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Today’s Class

« An introduction to matrix algebra
> Scalars, vectors, and matrices
» Basic matrix operations
> Advanced matrix operations

- An introduction to SAS PROC IML

> Interactive matrix language
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Why Learning a Little Matrix Algebra is Important

- Matrix algebra is the alphabet of the language of statistics
> You will most likely encounter formulae with matrices very quickly

- For example, imagine you were interested in analyzing some
repeated measures data...but things don’t go as planned
> From the SAS User’s Guide (PROC MIXED):

Formulation of the Mixed Model

The previous general linear model is certainly a useful one (Sez
although you still assume normality.

The mixed model is written as
y=XB+Zy+e

where everything is the same as in the general linear model ex
Henderson (1990) and Searle, Casella, and McCulloch {1992) i

A key assumption in the foregoing analysis is that ¥ and € are

L] =15

The variance of y is, therefore, V= ZGZ + R_ You can mode
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Estimating Covariance Parameters in the Mixed Model

Estimation is more difficult in the mixed model than in the general linear model. Mot only do y
(y-XB)'V~'(y -XB|

However, it requires knowledge of ¥ and, therefore, knowledge of G and R. Lacking such infc

In many situations, the best approach is to use likelihood-based methods, exploiting the ass
(REML). A favorable theoretical property of ML and REML is that they accommodate data tha

PROC MIXED constructs an objective function associated with ML or REML and maximizes |

| E » |
ML: [(G.R} =—=log|V|—=r'V"'r— Zlog(27)

I PRSI n—p. ...
log X'V~'X —5r'y lr—Tlng-..E:'rjI-

REML: Iz(G.R} = —élu-g V| —

= |

where r =y — X{(X'V-'X} X'V~ 'y and pis the rank of X. PROC MIXED actually minimiz
analytical details for implementing a QR-decomposition approach to the problem. Wolfinger, 1
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Introduction and Motivation

- Nearly all multivariate statistical techniques are described with
matrix algebra

-  When new methods are developed, the first published work

typically involves matrices
> |t makes technical writing more concise — formulae are smaller

- Have you seen:

> (XTX)"1XTy
> ADAT +W

. Useful tip: matrix algebra is a great way to get out of conversations
and other awkward moments
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-  We begin this class with some general definitions (from
dictionary.com):
> Matrix:

1. Arectangular array of numeric or algebraic quantities subject to
mathematical operations

2. The substrate on or within which a fungus grows

> Algebra:

1. A branch of mathematics in which symbols, usually letters of the alphabet,
represent numbers or members of a specified set and are used to
represent quantities and to express general relationships that hold for all
members of the set

2. A set together with a pair of binary operations defined on the set. Usually,
the set and the operations include an identity element, and the
operations are commutative or associative
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Why Learn Matrix Algebra

- Matrix algebra can seem very abstract from the purposes of this
class (and statistics in general)

- Learning matrix algebra is important for:

> Understanding how statistical methods work
+ And when to use them (or not use them)
> Understanding what statistical methods mean
> Reading and writing results from new statistical methods

- Today’s class is the first lecture of learning the language of
multivariate statistics
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DATA EXAMPLE AND SAS



A Guiding Example

To demonstrate matrix algebra, we will make use of data

Imagine that somehow | collected data SAT test scores for both the
Math (SATM) and Verbal (SATV) sections of 1,000 students

The descriptive statistics of this data set are given below:

Statistic | SATYV | SATM
Mean | 499.3 | 498.3
sD 49.8 81.2
Correlation

SATV 1.00 0.78
SATM 0.78 1.00
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The Data...

