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Today’s Class

- An introduction to Bayesian statistics:
> Whatitis
> What it does
> Why people use it

- An introduction to Markov Chain Monte Carlo (MCMC estimation)

> How it works
> Features to look for when using MCMC
> Why people use it
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AN INTRODUCTION TO
BAYESIAN STATISTICS
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Bayesian Statistics: The Basics

- Bayesian statistical analysis refers to the use of models where some

or all of the parameters are treated as random components
> Each parameter comes from some type of distribution

- The likelihood function of the data is then augmented with an
additional term that represents the likelihood of the prior

distribution for each parameter

> Think of this as saying each parameter has a certain likelihood — the height
of the prior distribution

- The final estimates are then considered summaries of the posterior

distribution of the parameter, conditional on the data

> In practice, we use these estimates to make inferences, just as we have
when using the non-Bayesian approaches we have used throughout this
class (e.g., maximum likelihood/least squares)
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Bayesian Statistics: Why It Is Used

Bayesian methods get used because the relative accessibility of one
method of estimation (MCMC — to be discussed shortly)

There are three main reasons why people use MCMC:

Missing data
>  Multiple imputation: MCMC is used to estimate model parameters then
“impute” data
> More complicated models for certain types of missing data

=

2. Lack of software capable of handling large sized analyses

»> Have a zero-inflated negative binomial with 21 multivariate outcomes per
18 time points?

3. New models/generalizations of models not available in software

» Have a new model?
> Need a certain link function not in software?
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Bayesian Statistics: Perceptions and Issues

Historically, the use of Bayesian statistics has been controversial

> The use of certain prior distributions can produce results that are biased or
reflect subjective judgment rather than objective science

- Most MCMC estimation methods are computationally intensive

> Until recently, very few methods available for those who aren’t into
programming in FORTRAN or C++

- Understanding of what Bayesian methods are and how they work is

limited outside the field of mathematical statistics
> Especially the case in the social sciences

« Over the past 15 years, Bayesian methods have become widespread
— making new models estimable and becoming standard in some
social science fields (quantitative psychology and educational
measurement)
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HOW BAYESIAN METHODS WORK
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How Bayesian Statistics Work

The term Bayesian refers to Thomas Bayes (1701-1761)

> Formulated Bayes’ Theorem

Bayesian methods rely on Bayes’ Theorem:
P(B|A)P(A)

P(B)

P(A|B) =

> P(A) is the prior distribution (pdf) of A > WHY THINGS ARE BAYESIAN
> P(B) is the marginal distribution (pdf) of B

> P(B]|A) is the conditional distribution (pdf) of B, given A

> P(A|B) is the posterior distribution (pdf) of A, given B

Bayes’ Theorem Example...

Imagine a patient takes a test for a rare disease (present 1% of the
population) that has a 95% accuracy rate...what is the probability the
patient actually has the disease?
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Bayes’ Theorem Example

Imagine a patient takes a test for a rare disease (present 1% of the
population) that has a 95% accuracy rate...what is the probability the
patient actually has the disease?

D = the case where the person actually has the disease
ND = the case where the person does not have the disease
+ = the test for the disease is positive

The question is asking for: P(D | +)
From Bayes’ Theorem:

P(+|D)P(D
ploiy = L)
What we know:
P(D) = .01

P(+|D) = .95
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Back to Distributions

We don’t know P(+) directly from the problem, but we can figure it
out if we recall how distributions work:

P(+) is a marginal distribution
P(+|D) is a conditional distribution

We can get to the marginal by summing across the conditional:
P(+) =P(+|D)P(D) + P(+|ND)P(ND)
=.95%.01+4+.05%.99 = .059

So, to figure out the answer, if a person tests positive for the

disease, the posterior probability they actually have the disease is:
P(+|D)P(D) ~.01%.99

1
P(+) 059 ’

P(D|+) =
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A (Perhaps) More Relevant Example

The old-fashioned Bayes’ Theorem example I've found to be difficult
to generalize to your actual data, so...

