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Today’s Class

- General linear models in matrices for...
> One (univariate) conditionally normal outcome
> Estimated using maximum likelihood in PROC MIXED

- Expanding linear models from univariate outcomes to
multivariate outcomes:
> Multiple variable analyses, simultaneously

> All outcomes are then assumed to be conditionally multivariate
normally distributed

. Models for covariances
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Example Data

- A health researcher is interested in examining the impact of dietary
habits and exercise on pulse rate

- A sample of 18 participants is collected

> Diet factor (BETWEEN SUBJECTS):
+ Nine are vegetarians
+ Nine are omnivores

> Exercise factor (BETWEEN SUBJECTS) with random assignment:
+ Aerobic stair climbing
+ Racquetball
+ Weight training

> Three pulse rates (WITHIN SUBJECTS):
+ After warm-up
+ After jogging
+ After running
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Original Data: Wide Format

. The data:
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Exercise Type P;LZEWT:F ij;gﬁer Pgliﬁnﬁtgr Diet Type person|D

1 1 112 166 215 1 1

2 1 111 166 225 1 2

3 1 29 132 185 1 3

4 1 55 134 186 2 4

5 1 66 109 150 2 3]

6 1 &9 115 177 2 6

7 2 125 177 241 1 7

8 2 85 17 186 1 8

9 2 g7 137 185 1 9

10 2 53 151 217 2 10

1 2 77 122 178 2 11

12 2 78 115 173 2 12

13 3 81 134 206 1 13

14 3 a8 133 180 1 14

15 3 23 157 224 1 15

16 3 RB 95 131 2 16

17 3 85 132 186 2 17

18 3 78 110 164 2 18

X S

87.5 264.36111 315 373.72222
134.11111 315 446.76543 539.49383
189.55556 373.72222 539.49383 727.24691




Comparing Univariate and Multivariate Normal Distributions

The univariate normal distribution:

1 _ 2
f5) - =

2nazexp 202

The univariate normal, rewritten with a little algebra:
1 (x —w (@)™ Hx — w)
f(xp) = 1 1°%P |~ >
(2m)2|0?|2

The multivariate normal distribution

1 T _ ) s-1(xT —
f(x,) = —exp |- (xp — 1) . (x5 ”)]
(21m)2|Z|2

> When V = 1 (one variable), the MVN is a univariate normal distribution
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LINEAR MODELS WITH MATRICES



General Linear Models in Matrices

- Matrix expression of the GLM is important in that many descriptions
of multivariate statistical models use matrix form
> This is the starting point for learning the “language of multivariate”

. In this section, we will use an empty model with a single outcome
> Pulse 3: Pulse after running
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Linear Models with Matrices

The basic linear model for observation p (of N), as modeled by k
predictor variables (some of which may be interactions):

Vp = Bo + B1Xp1 + -+ BrXpk + €

The equation above, for a single univariate outcome y,, can be
expressed more compactly by a set of matrices:

Yp = XpB +ep

Vp is of size (1 x 1) — a scalar (univariate/single outcome)

X, is of size (1 x (1 + k)) —the 1 before the + k is for the intercept
B is of size ((1+k) x 1)

e, is of size (N x 1) — one outcome means one error per person p

PSYC 943: Lecture 6



Unpacking the Equation

B
P IR S B s R %
Yp = Xp B Tt &
(1x1) (1x(1+k)) B (1x1)

(1 +k)x1)

For any person p:
Vp = Bo + ﬁlXpl + et ﬁkka + e,
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Assumed Distributions

- The conditional distribution of y,, has a normal distribution:

> Mean is the predicted value of y,, (conditional mean)
> Error variance is the variance of y,, (conditional variance)

f(yplxp) ~ Nl(xpB' )

- Because we have only one dependent variable we have a univariate
normal distribution

> Mean is determined by (model for the mean):
+ Independent variables
+ Linear model coefficients in 8

> Variance is determined only by 2 (model for the variance)

. This is why checking only the dependent variable for normality isn’t
a good idea
» Conditional distribution of Y given X is normal
> No assumptions about X

PSYC 943: Lecture 6 10



The Normal Distribution as a Likelihood Function

How ML estimation works with conditionally normal outcomes in
GLMs is that each person contributes a portion to the total sample
log likelihood:

