14 15 16 17
|
®

Performance
12 13

11

10

IQ-114.4
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Let’s Play...Pick the Parameters...

- This slide is left as a placeholder for the Camtasia
recording — we will now do a demonstration in R
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And...The Winner Is...

Least Squares Estimates

17

16

: Bo=12.8
B, =0.9622642
SSE = 1.169811

15

14

Performance

13

12

11

10

IQ-114.4
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Examining the Objective Function Surface

Optimization Function for LS Optimization Function for LS
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LS Estimates of GLMs

- The process of least squares estimation of GLMs does not need an
iterative search

« Using calculus, a minimum of the objective function can be found

» This involves taking the first derivative of the objective function with
respect to each parameter
+ Derivative = slope of the tangent line for a given point

> The first derivative is then set equal to zero
+ Flat slope = minimum (or maximum or saddle point — neither apply here)

> The equation is then solved for the parameter
+ Producing the equations you know and love

- For simple linear regression (one predictor):

1 N — — .
5 ,8 . ﬂ2p=1(xp_x)(yp—y) __covarianceof XandY _ sumof cross—products
X ﬁZﬁ:l(Xp—)?)(Xp—)?) covariance of X and X sum of squared Xs

- When we get to matrix algebra, you will know this as
B =X"X)"X"y
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Ramifications of Closed-Form LS Equations

- Because least squares estimates have a closed form
(equations that will provide statistics directly), they will

work nearly every time

> Only fail when collinearity is present (soon you’ll know this to
mean X' X is singular and cannot be inverted)

. Virtually all other estimators you will encounter in

statistics will not have a closed form

> Even least squares estimators for other types of data (not
continuous)

- Without a closed form, least squares estimates are found
by search the objective function for its minimum
> Like finding the drain of a pool....
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Why LS is Still in Use

. Least squares estimates still make up the bulk of GLM
analyses because:
> They are easy to compute
> They pretty much always give you an answer
> They have been shown to have good statistical properties

- The good statistical properties actually come because LS
estimates of GLMs match the Maximum Likelihood
Estimates

> We will learn more about maximum likelihood estimation next

> For now, know that MLEs are the gold standard when it comes
to estimates
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Where LS Fails

- For all their flexibility, least squares estimates are somewhat limited

» Only have good properties for basic univariate GLM for continuous data
+ Normally distributed error terms with homogeneous variance

-  When data are not continuous/do not have normally distributed
error terms, least squares estimates are not preferred

- For multivariate models with continuous data (repeated measures,
longitudinal data, scales of any sort), least squares estimates quickly
do not work

> Cannot handle missing outcomes (deletes entire case)
» Limited in the types of ways of modeling covariance between observations
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WRAPPING UP
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Wrapping Up

- Today discussed estimation, and in the process showed how
differing estimators can give you different statistics

- The key today was to shake your statistical view point:
> There are many more ways to arrive at statistical results than you may know

. The take home point is that not all estimators are created equal
> If ever presented with estimates: ask how the numbers were attained
> |f ever getting estimates: get the best you can with your data

-  Next week your world will further be expanded when we introduce
maximum likelihood estimators
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