Comparing IRT with Other Models
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Lecture Overview

- The final set of slides will describe a parallel between
IRT and another commonly used method for
measurement: factor analysis

- These slides are meant to provide a basis for comparing
the two methods, including the appropriate times for
applying each method
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MORE COMPARING IRT WITH CFA

Lecture #14: 3 of 45



Introduction

- Consider a score on an item that is not categorical
> Rather, consider a score to be continuous
> For simplicity, call the item X

- Often Likert-type item scores are considered continuous

> Other examples of continuous item types include reaction time and
many physiological measurements

«  Our goal will be to model the response behavior of an examinee
on item X; using a latent variable (in IRT, typically called 0)

> To distinguish the two approaches, we will use F as the latent variable for
factor analysis
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The Spearman Single Factor Model

In relating an examinee’s level of the common factor
to their performance on an item, we introduce the
Spearman single factor model:

Xis =,U,- Tt ﬁ“iFs t Eis

. X, is the score for a person s on the it" item
F. is the persons’s factor score
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The Spearman Single Factor Model

Xiszﬂi+ﬂ’iFs+Eis

E.. is the unique or idiosyncratic property of item
> The amount by which item i is shifted from the predicted
value for person e

L;is the overall mean for an item
> Allowing for differing item difficulties

A is called the factor loading of item i
> We will discuss this factor loading quite a bit
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Factor Loadings

The term factor loading has a long history in Psychology

The extent to which the item is “loaded” onto the factor
> Some items load more highly on to the factor than other

The factor loadings of items reveal much about a test’s
structure :: the mapping of items onto factors
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More on Factor Loadings

- The factor loading is similar to a regression weight:
> |t represents the amount of change in the item per one-unit
increase in the factor score
. It measures how sensitively each item functions as an

indicator of the common factor F
> ltems with relatively large loadings are better indicators of F

than items with relatively small loadings
- The factor loading is a measure of the discriminating

power of the item

> How well the item discriminates between examinees with
low and high values of F
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Single Factor Model Specifics

- We need to define a few more things about our
factor model:

> The unique component, E,, is independent of the common
factor, F,
+ Independence means that Cov(E,F) = Corr(E,F) =0

> The unique components of any two items i and j are

independent:

+ Cov(E,,E;) = Corr(E,E;) =0

> The mean for the unique component is zero
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More Specifics

- Like in IRT, we also have to set the scale for F
> We must pick it’s mean and variance

> For most of our purposes, it serves us well to think of F as

being a standardized measure
+ Mean of zero
+ Standard Deviation/Variance of one

. Standardized factors aren’t as common in factor
analysis (CFA or SEM)

» Variance of the factor must be fixed when additional

modeling features are added
+ Actually, same in IRT
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What Does The Common Factor Model Say About

Our Items?

So, what can we say the model predicts about our
items, marginally?

What is the model-predicted item mean?
What is the model-predicted item variance?

Why are these important?

Lecture #14: 11 of 45



Model Predicted Item Mean

- The mean for an item under the single factor model:

E(X.)=E(u,+ A F. +E,)
= E(w,;) + E(A; Fy) + E(E)
= W+ A E(F) + E(Ej)
=W+ A;70+0
= L
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Item Mean is Trivial

The factor model says that our item mean should be our
item mean parameter

Generally, we are not concerned with such a quantity
because it tells us information only marginally

> No information about how the item measures the
common factor
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Model Predicted Item Variance

- The variance for an item under the single factor model:

Var(X;) = Var(u; + A4, F, + E;) islgeeggnbd};nce
We Typically = Va r(k F t Els)
Set this to Ong Var(?»F ) + Var(E )+2C F Eis)
+ Var(E,)

» We define the variance of E to be
the unique variance of the item.
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Model Predicted Item Variance

- The variance for an item under the single factor model:

Var(X,) =Var(u, + A F. +E,
=Var(A F, +E,
=Var(A, F,) + Var(E,) + 2 Cov(F_E,)
= A7 Var(F,) + Var(E,)

= 7L i2 + ) i2 » We define the variance of E to be
the unique variance of the item.
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Model Predicted Item Covariances

- The covariance for a pair of items under the single
factor model :

Cov(X; X)) = Cov(w,; + A, Fo + E;y 1 + A F + E)
= Cov(\F + Ey A F + Ep)

i'is i 75 's
= Cov(l,F, AF,) + CovllF; E,) + CoviF, E,)+ CoulE )

= 1y Cov(F, F)
= A, 7\7’ . . .
The covariance of a variable with

1tself 1s its variance.