First, we find the (not-log) likelihood of a single observation

1 1
L(6?) = ——exp (—5 (p = 5) @D (3p - yp))
(2m)2|02 |2

From that we get the log-likelihood for that same single observation

1 1 1
log L(07) = = log(2m) — S loglo| = 2 (¥ = ) (@2) ™ (v = 5p)

Vp = x,B, is the conditional mean of y,, (model for the means)

o2 is the error variance (or the residual variance), the conditional
variance of y,, (the model for the variances)
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How PROC MIXED Finds Estimates

. For a given value of g2, there is an equation that provides the fixed
effects (model for the means) in 3

B = (X"(62) X)X (a2)"1y

- Xis a matrix for all N people with all k predictors (size N x k)
- 7y isacolumn vector with all persons outcomes (size N x 1)

. 02 is the value of the error variance that is currently being
evaluated

- For each iteration, PROC MIXED
1. Finds 02, then uses it to find 8
2. Then uses B to find J, for all people
3. Then evaluates the log likelihood
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Empty Model in SAS For Pulse After Running

° Syntax: PROC MIXED DATA=WCORE.DIETWIDE METHOD=ML COVIEST HOPRCFILE ITDETAILS IC MAMELEN=50;
CLASS exertype:
FORMAT exertype exercises. diet diets.:
MODEL PULSE3 = f5;
REPELTED exertype / B RCORE:
RIOH ;

> Although we only have one outcome, the REPEATED line is used to
demonstrate how SAS handles the error variances
> We will shortly use the REPEATED line when we have multiple outcomes

. Output: CovP1: g2 for that iteration
-~
IteratioW
CovP1 lteration Evaluations -2 Log Like Criterion
1.0000 0 1 169.68857616
727.25 1 1 169.68857616 0.00000000

Convergence criteria met.
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More SAS Output

- Parsing the relevant SAS output gives us:

Covariance Parameter Estimates

Cov Parm Estimate Standard Error Z Value Pr>Z
Residual 727.25 242.42 3.00 0.0013
> 092 = 727.25

+ As this is the empty model, this is equal to the variance of Y

Solution for Fixed Effects

Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 189.56 6.3563 17 29.82 <.0001
> fo = 189.56

+ As this is the empty model, this is equal to the mean of Y
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Putting Output Into Matrices and Likelihoods

For this analysis, the matrix of all predictors for all people:
X = 1(18x 1)
So, the intercept came from:
B= (XT(GeZ)‘lx)‘le(Gez)‘ly
— (1(1 x 18) (08)~ 1(18 X 1)) 1(1 x 18) (68)7! Y8 x1)

(N) Y, O¢ ( 1 )z _
= — > = > yp = y
O¢ p=1 O¢ N O¢ p=1

And...the log likelihood for a person would be:

1 1 . N1 ~
log L(c?) = —5108(2@ — —108|J | — _(Yp yp)(ae) (yp — 3’19)
1 1
— —Elog(Zn) — Elog(727.25)

1
-3 (v, — 189.56)(727.25)"1(3, — 189.56)
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MULTIVARIATE MODELS



From Univariate to Multivariate

. The first set of slides covered how linear models work when we
have a conditional univariate normal outcome
» In the study, however, there were three outcomes

-  We wish to model all three outcomes simultaneously

> Simultaneous modeling allows for:

+ Determining differences across outcomes in addition to differences
within outcomes (i.e., as created by predictors)

+ Providing a mechanism to model and simultaneously test:
— Within subjects factors (pulse rate across intensity levels)
— Between subjects factors (diet, exercise)
— Interactions of within and between subjects factors

« Our mechanism for studying the multivariate relationships will be to
treat all three outcomes as being part of a (eventually conditional)
multivariate normal distribution
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Multivariate Setup for Data: Stacked (Long) Format

person|D ‘dEXERCISE_ASC‘dEXERCISE_F{|dEXEF{CISE_WT‘ dDIET_M | dDIET_V | pulse | intensity |dINTENSITY_W|dINTENS\TY_J|d\NTENS\TY_R
1 0 1 1]

Data for Person #1
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1
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]
1
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]
1