Imagine you administer an I1Q test to a sample of 50 people
> Yp = person p’s 1Q test score

To put this into a linear-models context, the empty model for Y:
Yp = Bo + €p
Where e, ~ N(0, 0¢)

From this empty model, we know that:
> [ is the mean of the Y (the mean 1Q)
> 02 is the sample variance of Y

> The conditional distribution of Y is then: £ (y,|Bo, 02) ~ N(Bo, 62)
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Non-Bayesian Analysis (i.e., Frequentist Approach)

Up to this point in the class, we have analyzed these data using ML

For ML, we maximized the joint likelihood of the sample with
respect to the two unknown parameters 8, and o2
2
(3’10 — :80) )

N N
1
Lo o?) = | | 08)=| [ —=ew|-
(Bo, 0¢) p=1f(3’p|18()0) L1 Znaezexp< 207

Here, using PROC MIXED, | found:
o = 102.769
o2 = 239.490

Also, | found:
—2LogL = 415.8
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Setting up a Bayesian Approach

The (fully) Bayesian approach would treat each parameter as a random
instance from some prior distribution

Let’s say you know that this version of the 1Q test is supposed to have a
mean of 100 and a standard deviation of 15
> So B, should be 100 and a2 should be 225

Going a step further, let’s say you have seen results for administrations of
this test that led you to believe that the mean came from a normal
distribution with a SD of 2.13

> This indicates the prior distribution for the mean...or

F(By) ~ N(100,2.132)

Let’s also say that you don’t really have an idea as for the distribution of
the variance, but you have seen it range from 200 to 400, so we can come
up with a prior distribution for the variance of:

f(62) ~ U(200,400)

Here the prior is a uniform distribution meaning all values from 200 to 400
are equally likely
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More on the Bayesian Approach

The Bayesian approach is now to seek to find the posterior
distribution of the parameters given the data:

o2 _ P(BIA)P(A)
f(ﬁo e|3’p) P(A|B) = 505)

We can again use Bayes’ Theorem (but for continuous parameters):
oo N _ S plBo.08)f (B0, &) _ f(3p|Bo 02)f (Bo)f (0d)
foibn) =5, 7o)

Because f(yp) essentially is a constant (which involves integrating
across B, and o2 to find its value), this term is often referred to as:

f(,BO,aez|yp) X f()’p|,30» Uez)f(ﬁo)f(%z)

The symbol « is read as “is proportional to” — meaning it is the same
as when multiplied by a constant
> So it is the same for all values of B, and g2
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Unpacking the Posterior Distribution

f(yp |,80, 0?2) is the conditional distribution of the data given the
parameters — we know this already from our linear model (slide 12)

N N 2
2} _ 2\ _ 1 _(3’19_:80)>
led) = [t = T ool 2257

f(By) is the prior distribution of 3, which we decided would be
N(100,2.13%), giving the height of any f3;:

1 U
f(,BO) = exXp| — 2 2,30
2o f °
0

2w %2132
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Unpacking the Posterior Distribution

. f(0?) is the prior distribution of g2, which we decided would be
U(200,400), giving the height of any value of 2 as:

1
2) = = = =.005
f (o) b,z —dyz 400 — 200 200

-  Some useful terminology:

> The parameters of the model (for the data) get prior distributions

> The prior distributions each have parameters — these parameters are called
hyper-parameters

> The hyper-parameters are not estimated in our example, but could be —
giving us a case where we would call our priors empirical priors
+ AKA random intercept variance
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Up Next: Estimation (first using non-MCMC)

Although MCMC is commonly thought of as the only method for Bayesian
estimation, there are several other forms

The form analogous to ML (where the value of the parameters that

maximize the likelihood or log-likelihood) is called Maximum a Posteriori
estimation (MAP)

> The term modal comes from the maximum point coming at the peak (the mode)
of the posterior distribution