In Excel: In SAS:

T - T TN e e ]

gk VIEWTABLE: Sat.Satdata

“ Home| Inser | Page | Form | Data | Revie | View | Add-l| & 0 = X
= B = = satv satm
A (=] ||w]||la)m] 2T 1 520 580
- Font | Alignment Mumber, Styles = Cells E' éﬁv ‘ 2 520 550
N " i N T 3 460 440
| Clipboard & Editing 4 560 R30
! AL - | sATv ) ) v 5 430 440
A B c D E F G T & 430 530
1 [SATV SATM = T 570 580
2 520 580 I i 530 570
43 520 550 9 450 540
4 460 440 10 450 470
| 5 560 530 1 510 5D
6 430 440 12 430 510
Il 7 4% 530 13 470 420
Il 8 570 580 14 500 520
e} A , 15 430 470
u 10 490 540 16 450 190
Il 11 450 470 17 500 480
12 510 560 18 510 500
| 13 480 510 19 510 630
| 14 470 420 20 450 410
15 500 520 21 410 80
16 430 470 2 450 46D
17 450 350 7 500 530
x| w0
| 20 610 630 = 500 510
26 530 560
Il 21 450 410

Il 22 410 380 & 540 350
23 460 460 _ 28 | 500 530
= e e 29 430 570
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Matrix Computing: PROC IML

To help demonstrate the topics we will discuss today, | will be
showing examples in SAS PROC IML

The Interactive Matrix Language (IML) is a scientific computing

package in SAS that typically used for statistical routines that aren’t
programed elsewhere in SAS

Useful documentation for IML:

http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/de
fault/viewer.htm#langref toc.htm

A great web reference for IML:
http://www.psych.yorku.ca/lab/sas/iml.htm
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PROC IML Basics

.« Proc IML is a proc step in SAS that runs without needing to use a
preliminary data step

- To use IML the following lines of syntax are placed in a SAS file:

= PROC IML;
RESET PRINT:

*IML S5YNTLX GOES IN HERE:;

QuIT:|

- The “reset print;” line makes every result get printed in the
output window

- The IML syntax will go between the “reset print;” and the “quit;”
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DEFINITIONS OF MATRICES,
VECTORS, AND SCALARS



- A matrix is a rectangular array of data
> Used for storing numbers

. Matrices can have unlimited dimensions

> For our purposes all matrices will have two dimensions:
+ Row
+ Columns

- Matrices are symbolized by boldface font in text, typically with

capital letters SAT Verbal  SAT Math
> Size (r rows x ¢ columns) /(Cy (Column 2)
520 580
x — [520 550
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- A vector is a matrix where one dimension is equal to size 1

> Column vector: a matrix of sizer x 1
520]

_ 1520
X1 = .

1540

> Row vector: a matrix of size 1 x ¢

1000 x 1

X1. = [520 580]1x2

- Vectors are typically written in boldface font text, usually with lowercase letters

- The dots in the subscripts x.; and x;. represent the dimension aggregated across

in the vector

> Xq.is the first row and all columns of X
> X.q is the first column and all rows of X

> Sometimes the rows and columns are separated by a comma (making it possible to
read double-digits in either dimension)
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Matrix Elements

- A matrix (or vector) is composed of a set of elements
> Each element is denoted by its position in the matrix (row and column)

.« For our matrix of data X (size 1000 rows and 2 columns), each
element is denoted by:
xl-j

> The first subscript is the index for the rows: i =1,...,r (= 1000)

> The second subscript is the index for the columns: j=1,...,c (= 2)

- X11 X12
X21 X22

X =

X1000,1  X1000,2] (1000 x 2)
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« A scalaris just a single number

- The name scalar is important: the number “scales” a vector — it can
make a vector “longer” or “shorter”

. Scalars are typically written without boldface:
x11 —_ 520

. Each element of a matrix is a scalar
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Matrix Transpose

The transpose of a matrix is a reorganization of the matrix by
switching the indices for the rows and columns

520 580]
X — 5?0 5?0

_ [520 520 - 540
580 550 -+ 6601241000

XT
An element x;; in the original matrix X is now xj; in the transposed
matrix X”

Transposes are used to align matrices for operations where the
sizes of matrices matter (such as matrix multiplication)
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Types of Matrices

Square Matrix: A square matrix has the same number of rows

and columns
> Correlation/covariance matrices are square matrices

Diagonal Matrix: A diagonal matrix is a square matrix with non-zero

diagonal elements (x;; # 0 for i = j) and zeros on the off-diagonal
elements (x;; = 0 for i # j):

2.759 0 0
A=] 0 1.643 0
0 0 0.879

> We will use diagonal matrices to form correlation matrices

Symmetric Matrix: A symmetric matrix is a square matrix where all

elements are reflected across the diagonal (a;; = a;;)
> Correlation and covariance matrices are symmetric matrices
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VECTORS



Vectors in Space...