Intensity: Variable that denotes
which pulse observation is given on
that row of data
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177 a

*CONVERTING DATA TO STACKED FOEM FOR PROC MIXED:
DATA WORE.dietstack:
S5ET WOERE.dietwide;

*FIRST CUTCCHME: PULSE 1 (AFTEER W4ERM TUP) ;

pulse = pulsel;

intensity = 1;

dINTENSITY W = 1; dINTENSITY J = 0; 4INTENSITY R = 0; *DUMMY CODED VARIABLES FOR AMNALYSTS;
CUTPUT; =~CUTFUT MAEES THE LINE OF DATA GET WRITTEN TC THE NEW DATA SET;

#*SECCHND OUTCOME: PULSE 2 (AFTER JOGGING) :

pulse = pulsel;

intensity = 2;

dINTENSITY W = 0; dINTENSITY J = 1; dINTENSITY R = O;
COUTPUT ;

*THIRD OUTCCME: PULSE 3 (AFTER RUMNNING) ;
pulse = pulsel;

intensity = 3;

dINTENSITY W = 0; dINTENSITY J
OUTPUT ;

0; AINTENSITY R = 1;

RIOH ;
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Why Stacked Data?

. Stacked data seem a bit counter-intuitive if you are used to

repeated measures types of experiments
> Most repeated measures analysis programs take wide-format data

. In short, stacked data allow for a more concise method of matching

Vs to DVs, making it easy to:

> Specify if some Vs are different across observations (important in
longitudinal research)

> Keep more data in a maximum likelihood-based analysis if one or more
outcomes are missing (see lecture on missing data later in October)
+ HINT: the MVN for a person uses a smaller covariance matrix
+ Use the rows you observe
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Multivariate Empty Model

-  What a multivariate empty model will give us is very similar to the univariate
empty model:

> The mean for each variable (we can think of this as a mean vector)
+ Three means in our analysis — this will equal our mean vector for this analysis
+ Model for the means now is for a mean vector

> An estimate of the variance for each variable
+ Three variances in our analysis

> An estimate of the covariance for each pair variables

+ Three covariances in our analysis — all of these will be equal to our covariance matrix for
this analysis

+ The model for the variance is now a model for the covariance matrix
- The trick, in syntax, is to figure out how to get access to all parts

- The trick, in multivariate modeling, is to get an appropriate* model for the
covariance matrix so you can believe your model for the means
> *Appropriate = best fitting and most parsimonious
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SAS Syntax for Multivariate Empty Model

TITLE "EMPTY MOLTIVARTATE MCDEL, VC ERRCR: (PREDICTORS ARE THNDICATCORS OF WHICH VARTABLE)"™:
FROC MIXED DATA=WORE.dietstack METHOD=ML COVTEST MNOPREOFILE ITDETAILS IC MAMELEN=50;

CLASS intensity:;

MODEL pulse = dINTENSITY W dINTENSITY R / 5 DDFM=KENWARDROGER;
REPELTED intensity f SUBJECT=personlD TYPE=VC R RCOCEER;

RIOH ;

« The MODEL line — where the model for the means goes:
> Pulse still shows up to the left of the equals sign (because pulse is one column now)

> To the right of the equals sign we now need predictors that will allow us to get a
mean estimate for each variable
+ Without predictors here, we would only get one term (an intercept)

yp — ﬁo + ﬁldWARMUPp + ,BzdRUNNINGp + ep

- With your knowledge of linear models, what does:

o =?| To be revealed during lecture...

p1 =7
By =7
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SAS Syntax for Multivariate Empty Model

TITLE "EMPTY MOLTIVARTATE MCDEL, VC ERRCR: (PREDICTORS ARE THNDICATCORS OF WHICH VARTABLE)"™:
FROC MIXED DATA=WORE.dietstack METHOD=ML COVTEST MNOPREOFILE ITDETAILS IC MAMELEN=50;

CLASS intensity:;
MODEL pulse = dINTENSITY W dINTENSITY R / 5 DDFM=KENWARDROGER;

REPEATED intensity / SUBJECT=personID TYPE=VC R RCCRE;
EITH ;