The variance of F is set to one.
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Extrapolating to the Covariance Matrix

- We have seen:
> The model predicted variance for each item
> The model predicted covariance for each pair of items

- The model-predicted covariance matrix looks like:

I /\'HI:r + !#f ‘/\'tl Ao A1 Az A1 Aq MAs
A1 A2 ;'hi + #’E} Ao Az Ax A A2 As
2= A1 A3 Ao Ag ;'ii; + ﬂuf A3 Ay A3 As
SV VIR V5 VIR VS VRS ¢ it B W W
A Ao As A3 As A1 As ;\% + '!PE,!
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Item Information Under

the Factor Model

- The item information function under the single factor
model is:

. Item information under the factor model is not a
function of the latent trait

> This is a key distinction between item information in the
factor model and IRT

> |tis a consequence of the differences in data type
+ A nuance of categorical data: the mean and the variance are related
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Item Information Functions

FA Information

Functions
IRT Information | ™
Functions
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Implications of FA Item Information

The test information function in FA is flat

> Regardless of a person’s location on the scale, the standard
error of their estimate will be the same

CAT algorithms do not make much sense using FA
> All items would be equally informative across the scale

> The items with the highest information would always
be selected
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Comparing FA with IRT

- FA and IRT have much in common:

> They both provide a statistical model for response behavior
as a function of a latent trait (or set of latent traits)

- |RT parameterizations obscure the commonalities
between the models
> To demonstrate, let’s rephrase the 2PL model

Lecture #14: 21 of 45



IRT Model in Slope/Intercept Form

- Begin with the original 2PL Model:
exp(1.7ai(95 — bl))

Wis = 18 = (1708 — b))

- Then convert into the log-odds of the probability of a
correct response:

ln( P(Y;s = 1]6,)
1 —P(Y;s = 1]6;)

) — 1.7ai(05 — bl)
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IRT Model in Slope/Intercept Form

Finally, multiply through the equation:
1n< P(Yis = 1|€s)
1 _P(Yis — 1|Hs)

) = 1.7ai(85 — bl) = —1.7Cll'bl' + 1.7ai68

Now, we can re-configure terms to FA analogs:
m( P(Y;s = 1]65)

1 —P(Y;s = 1]6)
= i + 4,6

) — 1.7ai(95 — bl) = —1.7aibi + 1.7ai95
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IRT vs. FA

- Many IRT models are categorical versions of the FA or
structural equation model

> The difference in model properties (like information) is due
to the link function used for the data

. Alink function is the function applied to the left hand
side of the previous equation

> IRT models we have discussed usually use a logistic link
function (or an ogive)

> FA models use an “identity” link function
+ Identity = no link function at all
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IRT vs. FA, continued

Appropriate uses of FA are for data that follow
continuous distributions

Appropriate uses of IRT are for data that follow the
corresponding categorical distribution

> Binary variables use binomial logistic

> Polytomous variables use multinomial logistic

The question to be asked is at what point do categorical
data become continuous

> |f you think really hard about it, all data are categorical...how
many categories, though?
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Other Link Functions: Iltem Factor Analysis

. Just as in categorical data analysis, other link functions exist and
their use results in models with IRT-like properties

- One of the more prevalent link functions is the probit or normal
ogive link
> This is the cumulative distribution function of a standard normal variable
> The use of the normal ogive link dates to Lord (1952)
> More commonly, such models are referred to as Iltem Factor Models
> Setting the scaling constant to 1.7 in IRT approximates this function
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Item Factor Analysis

An alternative parameterization of the model in terms
of underlying quantitative "response tendencies" —
common factor parameterization

Each binary item has associated with it an "underlying"
quantitative response tendency X;" and a threshold
value 7;, such that:

> If X >1;thenX; =1

> If X7 < t;thenX; =0
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Underlying Response Model

The underlying response tendencies, X7, ..., X, are then
used with a factor analysis model, say Spearman single
factor model (mean omitted — see below):

Xi* = AiFs + Ei*s

With uncorrelated unique parts El-*s

For model identification, we impose a scale on each X
so that it is standardized:

> With mean zero (hence no ).
> With variance one, so A2+ wy.2=1.
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Building on the Previous Model

. F; and E; each have a normal distribution
Each X, has a normal distribution

- This leads to, for an item i,
P(Xis = 1|F) = P(Xi5s > 7| F;)

A 1
— @ F, —

\/1—/15 \/1—)1?