- Vectors (row or column) can be represented as lines on a Cartesian
coordinate system (a graph)

- Consider the vectors: a = E] and b = [g]

- A graph of these vectors would be:

« Question: how would a column vector for each of our example
variables (SATM and SATV) be plotted?
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Vector Length

- The length of a vector emanating from the origin is given by the
Pythagorean formula

> This is also called the Euclidean distance between the endpoint of the
vector and the origin

L. — Jxlzl Fx2 4o+ 22 = |x)
. From the last slide: ||a|| = V5 = 2.24; ||b|| = V13 = 3.61

. From our data:
ISATV]|| = 15,868.138; ||SATM|| = 15,964.42

- In data: length is an analog to the standard deviation

> In mean-centered variables, the length is the square root of the sum of
mean deviations (not quite the SD, but close)
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Vector Addition

- Vectors can be added together so that a new vector is formed

- Vector addition is done element-wise, by adding each of the

respective elements together:
> The new vector has the same number of rows and columns

c=arv=[} [~ [J

» Geometrically, this creates a new vector along either of the previous two
+ Starting at the origin and ending at a new point in space

- In Data: a new variable (say, SAT total) is the result of
vector addition

SATroraL = X1 + X
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Vector Addition: Geometrically
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Vector Multiplication by Scalar

- Vectors can be multiplied by scalars
> All elements are multiplied by the scalar

o=2a=2[}] [}

. Scalar multiplication changes the length of the vector:
1]l = v/22 + 42 = V20 = 4.47

- This is where the term scalar comes from: a scalar ends up
“rescaling” (resizing) a vector

- In Data: the GLM (where X is a matrix of data) the fixed effects
(slopes) are scalars multiplying the data

PSYC 943: Lecture 5 24



Scalar Multiplication: Geometrically

a

i L
W &EAlar muliipicatlan

L —

wASEor addhicn vaCher anlditian

alu = w) = au# av

4w

/ sealar il lagzic-atiga
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Linear Combinations

. Addition of a set of vectors (all multiplied by scalars) is called a
linear combination:
V=aXq +a;X, + -+ a;X,

- Here, y is the linear combination

> For all k vectors, the set of all possible linear combinations is called
their span

> Typically not thought of in most analyses — but when working with things
that don’t exist (latent variables) becomes somewhat important

- In Data: linear combinations happen frequently:
> Linear models (i.e., Regression and ANOVA)
> Principal components analysis (later today)

PSYC 943: Lecture 5
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Linear Dependencies

A set of vectors are said to be linearly dependent if
a1X1 +aX, + -+ apX, =0
-and-
a,a,, ..., a, are all not zero

Example: let’s make a new variable — SAT Total:
SATioty1 = 1 * SATV 4+ 1 * SATM

The new variable is linearly dependent with the others:
(1) * SATV + (1) * SATM + (—1) * SATytq = 0

In Data: (multi) collinearity is a linear dependency. Linear
dependencies are bad for statistical analyses that use matrix
inverses (discussed soon).
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Inner (Dot) Product of Vectors

An important concept in vector geometry is that of the inner
product of two vectors
> The inner product is also called the dot product

N
a-b=a"b=ay1byy +azby ++ay by = z a;1biy
i=1

- The dot or inner product is related to the angle between vectors
and to the projection of one vector onto another

- Fromourexample:ta-b=1%x2+4+2+x3 =28
« Fromourdata:x;-x, = 251,928,400

- In data: the angle between vectors is related to the correlation
between variables and the projection is related to
regression/ANOVA/linear models
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Angle Between Vectors