In practice, this functions similar to ML, only instead of maximizing the
joint likelihood of the data, we now have to worry about the prior:

2 2
F(Bor2lyy) = L2 °’f&f §ﬁ D o fyp o o2 B f (02
p

Because it is often more easy to work with, the log of this is often used:

log (£ (8o, 2|¥p) ) o log f (¥p|Bo, 02) + log £ (o) + log f (02)
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Grid Searching for the MAP Estimate of

To demonstrate, let’s imagine we know g2 = 239.490
> Later we won’t know this...when we use MCMC

We will use Excel to search over a grid of possible values for 3,

In each, we will use logf(yp|,80) + log £ (B,)

As a comparison, we will also search over the ML log likelihood
function logf(yp|,80)
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ML v. Prior for 8, of N(100, 2.13?)

- Maximum for ML: 102.8
-  Maximum for Bayes: 101.4 (estimate is closer to mean of prior)

B e e e o o o e o o B N B B S B e N A e e e e e

0O N WVWMNMANST OWONNSTOWWMANSS O 0 N <

0 900808 dddd 9 aaaa S mmmm S &

o SO 6o oo oo O o0 oo O o0 oo o o

™ o o o~ 1 - - D B e B B | o~ = - - —

-206
-207
-208 e ———

/ === VL Version (no prior)
-209

= N(100,2.13) Prior

-210 / \
- \
-212 AN

-213

PSYC 943: Lecture 12 19



7_)
(e
Q
(e
i
=)
(e
=
2
(T
@
()
Q
p .
(@
(P
L .
@)
-
(a
7
>
—
=

Maximum for ML: 102.8

Maximum for Bayes: 102.8

C v'voT
L0t
L ¥0T

- 8€ot
L 9eot
L veot
L Ce0T
L €0T

. 8'¢0T
L 9cot
L veot
Lot
y40)

L 8'T0T
L 9'T0T
C 7’101
L CT0T
C 10T

. 8°00T
L 9'00T
L 00T
L 00T
L 00T

' 8'66

=== L Version (no prior)

e N(100,1000) Prior

-202

-204

-206

-208

-210

-212

-214

-216

-218

20

PSYC 943: Lecture 12



ML vs. Prior for 8, of N(100, 0.152)

- Maximum for ML: 102.8
- Maximum for Bayes: 100
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Summarizing Bayesian So Far

- Bayesian = parameters have prior distributions

. Estimation in Bayesian = MAP estimation is much like estimation in
ML, only instead of likelihood of data, now have to add in likelihood

for prior of all parameters

> But...MAP estimation may be difficult as figuring out derivatives for gradient
function (for Newton Raphson) are not always easy

> Where they are easy: Conjugate priors = prior distributions that are the
same as the posterior distribution (think multilevel with normal outcomes)

+ Priors can be informative (highly peaked) or uninformative

(not peaked)
> Some uninformative priors will give MAP estimates that are equal to ML

- Up next: estimation by brute force: Markov Chain Monte Carlo
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MARKOV CHAIN MONTE CARLO
ESTIMATION: THE BASICS
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How Estimation Works (More or Less)

Most estimation routines do one of three things:

Minimize Something: Typically found with names that have “least” in the
title. Forms of least squares include “Generalized”, “Ordinary”,
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively
Reweighted.” Typically the estimator of last resort...

Maximize Something: Typically found with names that have “maximum”
in the title. Forms include “Maximum likelihood”, “ML”, “Residual
Maximum Likelihood” (REML), “Robust ML”. Typically the gold standard
of estimators (and we now know why).

Use Simulation to Sample from Something: more recent advances in
simulation use resampling techniques. Names include “Bayesian Markov
Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis Hastings”,
“Metropolis Algorithm”, and “Monte Carlo”. Used for complex models

where ML is not available or for methods where prior values are needed.
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How MCMC Estimation Works

- MCMC estimation works by taking samples from the posterior distribution of the

data given the parameters:
o1y = FOplBo 02)f (Bo)f (02

> How is that possible? We don’t know f(y,)...but..we’ll see...