Larger A; means larger discriminating power
- The larger the m;, the more difficult the item
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- We can relate our new item factor analysis
parameterization to the IRT parameterization:

ltem Factor IRT
Analysis
ltem b; A
Discrimination
\/ 1+ b} \/ 1— A7

Item Difficulty _ a b, i
l

n;, = —
\/1+bi2 \/1—){%
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So Why Use One Parameterization

over the Other?

The common factor parameters are most useful in a
preliminary examination of the structure of the data
> Many people are experienced with using factor loadings

> Because we can use established factor-analytic criteria for
judging the sizes of the factor loadings.

The response function parameterizations are useful in
applications of a fitted model because they generally
simplify computations

> Differing estimation routines can be employed
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Interpretation of Item Factor Parameters

One can interpret the common factor parameters in
relation to classical item analysis:

- The factor loading of the item, 4, is the product-
moment correlation between X;" and F
» Which is the biserial correlation between binary X; and F

- The product of the factor loadings between any pair of
items (i and j) gives the model estimate of the
tetrachoric correlation between the items:

pij = Ai
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GENERALIZING BEYOND CATEGORICAL
AND CONTINUOUS DATA
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Welcome to the Family

. Generalized Linear Models 2 General Linear Models
with non-normal error terms and transformed data to
obtain some kind of continuous outcome to work with

- Many kinds of non-normally distributed outcomes have
some kind of generalized linear model to go with them:

> Binary (dichotomous)
> Ordered categorical (ordinal) These two are often called
> Unordered categorical (nominal) [ “multinomial” inconsistently
> Censored (piled up and cut off at one end — left or right)
> Counts (discrete, positive values)
> Counts with zero issues (too many or none)
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3 Parts of a Generalized Linear Model

. Link Function (main difference from GLM):
> How a non-normal outcome gets transformed into something
we can predict that is more continuous (unbounded)

> For outcomes that are already normal, general linear models
are just a special case with an “identity” link function (Y * 1)

- Model for the Means (“Structural Model”):
> How predictors linearly relate to the transformed outcome

> New transformed data = B, + B, X, + B,Z,

- Model for the Variance (“Sampling/Stochastic Model”):
> If the errors aren’t normal and homoscedastic, then what

are they?
> Family of alternative distributions at our disposal that map onto
what the distribution of errors could possibly look like
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Model Parts for Binary Outcomes:

2 Choices =2 Logit vs. Probit

. 2 Alternative Link Functions:

> Logit link: binary Y = In(p/1-p) :: logit is new transformed Y
+ Yis0/1, but logit(Y) goes from —oo to +oo
> Probit link: binaryY = @(Y)
+ Observed probability replaced by value of standard normal curve below which
observed proportion is found :: Z-score is new transformed Y

+ Yis 0/1, but probit(Y) goes from —oo to +oo

- Same Model for the Means:
> Main effects and interactions of predictors as desired...
> No analog to odds coefficients in probit, however

- 2 Alternative Models for the Variances:
> Logit: e.’s ~ Bernoulli distributed with known variance of n?/3, or 3.29
> Probit: e.'s ~ Bernoulli distributed with known variance of 1
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Ordered Categorical Outcomes

- One option: Cumulative Logit Model
> Called “graded response model” in IRT
> Assumes ordinal categories

> Model logit of category vs. all lower/higher via submodels
+ 3 categories :: 2 models:0vs.1or2, Oor1vs.?2

> Get separate threshold (-intercept) for each submodel

> Effects of predictors are assumed the same across

submodels :: “Proportional odds assumption”
+ |s testable in some software (e.g., Mplus, NLMIXED)

> In Mplus, can do this with the CATEGORICAL ARE option
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Ordered Categorical Outcomes

- Another option: Adjacent Category Logit Model
> Called “partial credit model” in IRT
> Does not assume order across all categories (only adjacent)

> Model logit of sequential categories only via submodels
+ 3 categories :: 2 models: Ovs. 1, 1vs.2

> Get separate threshold (-intercept) for each submodel

> Effects of predictors are still assumed the same across
adjacent category submodels :: “Proportional odds

assumption”
+ |s testable in some software (e.g., NLMIXED)

> Currently not available in Mplus
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Unordered Categorical Outcomes:

“Nominal Model”

Compare each category against a reference category using a binary logit model
> Referred to as “baseline category logit”

End up with multiple logistic submodels up to #categories — 1
(2 submodels for 3 categories, 3 for 4 categories, etc)

Intercept/thresholds and slopes for effects of predictors (factor loadings) are
estimated separately within each binary submodel
> Can get effects for missing contrast via subtraction

> Effects are interpreted as “given that it’s one of these two categories,
which has the higher probability”?