As vectors are conceptualized geometrically, the angle between two
vectors can be calculated

a-b
0,, = cos™! ( )
lal|{Ib]|

From the example:

0,, = cos™1 <

8
\/E\/ﬁ) = 0.12

From our data:

251,928,400
= 0.105

0 = cos~ !
SATV,SATM <\/15,868_138\/15,946.42
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In Data: Cosine Angle = Correlation

. |If you have data that are:

> Placed into vectors
> Centered by the mean (subtract the mean from each observation)

. ..then the cosine of the angle between those vectors is the
correlation between the variables:

a-b _ Zliv=1(ai1 - a)(bil — E)
fallllbl a2 {500 )

Tap = €0S(Ogp) =

For the SAT example data (using mean centered variables):

3,132,223.6
Tsatv,.satm = COS(HSATVC'SATMC) ~ “%5\1573.956 2 567.0425

=.775
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Vector Projections

. A final vector property that shows up in statistical terms frequently
is that of a projection

- The projection of a vector a onto b is the orthogonal projection of a
onto the straight line defined by b
> The projection is the “shadow” of one vector onto the other:

a‘'b
projb = 12

- In data: linear models can be
thought of as projections ™
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Vector Projections Example

To provide a bit more context for vector projections, let’s consider

the projection of SATV onto SATM:

SATV - SATM

SATV ;o = SATM
proj SATM ”SATM”Z

The first portion turns out to be:
SATV - SATM 251,928,400

= = .47
|ISATM ||? 115,964.42||*

This is also the regression slope [;:
SATI/p — ﬁo + ,BlSATMp + ep

The GLM Procedure

Dependent Yariable: zmatwv

Parameter Eztimate

Intercept 262.4819995 T —
zatm 0.4753206 " T
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MATRIX ALGEBRA



Moving from Vectors to Matrices

A matrix can be thought of as a collection of vectors
> Matrix operations are vector operations on steroids

Matrix algebra defines a set of operations and entities on matrices
> | will present a version meant to mirror your previous algebra experiences

Definitions:
> ldentity matrix
» Zero vector
» Ones vector

Basic Operations:
> Addition
> Subtraction
> Multiplication
> “Division”
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Matrix Addition and Subtraction

. Matrix addition and subtraction are much like vector
addition/subtraction

.« Rules:
> Matrices must be the same size (rows and columns)

. Method:

> The new matrix is constructed of element-by-element addition/subtraction
of the previous matrices

. Order:

> The order of the matrices (pre- and post-) does not matter
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Matrix Addition/Subtraction

A+B=

PSYC 943: Lecture 5

11
21

A—
131
| 41
a11 + b1
a2 + tIJ'gL

as1 + bay
141 + tI,L“_

@12
@22

132

147

aiz + bio
az2 + bag
az2 + bao
@42 + byo

b11 bi2
ba1  baa
ba1  baa
| by byo

a1l — b1
azy — boy
as1 — bay
ag — by

a1z — bio
azs — bag
aa2 — bas
g2 — byo
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Matrix Multiplication

- Matrix multiplication is a bit more complicated

> The new matrix may be a different size from either of the two
multiplying matrices

A(rx c)B(cx k) — C(rx k)

. Rules:

> Pre-multiplying matrix must have number of columns equal to the number
of rows of the post-multiplying matrix

. Method:

> The elements of the new matrix consist of the inner (dot) product of the
row vectors of the pre-multiplying matrix and the column vectors of the
post-multiplying matrix

. Order:

> The order of the matrices (pre- and post-) matters

PSYC 943: Lecture 5
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Matrix Multiplication

AB =
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ai1b11 + ayoboy
as1b11 + asoboy
as1by1 + asaboy
aq1b11 + asoboy

aj1byz + arabas
a91b12 + agabas
asz1b12 + azabas
aq1b12 + agabas

a1 a2 |
A as; @ B b11 bia byg
| as1 ass | bar bao bog
@41 ag2

a11b13 + a12bag
az1b13 + agabos
az1b13 + azabag
ag1b13 + agabag
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Multiplication in Statistics

Many statistical formulae with summation can be re-expressed
with matrices

A common matrix multiplication form is: X7X
> Diagonal elements: YN 1X2
> Off-diagonal elements: Y, X;, Xip

For our SAT example:

z SATV/ z SATV;SATM,;
XTX = '
z SATV;SATM,; z SATM?