- After enough values are drawn, a rough shape of the distribution can be formed
> From that shape we can take summaries and make them our parameters (i.e., mean)

- How the sampling mechanism happens comes from several different algorithms
that you will hear about, the most popular being:
> Gibbs Sampling: used when f (B, 62|y, ) is known
+ Parameter values are drawn and kept throughout the chain

> Metropolis-Hastings (within Gibbs): used when f (8, 2|y,) is unknown
+ Parameter values are proposed, then either kept or rejected
+ SAS PROC MCMC uses the latter
+ TRIVIA NOTE: The Metropolis algorithm comes from Chemistry (in 1950)

- In some fields (Physics in particular), MCMC estimation is referred to as
Monte Carlo estimation

PSYC 943: Lecture 12 26



Sampling Example

- Imagine | wanted to get the shape of a distribution similar to our 1Q
example (with a mean of 102.8 and a variance of 239.5)
> This is essentially Gibbs Sampling

- | will open Excel and draw 10,000 random values from

N(102.8, 239.5)
> You can do this by typing “=norminv(rand(),102.8,SQRT(239.5))”

180
160
140
120
100
80
60 -
40
20

density.default(x = x)

2 i
W
0 & o
0N AN OO MONST TN NGO O MmO 0 —
NN OO MUOVOUOAOdEAdST~NOOANINNOMm OO [ B
A A AN ANON T T DN O ONNMNOOOWOOO
> summary (x) o
Min. 1st qu. Median Mean 3rd Qu. Max. 8 4
44,62 92.5%2 102.80 102.80 113.20 176.70 e ' ' '
= var (X)) 50 100 150

[1] 240.7343
N =10000 Bandwidth = 2.202
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MCMC Estimation with MHG

The Metropolis-Hastings algorithm works a bit differently than
Gibbs sampling:

1. Each parameter (here B, and 62) is given an initial value

2. Inorder, a new value is proposed for each model parameter from
some distribution:
2
a?)

Bs ~ Q(Bs1Bo); 0 ~ Q0

3. The proposed value is then accepted as the current value with
probability max( ryye, 1):

aez*)

(ol 02 ) B (2 )Q(Bo |85)Q (2
r = =
T F(WplBor 92) f Bo) F (02)Q(B31B0)Q (02 |02)

4. The process continues for a pre-specified number of iterations
(more is better)
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Notes About MHG

- The constant in the denominator of the posterior distribution:

2 2
f(,BO;Uezlyp) _ f(yplﬁo'o-e ).f(IBO)f(O-e)

f(yp)
...cancels when the ratio is formed

The proposal distributions Q (8518,) and Q(aZ"|62) can literally be
any statistical distribution

> The trick is picking ones that make the chain “converge” quickly
> Want to find values that lead to moderate number of accepted parameters
> SAS PROC MCMC/WINBUGS don’t make you pick these

Given a long enough chain, the final values of the chain will come
from the posterior distribution
> From that you can get your parameter estimates

PSYC 943: Lecture 12 29



Introducing...SAS PROC MCMC

S —

*IHITIATL. PROC MCHC RUN: PRICES FECHM SLIDE 13 — but without burnin period;
= PROC MCHMC DATA=work.normalgen OUTPOST=work.outpost SEED=10252012
HBI=0 THIN=1 HMC=10000 DIC;
FAEMS b0, errorvar:
FRICE b0 ~ N(100,5D=2.13):
FEICE errorvar -~ UNIFCORM (200,400) ;

condmean y = bl;
MCDEL y ~ N{condmean y,VAR=errorvar):
RIOH;

SEED: random number seed (same number = same output)
NBI: number of burn in iterations (more on this soon)
THIN: thinning interval (more on this soon)

NMC: number of total iterations

PARMS: list all model parameters

PRIOR: specify priors for each parameter

MODEL: specify model for the data (note: MODEL is different from
previous SAS PROCs in that you must specify distribution)
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Iteration History from SAS