Model comparisons proceed as in logistic regression
> Can also test whether outcome categories can be collapsed

In Mplus, can do this with the NOMINAL ARE option
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Censored (“Tobit”) Outcomes

- For outcomes with ceiling or floor effects
> Can be “Right censored” and/or “left censored”

> Also “inflated” or not ::
+ inflation = binary variable in which 1 = censored, 0 = not censored

- Model assumes unobserved continuous distribution instead for
the part it is missing

.+ In Mplus, can do with various CENSORED ARE (with options):
> CENSORED ARE y1 (a) y2 (b) y3 (ai) y4 (bi);
+ ylis censored from above (right); y2 is censored from below (left)
+ y3is censored from above (right) and has inflation variable (inflated: y3#1)
+ vy4is censored from above (below) and has inflation variable (inflated: y4#1)
> So, can predict distribution of y1-y4, as well as whether or not y3 and y4
are censored (“inflation”) as separate outcomes

+ y3 ON x; - x predicts value of Y if at censoring point or above
+ y3#1 ON x; - x predicts whether Y is censored (1) or not (0)
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A Family of Options in Mplus for

Count Outcomes (COUNT ARE)

- Counts: non-negative integer unbounded responses
> e.g., how many cigarettes did you smoke this week?

- Poisson and negative binomial models
> Same Link: countY =In(Y) (makes the count stay positive)
> LN(Y,) =, + AF, + e,, (model has intercepts and loadings)

> Residuals follow 1 of 2 distributions:
+ Poisson distribution in which k = Mean = Variance
+ Negative binomial distribution that includes a new a “scaling” or
“over-dispersion” parameter that allows the variance to be bigger
than the mean :: variance = k(1 + ko)
+ Poisson is nested within negative binomial (can test of a # 0)

+ COUNT ARE y1 (p) y2 (nb); :: y1 is Poisson; y2 is neg. binomial
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Issues with Zeros in Count Data

- No zeros :: zero-truncated negative binomial

> e.g., how many days were you in the hospital? (has to be >0)
> COUNT ARE y1 (nbt);

- Too many zeros :: zero-inflated poisson or neg binomial

> e.g., # cigarettes smoked when asked in non-smokers too
> COUNT ARE y2 (pi) y3 (nbi);
+ Refer to “inflation” variable as y2#1 or y3#1

> Tries to distinguish 2 kinds of zeros

+ “Structural zeros” — would never do it
— Inflation is predicted as logit of being a structural zero

+ “Expected zeros” — could do it, just didn’t (part of regular count)
— Count with expected zeros predicted by poisson or neg binomial

> Poisson or neg binomial without inflation is nested within models
with inflation (and poisson is nested within neg binomial)
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Issues with Zeros in Count Data

- Other more direct ways of dealing with too many zeros: split
distribution into (O or not) and (if not 0, how much)?

> Negative binomial “hurdle” (or “zero-altered” negative binomial)
+ COUNT ARE y1 (nbh);
+ 0 or not: predicted by logit of being a 0 (“0” is the higher category)
+ How much: predicted by zero-truncated negative binomial

> Two-part model uses Mplus DATA TWOPART: command

+ NAMES ARE y1-y4; —> list outcomes to be split into 2 parts
+ CUTPOINT IS O; - where to split observed outcomes
+ BINARY ARE b1-b4; —> create names for “0 or not” part

CONTINUOUS ARE c1-c4; - create names for “how much” part
TRANSFORM IS LOG; — transformation of continuous part

0 or not: predicted by logit of being NOT 0 (“something” is the 1)

+ How much: predicted by transformed normal distribution (like log)
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CONCLUDING REMARKS
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Wrapping Up...

- When fitting latent factor models (or when just predicting observed outcomes
from observed predictors instead), you have many options to fit
non-normal distributions
> CFA: Continuous outcomes with normal residuals, X = Y is linear

> IRT and IFA: Categorical or ordinal outcomes with Bernoulli/multinomial
residuals, X = transformed Y is linear; X = original Y is nonlinear

> Censored: Continuous outcomes that shut off, X =2 Y is linear
+ Model tries to predict what would happen if Y kept going instead

> Count family: Non-negative integer outcomes, X = LN(Y) is linear

+ Residuals can be Poisson (where mean = variance) or negative binomial (where
variance > mean); either can be zero-inflated or zero-truncated

+ Hurdle or two-part may be more direct way to predict/interpret excess zeros
(predict zero or not and how much rather than two kinds of zeros)
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