251, 797 800 251,928, 400
251,928,400 254,862,700
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Identity Matrix

- The identity matrix is a matrix that, when pre- or post- multiplied by
another matrix results in the original matrix:
Al =A
IA=A

- The identity matrix is a square matrix that has:
> Diagonal elements =1
> Off-diagonal elements =0

100]

1(3x3)=[0 1 0
0 0 1
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« The zero vector is a column vector of zeros

0
0(3x1) =10
0

-  When pre- or post- multiplied the result is the zero vector:
A0O=0
0OA=0
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. A ones vectoris a column vector of 1s:
1

1zx1) = [1]
1

- The ones vector is useful for calculating statistical terms, such as the
mean vector and the covariance matrix
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Matrix “Division”: The Inverse Matrix

Division from algebra:

. a 1 _
> First: —==a=b"1a
b b

> Second:= =1
a

“Division” in matrices serves a similar role

> For square and symmetric matrices, an inverse matrix is a matrix that when
pre- or post- multiplied with another matrix produces the identity matrix:
A71A =1
AATl =]

Calculation of the matrix inverse is complicated
> Even computers have a tough time

Not all matrices can be inverted

> Non-invertible matrices are called singular matrices

+ In statistics, singular matrices are commonly caused by linear dependencies
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The Inverse

- In data: the inverse shows up constantly in statistics

> Models which assume some type of (multivariate) normality need an
inverse covariance matrix

« Using our SAT example
> Our data matrix was size (1000 x 2), which is not invertible

> However X”X was size (2 x 2) — square, and symmetric
XTX — [251,797,800 251,928,400
~1251,928,400 254,862,700
> The inverse is:
-1 _ | 3.61E —7 —3.57E -7
(XTX)™ = [—3.57E —7 3.56E-—7
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Matrix Algebra Operations

- (A+B)+C= - A(B+C) =AB+ AC
A+ (B+ 0 . (AB)T = BTAT
+- A+B=B+A - For x; such that Ax; exists:
- c(A+B)=cA+ B
- (c+d)A=cA+dA ZAX]'=AZX]'
. (A+B) =AT" + BT =t J=1
« (cd)A =c(dA
( )T (T) z(A ) (Ax;) =
- (cA)" =cA =

- c(AB) = (cA)B

. A(BC) = (AB)C x, d

”MZ
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ADVANCED MATRIX OPERATIONS



Advanced Matrix Functions/Operations

-  We end our matrix discussion with some advanced topics
> All related to multivariate statistical analysis

. To help us throughout, let’s consider the correlation matrix of our

SAT data:
00 0.78

R = [(1):78 1.00
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.- For a square matrix A with p rows/columns, the trace is the sum of

the diagonal elements:
14
trA = z Aji
i=1

- For our data, the trace of the correlation matrix is 2

> For all correlation matrices, the trace is equal to the number of variables
because all diagonal elements are 1

. The trace is considered the total variance in multivariate statistics
> Used as a target to recover when applying statistical models
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Matrix Determinants

- A square matrix can be characterized by a scalar value called a
determinant:

detA = |A]

« Calculation of the determinant is tedious
> Our determinant was 0.3916

- The determinant is useful in statistics:
> Shows up in multivariate statistical distributions
> |s a measure of “generalized” variance of multiple variables

- If the determinant is positive, the matrix is called positive definite
> Isinvertible

- |If the determinant is not positive, the matrix is called
non-positive definite
> Not invertible
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MULTIVARIATE STATISTICS
AND DISTRIBUTIONS