- The REPEATED line — provides access to the covariance matrix

> SUBIJECT = personlD: Indicates that observations with the same personlID are all from the same
subject/person (and as such get put into a single multivariate normal distribution)

> TYPE =VC: The type line gives access to the model for the covariance matrix

+ VC stands for variance components
— The default, estimates 621 (or one single residual variance that is shared/the same for each outcome)
— Does not estimate any residual covariances between outcomes: assumes residuals are independent

+ Many types exist in SAS
(http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/statug mixed sect020.
htmistatug.mixed.repeatedstmt type) —to be discussed shortly

> R:SAS’ notation for the residual covariance matrix (the letter prints the matrix)
> RCORR: the correlation matrix version of the R covariance matrix (the word prints the matrix)
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Helpful SAS Output Information

« SUBIJECTS - should equal your sample size Dimensions
Covanance Parameters 1
Columns in X 3
» Covariance parameters — number of Cotumns in Z 0
parameters estimated for the covariance Subjests 18

Max Obs Per Subject 3

matrix (1 = our variance)

Number of Observations

Number of Observations Read 54

- Max Obs Per Subject — should equal your omber of Obsemations Used 54
Max per SuU bJeCt MNumber of Observations Not Used 1)

- |If any of these are off, the model is specified incorrectly in syntax
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Multivariate Output from PROC MIXED: Fixed Effects

Solution for Fixed Effects

Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 134.11 5.1611 54 25.99 <.0001
dINTENSITY W -46.6111 7.2988 54 -6.39 <.0001
dINTENSITY_R  55.4444 7.2988 54 7.60 <.0001
Putting these terms into the matrices from before:
Pulsely] 1 1 0 134.11
y, = |PulseZ, |;X, = |1 0 0] B = l—46.61]
Pulse3, 1 0 1 55.44

Therefore, for any given observation, the predicted (mean vector):
134.11 — 46.61] l 87.50 ]

Y, = X,B = [ 134.11 134.11
134.11 + 55.44] 118956

These are the means for each outcome from the means vector
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Multivariate Output from PROC MIXED: Variances

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value Pr>7
Residual personlD 479.46 92.2717 5.20 <.0001
Estimated R Matrix for Subject 1 Estimated R Correlation Matrix for Subject 1
Row Coll Col2 Col3 Row Coll Col2 col3
1 479.46 1 1.0000
2 479.46 ) 1.0000
3 479.46 3 1.0000

. The R matrix here has one estimated parameter: 67 = 479.46

> Note: look at how large the standard error is — variances are very hard to estimate
(and covariances ever harder)...large samples needed

1 0 0 479.46 0 0
- So, here we find that R = 6ZI(3,3) = 479460 1 0[=| 0 479.46 0
0 0 1 0 0 479.46
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Putting Output Into Distributional Terms

- For multivariate data today we are assuming that the multivariate
distribution of all outcomes is multivariate normal, conditional on
the IVs (although we don’t always have to assume conditional MVN)

f(¥plXp) ~ Ny (X8, V)
Where:
- YpisaV x 1 vector of outcomes for person p
- X, isaV x (k + 1) matrix of k predictors for person p
- Bisa(k + 1)x 1 vector of fixed effects
- X,B =¥, is the predicted conditional mean vector of y,
-V, is the residual covariance matrix (SAS notation) for person p

- Today (and for most of this class), we will say V;, = R for all people

> More complicated models bring about more terms into how V,, is formed
> In 2-level multilevel models and structural equation models
Vv, = ZpGsz + R,
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Visualizing the Log-Likelihood for Our Example

134.11
From our example we found: = |—46.61|;R =
47946 0 0 378
0 479.46 0 ¥y = |134.11
0 0 479.46 189.56

The conditional MVN for a person is:

[_ (7 — yp)TR_l(yP =)

1
f(yz?lxp) = 3 1°XP 5

(2m)2|R|2

And...the log likelihood for a person would be:
3 1 1 T _ R
log L(R) = —Elog(Zn) - 5108|R| — E(yp -%,) R (yp —p)

= —log(2m) — -10g(110,219,172)
T

1 [[Pulselp] 187507\ [0.002 0 o 7/[Puselp] 87.50
-5 Pulse2, | —1134.11 0 0002 0 Pulse2, | —1134.11
Pulse3,| 1189.56 0 0 0.0021 \ | Pulse3,| 1189.56
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Inferences from the Mean Vector (Model for the Means)