. e Log
teration bl ETorvar Lgegnigir Log xh{{:leuléhnnd P[?:;[-EEF
1 1 1012 2087 71297 2085 -2158
2 p 1003 2585 69864 2085  -2155
3 3 1016 20010 -7.2473 2085 -2157
4 4 1002 2563 65781 2086 2158
5 5 1002 2563 65781 2086  -2156
5 6 998318 22895 59765 2085 -2159
7 7 958318 2285 5975 2085 -215%9
8 8 1005 2244 70026 2085 -2155
g g 1005 2244 70026 2085  -2155
10 10 005 2244 70026 2085 -2155
11 11 1005 2244 70026 2085 -2155
12 12 1005 2244 70026 2085 <2155
13 13 1005 2244 70026 2085 -2155
14 14 1005 2244 70026 2085 -2155
15 15 98825 2757 71764 2096  -2167
16 16 988215 2757 71264 2096  -2167
17 7 1014 388 -7.1909 2080 2182
18 18 101.4 3188  -7.1909 2090  -M162
19 19 1004 2281 69899 2086  -2158
20 20 1004 2281 65899 2086 2158
2 b 1014 061 -7.1903 2088 -2159
22 27 999909 2308 697 2085 -2159
23 73 995909 2808 5574 2085 -2155
24 24 955909 2808 657 2085 -2159
25 75 1016 2197 -7.2484 2082 <454
26 26 1016 2197 -7.2484 2082 -2154
27 7 1016 2197 -7.2484 2082 -2154
28 28 1016 2197 -7.2484 2082 -154
29 79 1016 2197 -7.2484 2082 -2154
30 30 1016 2197 -7.2484 2082 2154
3 3 1016 2197 -7.2484 2082 -154
32 32 1016 2197 -7.2484 2082 2154
33 13 1016 2197 -7.2484 2082 2154
M U 1017 2455  -7.3065 2080 -2153
35 35 1017 2455  -7.3065 2080 -2153
36 36 1017 2455  -7.306% 2080 -2153
37 7 1017 2455  -7.3065 2080 -2153
38 38 1017 2459  -7.3065 2080 -M53
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Examining the Chain and Posteriors

Diagnostics for b0

105.0

1025
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100.0
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[teration
1.0

0.5

0.0

Autocoarrelation
Fosterior Density

-0.5

-1.0

20 50 85.0 97.5

Lag

ao 40
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Examining the Chain and Posteriors

Diagnostics for errorvar
400

350

aon

errorvar

250

200
0 2000 4000 6000 g000 10000

[teration
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0 10 20 ao 40 50 200 250 aon 350 400

Lag errorvar
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Practical Specifics in MCMC Estimation

- A burn-in period is used where a chain is run for a set number of
iterations before the sampled parameter values are used in the
posterior distribution

- Because of the rejection/acceptance process, any two iterations are
likely to have a high correlation (called autocorrelation) -
posterior chains use a thinning interval to take every Xth sample to
reduce the autocorrelation

> A high autocorrelation may indicate the standard error of the posterior
distribution will be smaller than it should be

- The chain length (and sometimes number of chains) must also be
long enough so the rejection/acceptance process can reasonably
approximate the posterior distribution

- How does one what values to pick for these? Output diagnostics
> Trial. And. Error.
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Best Output Diagnostics: the Eye Ball Test

Perfect:

gamma

1] 1000 2000 3000 4000
Simulation Number

Not
Perfect:

25

F’ .-

-50

gamma

-75 ?
1] 1000 2000 3000 4000
Simulation Number
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Output Diagnostic Statistics

Geweke Diagnostics

Parameter
b0

errorvar

Posterior Autocorrelations

Parameter
b0

errorvar
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Lag 1
0.7942
0.7914