Multivariate Statistics

Up to this point in this course, we have focused on the prediction (or
modeling) of a single variable
> Conditional distributions (aka, generalized linear models)

Multivariate statistics is about exploring joint distributions
> How variables relate to each other simultaneously

Therefore, we must adapt our conditional distributions to have multiple
variables, simultaneously (later, as multiple outcomes)

We will now look at the joint distributions of two variables f (x;, x,) orin
matrix form: f(X) (where X is size N x 2; f(X) gives a scalar/single
number)

> Beginning with two, then moving to anything more than two

> We will begin by looking at multivariate descriptive statistics
+ Mean vectors and covariance matrices

Today, we will only consider the joint distribution of sets of variables —
but next time we will put this into a GLM-like setup
> The joint distribution will the be conditional on other variables
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Multiple Means: The Mean Vector

. We can use a vector to describe the set of means for our data

Xx=—X"1=

> Here 1isa N x1vector of 1s
> The resulting mean vector is a v x 1 vector of means

- For our data:
 _ [499.32] _ [izSATV]
499,27 XSATM
- In SAS PROC IML:

*CONES VECTOR WITH S5aME LENGTH AS NUMBER COF COBSERVATIONS:

ONES = J(H,1,1); #J function (built in) creates a new matrix with (#rows, #cols, wvalus of slement) :
*CALCULATION OF THE MEAN VECTOR:

meanvec = [(1/H)*t(X)*0NES; *t() function (built in) transposes the matrix in the parentheses;
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Covariance of a Pair of Variables

- The covariance is a measure of the relatedness
> Expressed in the product of the units of the two variables:

N
1
Sxyx; = NZ(xpl — %1 ) (Xp2 — %2)
p=1

> The covariance between SATV and SATM was 3,132.22
(in SAT Verbal-Maths)

> The denominator N is the ML version — unbiased is N-1

- Because the units of the covariance are difficult to understand, we
more commonly describe association (correlation) between two
variables with correlation

> Covariance divided by the product of each variable’s standard deviation
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Correlation of a Pair of Varibles

. Correlation is covariance divided by the product of the standard

deviation of each variable:
Sx1x2

rx1x2 =
2 2
\/le\/SxZ

> The correlation between SATM and SATV was 0.78

. Correlation is unitless — it only ranges between -1 and 1

» If x; and x, both had variances of 1, the covariance between them would
be a correlation
+ Covariance of standardized variables = correlation
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Covariance and Correlation in Matrices

- The covariance matrix (for any number of variables v) is found by:

1 S,
§=~ X~ 1X")'(X - 1x") =

_lexV

- In SAS PROC IML:

*0ONES VECTOR WITH 5AME LENGTH AS NUMEBER OF OBSERVATICONS
ONES = J(N,1,1); *J function (built in) creates a new matrix with (#rows, #cols,
*CALCULATICN OF THE MEAWN WVECTOR:;
meanvec = (1/H)#t (X)*0ONES;
*CALCULATICN OF THE COVARIANCE MATRIX:
mean matrix = ONES*t (meanvec); *for covariance matrix;
COV_matrix = (1/H)*c (X - mean matrix) ® (X - mean matrix);
cov_matrix 2 rous

2,477.34 3,123.22

>=1313222 658971

2477 .3376 3132.2236
3132.2236 6583.7071
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From Covariance to Correlation

. If we take the SDs (the square root of the diagonal of the covariance
matrix) and put them into a diagonal matrix D, the correlation

matrix is found by:
— 2 -

le lexp

2 2 2 2 _ -
\/le\/sxl \/le\/SxV 1 ces rxle

R=D1SD ! = : : =1 : :
2 .oo

le.X'V SxV _rxlxv 1

2 2 2 2
Fln  [a
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Example Covariance Matrix

For our data, the covariance matrix was:
S — 2,477.34 3,123.22

3,132.22 6,589.71

The diagonal matrix D was:

b — \J2,477.34 0 :[49_77 0 ]
0 J/6,589.71 0 8118

The correlation matrix R was:

1 T F 1
—— 0 —
R — D-1SD-1 — | #9977 247734 3.12322) 3977 °
0 1 3,132.22 6,589.71 0 1
81.18- 81.18-

" 11.00 .78
R _[ 78 1.00
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*DIAGONAL MATRIX OF STANDARD DEVIATICHNS FRCM COVARIANCE MATRIX:;

*SQRT TAKES STANDARD DEVIATION (COVARIANCE MATRIX HAS VR
D matrix = S5QRT (DIAG(cov_matrix)):
D matrix 2?2 rows ?2 cols (numeric)
49.77286 0
0 81.177011

*THVERSE COF D_Hat:;x:;

D matrix inv = INV(D matrix):;

D_matrix_inv 2 rows 2 cols (numeric)

0.0200913 0
0 0.0123188

*CORRELATION MATRIX:
corr matrix = D matrix invecov matrix*D matrix inv;
orr_matrix 2 rous 2 cols (numeric )
1 0.7752238
0. 7752238 1
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Generalized Variance

- The determinant of the covariance matrix is the generalized variance
Generalized Sample Variance = |§|

« Itis a measure of spread across all variables
> Reflecting how much overlap (covariance) in variables occurs in the sample
> Amount of overlap reduces the generalized sample variance
> Generalized variance from our SAT example: 6,514,104.5
> Generalized variance if zero covariance/correlation: 16,324,929

*GENMERALIZED VARIAMNCE:: EN_VaR 1 row 1 col (numeric)
GEN VAR = DET (cov_matrix);

6514104 .5

- The generalized sample variance is:
» Largest when variables are uncorrelated
> Zero when variables form a linear dependency

. In data:

> The generalized variance is seldom used descriptively, but shows up more
frequently in maximum likelihood functions
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Total Sample Variance

The total sample variance is the sum of the variances of each
variable in the sample

> The sum of the diagonal elements of the sample covariance matrix

> The trace of the sample covariance matrix
4

Total Sample Variance = z s,%l. =1trS

v=1

Total sample variance for our SAT example:

T SAMPLE VARIANCE: TOT_VAR 1 row 1 col (numeric)

TOTAL
TCT VAR = TEACE (cov _matrix):
9067 . 0447

The total sample variance does not take into consideration the
covariances among the variables
> Will not equal zero if linearly dependency exists

In data:

> The total sample variance is commonly used as the denominator (target)
when calculating variance accounted for measures
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Multivariate Normal Distribution

- The multivariate normal distribution is the generalization of the

univariate normal distribution to multiple variables
> The bivariate normal distribution just shown is part of the MVN

- The MVN provides the relative likelihood of observing all V variables
for a subject p simultaneously:

Xp = [xpl xpz xpv]

- The multivariate normal density function is:
T
1 (xD —p) T7H(xE — )
f(xp) = v 19XP [T : > :
(2m)2|Z[2
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The Multivariate Normal Distribution

T
T —1(+T
f(X)_ . ex —(Xp_”)z (Xp_”)
p) — Vv 1 p 2
(2m)z|Z|2
-Mxl-
. M.'sz
- Themeanvectorisu =1| .
_.uxV_
-2 ]
O-xl O-.X'l.X'z O-xle
2
. ' . O_ O— PP O'
- The covariance matrix is & = | “*1%2 X2 r2tv
e 00 2

> The covariance matrix must be non-singular (invertible)
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Comparing Univariate and Multivariate Normal Distributions

The univariate normal distribution:
f(x ) . 1 ex . (X T #)2
b/ V2mo? P 20%

The univariate normal, rewritten with a little algebra

[ (x — u)a"f(x - m]

f(xp) = ———xexwp
(27T)2|02|2

The multivariate normal distribution

1 T _ ) s-1(xT —
f(x,) = —exp |- (xp — 1) . (x5 ”)]
(21m)2|Z|2

> When V = 1 (one variable), the MVN is a univariate normal distribution
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The Exponent Term