- We can now turn our attention to what the model for the means is
giving us in terms of within —subjects tests
> To do so, we'll rely on our friend, the ESTIMATE statement

FROC MIXED DATR=WCOEE.dietstack HMETHCOD=ML CCVTIEST WOPRCFILE ITDETAILS IC NAMELEN=50:
CLASE intensity;

MCDEL pulse = dINTENSITY W dINTENSITY R / 5 DDFM=KENWARDROGER:

REFEATED intensity / SUBJECT=per=sonlD TYFE=UN E RCORE;

ESTIMATE 'Mean Pulse for Warm Up' intercept 1 dINTENSITY W 1;

ESTIMATE 'Mean Pulse for Jogging' intercept 1;

ESTIMATE 'Mean Pulse for Bunning' intercept 1 dINTENSITY R 1;

ESTIMATE 'Warm Up/Jogging Difference' AINTENSITY W 1;

ESTIMATE 'Warm Up/Running Difference’ dINTENSITY W 1 dINTENSITY E -1;

ESTIMATE 'Jogging/Running Difference' dINTENSITY R -1:;

CONTRAST 'Te=st for Owerall Within Subject Difference' dINTENSITY W 1, dINTENSITY R 1:
RIOH ;

> Also note the use of the CONTRAST statement

+ A CONTRAST statement is an estimate statement with a multiple degree of
freedom test statistic (an F-test)

> We will use the ESTIMATE statements to do post-hoc differences between
within-subjects variables

> We will use the CONTRAST statement to do an omnibus test of the within-
subjects factor
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Inferences from the Mean Vector (Model for the Means)

Solution for Fixed Effects Type 3 Tests of Fixed Effects
Effect Estimate Standard Emor DF  Value Pr=|f Effect Num DF  DenDF F Value FPr>F
Intercept 13411 49820 18 2692 <0001 dINTENSITY_W 1 18 48205 <0001
dINTENSITY W | 46 6111 21230 18 2196 <0001 dINTENSITY_R 1 18 582.31 <0001
dINTENSITY_R 55 4444 22976 18 2413 =.0001
Estimates
Label Estimate Standard Eror DF  t Value Pr=|f|
Mean Pulse for Warm Up 87.5000 3.8323 18 2283 =.0001
Mean Pulse for Jogging 134.11 49820 18 26.92 <0001
Mean Pulse for Running 189.56 6.3563 18 2982 =0001
Warm Up/Jogging Difference -46.6111 21230 18 -21.96 <0001
Warm Up/Running Difference -102.06 36830 18 -27.71  =<.0001
Jogging/Running Difference -55.4444 22976 18 -2413 <0001
Contrasts
Label Mum DF  Den DF  F Value Pr=F
Test for Overall Within Subject Difference 2 17 36331 =.0001
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MODELS FOR (THE VARIANCES)
COVARIANCE MATRICES



Modeling Covariances

The estimated covariance matrix in our example analysis was

479.46 0 0
R = 0 479.46 0
0 0 479.46

From the beginning of class, however, we found the sample
covariance matrix to be:
[264.36 315.00 373.72]
S =

315.00 446.75 536.49
373.72 539.49 727.25

Deciding on the right model for the covariance matrix is a balance
between power and model fit
> More parameters = (possibly) better fit + less statistical power

NOTE: Model fit +# Effect size
> We are not explaining anything by finding a good fitting model
> Model fit is necessary, but not sufficient
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A (Possibly) Better Model for the Covariance Matrix

IITLE "EMPTY MULTIVARIATE MODEL, FULL UNSTRUCTURED ERRCOR VARIAWNCE MODEL: (PREDICTORS ARE INDICATORS OF WHICH VARIABLE)
PROC MIXED DATR=WORE.dietstack METHOD=ML COVIEST NOFROFILE ITDETAILS IC MNAMELEN=50;

MODEL pulse = dINTENSITY W dINTENSITY R / 5 DDFM=KENWARDROGER;

EEFEATED / SUBJECT=personlD TYFE=UN R RCORE;