-0.4489
1.0657

Lag 5
0.3163
0.3189

Pr > |z|

0.6535

0.2865
Lag 10 Lag 50
0.0929 -0.0074

0.1158 -0.0280
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Rerunning Our Analysis: Burn-in and Thinning Interval

« Burn-in = 2500; thinning interval = 25; chain length = 10000

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50
b0 -0.0402 -0.0128 -0.0198 0.0493
errorvar -0.0832 -0.0751 -0.0033 -0.0188

Geweke Diagnostics

Parameter z Pr> ||
b0 1.7722 0.0764
errorvar 1.7334 0.0830

PSYC 943: Lecture 12 37



Chain Plots

Diagnostics for b0
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Chain Plots

BITOrar

Autocorrelation
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Converged? If Yes...now onto the parameters

Posterior Summaries

Parameter N Mean Standard Percentiles
Deviation 25% 50% 75%
b0 400 101.1 1.4841 100.1 101.1 102.0
errorvar 400 273.9 45.2561 238.7 268.5 302.3
Posterior Intervals
Parameter Alpha Equal-Tail Interval HPD Interval
b0 0.050 98.1372 104.1 98.2694 104.2
errorvar 0.050 204 .1 384.7 200.2 359.7
Deviance Information Criterion
502 = 101.1; Dbar (posterior mean of 417.636
os =273.9 deviance)
Dmean (deviance evaluated at 416.748
MOdEI Comparison? posterlor mean)
H t DIC
ave touse pD (effective number of 0.888
parameters)
DIC (smaller is better) 418.524
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Changing Up the Prior

- To demonstrate how changing the prior affects the analysis, we will

now try a few prior distributions for our parameters
. Prior: By ~ U(—10000,10000); 6% ~ U(0,5000)

Posterior Summaries

Parameter N Mean
b0 400 103.0
errorvar 400 266.0

Deviance Information Criterion

Dbar (posterior mean of deviance)
Dmean (deviance evaluated at posterior

mean)

pD (effective number of parameters)

DIC (smaller is better)
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Standard Percentiles
Deviation 25% 50%
2.4016 101.3 103.1
55.6614 223.5 256.8

418.004

416.093

1.911

419.915

75%
104.6
296.5
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Chain Plots

Diagnostics for b0
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Changing Up the Prior

. Prior: By ~ N(0,100,000); 6z ~ y~*(shape = %O,Scale = ?)

Posterior Summaries

Parameter N Mean Standard  Percentiles

Deviation 259, 50% 75%,
b0 400 102.9 2.3533 101.3 102.9 104.3
errorvar 400 252.0 54.6698 210.1 2449 286.7

Deviance Information Criterion

Dbar (posterior mean of deviance) 417.973
Dmean (deviance evaluated at posterior 415.885
mean)

pD (effective number of parameters) 2.088

DIC (smaller is better) 420.061
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Chain Plots
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What About an Informative Prior?

+ Prior: By ~ U(102,103); o¢ ~ U(238,242)

Posterior Summaries

Parameter N Mean Standard  Percentiles

Deviation 259, 50% 75%
b0 400 102.5 0.2886 102.3 102.5 102.8
errorvar 400 240.1 1.1440 239.1 240.2 241

Deviance Information Criterion

Dbar (posterior mean of deviance) 415.851
Dmean (deviance evaluated at posterior 415.833
mean)

pD (effective number of parameters) 0.018

DIC (smaller is better) 415.869
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Chain Plots
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WRAPPING UP
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Wrapping Up

Today was an introduction to Bayesian statistics
> Bayes = use of prior distributions on parameters

We used two methods for estimation:

> MAP estimation — far less common

> MCMC estimation

+ Commonly, people will say Bayesian and mean MCMC — but Bayesian is just
the addition of priors. MCMC is one way of estimating Bayesian models!

MCMC is effective for most Bayesian models:
> Model likelihood and prior likelihood are all that are needed

MCMC is estimation by brute force:
> Can be very slow, computationally intensive, and disk-space intensive

But...MCMC runs multiple imputation...which is our next topic
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