- The term in the exponent (without the — %) is called the squared
Mahalanobis Distance

d?(x,) = (x5 — ) TH(x5 — )
> Sometimes called the statistical distance

> Describes how far an observation is from its mean vector, in
standardized units

> Like a multivariate Z score (but, if data are MVN, is actually distributed as a
x*2variable with DF = number of variables in X)

> Can be used to assess if data follow MVN
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Multivariate Normal Notation

. Standard notation for the multivariate normal distribution of v
variablesis N, (u, X)

> Our SAT example would use a bivariate normal: N, (u, X)

. In data:

> The multivariate normal distribution serves as the basis for most every
statistical technigue commonly used in the social and educational sciences
+ General linear models (ANOVA, regression, MANOVA)
+ General linear mixed models (HLM/multilevel models)

+ Factor and structural equation models (EFA, CFA, SEM, path models)
+ Multiple imputation for missing data

> Simply put, the world of commonly used statistics revolves around the
multivariate normal distribution

+ Understanding it is the key to understanding many statistical methods
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Bivariate Normal Plot #1
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Density Surface (3D) Density Surface (2D):
Contour Plot
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Bivariate Normal Plot #2 (Multivariate Normal)
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Multivariate Normal Properties

- The multivariate normal distribution has some useful properties
that show up in statistical methods

. If X'is distributed multivariate normally:
1. Linear combinations of X are normally distributed

2. All subsets of X are multivariate normally distributed

3. A zero covariance between a pair of variables of X implies that the
variables are independent

4. Conditional distributions of X are multivariate normal
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Multivariate Normal Distribution in PROC IML

- To demonstrate how the MVN works, we will now investigate how

the PDF provides the likelihood (height) for a given observation:

> Here we will use the SAT data and assume the sample mean vector and

covariance matrix are known to be the true:
_ [499.32]_3 _[2,477.34 3,123.22

498.27 ~ [3,132.22 6,589.71

-  We will compute the likelihood value for several observations (SEE
EXAMPLE SAS SYNTAX FOR HOW THIS WORKS):
> Xg31, = [590 730]; f(x) = 0.00000087528
> X717. = [340 300]; f(x) = 0.00000037082
> X =X =[499.32 498.27]; f(x) = 0.0000624

- Note: this is the height for these observations, not the joint
likelihood across all the data

> Next time we will use PROC MIXED to find the parameters in g and X using
maximum likelihood
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Likelihoods...From SAS

*MULTIVARIATE NCORMAT DISTRIBUTICN FUNCTION CALCULATICNS:
*COMNSTANTS FOR ALL CALCULATICHS::

PI = CONSTANT ('pi'),; *the constant pi:
HVAR = HCOL (X): *the number of wvariables in X;

f (Xp) =

B
1

pl constant = (2%PI) ** (NVAR/2) = = 7
sigma constant = DET (cov_matrix) *#¥ (172 2 (27-[) |Z|2 A
sigma inverse = INV(cov _matrix):

*JBSERVATION #631:;
obs = X[631,]:

mean diff = tobs)-meanvec,
EXpONEnt term = (-1/2)*t (mean diff)*zigma inverse*mean diff;
likelihood = (lfpi_cnnstant] * (lfsigrr.a_cnnstant] *exp (exponent term):
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Wrapping Up

- Matrix algebra is the language of multivariate statistics
> Learning the basics will help you read work (both new old)

- Over the course of the rest of the semester, we will use matrix

algebra frequently
> It provides for more concise formulae

. |In practice, we will use matrix algebra very little

> But understanding how it works is the key to understanding how statistical
methods work and are related
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Wrapping Up

- The last two classes set the stage to discuss multivariate statistical
methods that use maximum likelihood

- Matrix algebra was necessary so as to concisely talk about our
distributions (which will soon be models)

- The multivariate normal distribution will be necessary to
understand as it is the most commonly used distribution for
estimation of multivariate models

- Next week we will get back into data analysis — but for multivariate
observations...using SAS PROC MIXED
> Each term of the MVN will be mapped onto the PROC MIXED output
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