EON;

- REPEATED line: change TYPE = VC (Variance Components) to TYPE =
UN (Unstructured)

- An UNSTRUCTURED covariance matrix is one where every term is a
model parameter and is estimated:

_ 2 -
0-61 0-61,62 0-61,33
— 2
R - 0-81,82 O-ez 0-62,83
2
_0-81,83 0-62,63 0-33 -

. As thisis an empty model, what would you expect the estimates
to be?
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The Unstructured Model Estimates: Covariance Parameters

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error Z Value PrZ

UN(1,1) personlD 264.36 88.1204 3.00 0.0013
UN(2,1) personiD 315.00 109.88 2.87 0.0041
UN(2,2) personlD 446.77 148.92 3.00 0.0013
UN(3,1) personlD 373.72 135.79 2.75 0.0059
UN(3,2) personiD 539.49 184.99 2.92 0.0035
UN(3,3) personiD 727.25 242.42 3.00 0.0013

Estimated R Matrix for Subject 1 Estimated R Correlation Matrix for

Subject 1
Row Coll Col2 Col3

Row Coll Col2 Col3
1 264.36 315.00 373.72

1 1.0000 0.9166 0.8523
2 315.00 446.77 539.49

2 0.9166 1.0000 0.9465
3 373.72 539.49 727.25

3 0.8523  0.9465 1.0000
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Comparing Covariances

The unstructured model provided a new estimated R

covariance matrix:
264.36 315.00 373.72]

Ryy = l315.00 446.75 536.49
373.72 539.49 727.25
The estimated covariance matrix in our example analysis was

479.46 0 0
0 0 479.46

From the beginning of class, however, we found the sample

covariance matrix to be:
[264.36 315.00 373.72]
S —

315.00 446.75 536.49
373.72 53949 727.25
So, which model is correct: VC or UN?
> Good news: VC is nested within UN so we can use a likelihood ratio test
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Model Comparison

-  We will compare the fit of the VC model to the UN model using a
likelihood ratio test
Hy:R = 621 (3 fixed effects + 1 variance = 4 parameters)

2

O-el 0-31;32 0-61'63
‘R — 2 : _

Hpy:R=|0p, e, 05 Oc,e, | (3 fixed effects + 6 var/cov = 9 parameters)

2
_0-31,33 0-32,33 0-63 A

« In SAS PROC MIXED, this is done for us automatically:
Null Model Likelihood Ratio Test

DF Chi-Square  Pr > ChiSq
5 78.45 <.0001

- Therefore, we find that the UN model fits better
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Why the Right Covariance Matrix Matters:

Standard Errors and Inferences Made from Fixed Effects

. Fixed effects from the UN model:

Solution for Fixed Effects

Effect Estimate Standard DF t Value Pr> |t|
Error

Intercept 134.11 4.9820 18 26.92 <.0001

dINTENSITY W -46.6111 2.1230 18 -21.96 <.0001

dINTENSITY R 55.4444 2.2976 18 24.13 <.0001

. Fixed effects from the VC model:

Solution for Fixed Effects

Effect Estimate Standard Error DF t Value Pr> |t|
Intercept 134.11 5.1611 54 25.99 <.0001
dINTENSITY W -46.6111 7.2988 54 -6.39 <.0001

dINTENSITY_R 55.4444 7.2988 54 7.60 <.0001
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What Happens with Differing Models for the Covariances

- The different models for the covariances generally don’t change the
model for the means (the fixed effects) much
> Exceptions: unbalanced data

- The standard errors for the fixed effects are derived from the R matrix
that was estimated:
V() = X'RTX)71
> Putting the wrong R matrix in the model will lead to the wrong SEs

> The wrong SEs will end up giving you inaccurate p-values
> Inaccurate p-values will lead to the wrong inferences

- Therefore, the main part of a multivariate model is to determine the
appropriate model for the variances

> This is why we have Repeated Measures (one type of R matrix) and MANOVA
(an unstructured R matrix)

> Unless sample size isn’t an issue, the model selected should the model that fits
best with the least number of parameters

« Maximum likelihood has made many types of covariance matrices possible
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MULTIPLE MODELS FOR
COVARIANCE MATRICES



A Multivariate Modeling Demonstration

- To demonstrate the process of finding the best fitting/most
parsimonious covariance matrix, we will estimate five models

Variance Components

Variance Components with Heterogeneous Variances

Compound Symmetry

Compound Symmetry with Heterogeneous Variances

Unstructured

LA O

« The unstructured model from the previous slides will be the best
one can do — but the question remains as to whether any simpler
forms would be approximately correct but have fewer parameters

- The choice of a covariance matrix is typically aided by the types
of outcomes:
> Time sensitive? Auto regressive/Toeplitz
> Same outcome after multiple trials? Unstructured/Compound symmetry
> Are outcomes region or geography specific? Spatial models
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Type 1: Variance Components

R matrix form:

g 0 O
R=0c’l=|0 o2 0
0 0 o2
Estimated R matrix:
479.46 0 0
R = 0 479.46 0
0 0 479.46

Model Fit Statistics:
» -2LoglL=486.6
> Parameters = 4 (3 fixed effects + 1 variances)
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Type 2: Heterogeneous Variances/Zero Covariances

TYPE = UN(1) in PROC MIXED
« R matrix form:

og 0 0
R=|(0 g, O
0 0 og]
- Estimated R matrix:
264.36 0 0
R = 0 446.77 0
0 0 727.25

- Model Fit Statistics:
> -2LloglL=482.1
> Parameters = 6 (3 fixed effects + 3 variances)

« Model comparison:
> LRT compared with TYPE=VC: —2LL = 4.49,df = 2,p = .106

> VCis preferred to this model
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Type 3: Compound Symmetry [TYPE = CS in PROC MIXED]

R matrix form:

ol +o o o
R=| o 62+ o o
o o 0-82 + o] Bt\{v, this is
univariate
repeated
Estimated R matrix: measures
47946 40941 409.41 ANOVA.

R =1409.41 479.46 409.41
409.41 409.41 479.46

Model Fit Statistics:
> -2LloglL=435.3
> Parameters =5 (3 fixed effects + 1 variances + 1 covariance)

Model comparison:
> LRT compared with TYPE=VC: —2LL = 51.31,df = 1,p <.0001
> CSis preferred to VC (so we now use CS as null model)
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Type 4: Compound Symmetry/Heterogeneous Variances

[TYPE = CSH in PROC MIXED]
R matrix form:

2 -
0-31 0-31 Jezp 0-31 O-egp
_ 2
R _ O-el O-ezp O-ez 0-32 O-egp
2
_O-el O-egp O-ez O-egp 0-83

Estimated R matrix:
217.16 310.26 403.39

R =1310.26 433.06 509.79
403.39 509.79 732.06

Model Fit Statistics:
» -2LoglL=415.8
> Parameters = 7 (3 fixed effects + 3 variances + 1 covariance)

Model comparison:
> LRT compared with TYPE=CS: —2LL = 19.5,df = 2,p <.0001

> CSH is preferred to CS (so we now use CSH as null model)
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Type 5: Unstructured Covariance Matrix [TYPE = UN in PROC MIXED]

« R matrix form:

2 i
O-el O-el,ez 0-31,33
R=|o g? o
eq,e e e,,e .
b2 2 22 3 Btw, this is
Oeie5 Oeye;  Oey | multivariate
(repeated
: : measures)
- Estimated R matrix: ANOVA

264.36 315.00 373.72
R =(315.00 446.75 536.49
373.72 539.49 727.25

- Model Fit Statistics:
> -2 LogL=408.1
> Parameters =9 (3 fixed effects + 3 variances + 3 covariances)

- Model comparison:
> LRT compared with TYPE=CSH: —2LL = 7.7,df = 2,p < .021
> UN is preferred to CSH —and UN is the winner!
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WRAPPING UP



Wrapping Up

- Today’s class was our first step into multivariate modeling where
multiple outcomes were modeled using a conditional multivariate
normal distribution

- Next class: we uncover how adding predictors works for

multivariate models

> How these models relate to classic MANOVA

> More with the CLASS, ESTIMATE, LSMEANS, (and now) CONTRAST
statement, too

- We also introduce and integrate the ideas of path analysis to help
smooth the transition to multivariate models
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