Basic IRT Concepts, Models,
and Assumptions
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ICPSR Item Response Theory Workshop
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Lecture #2 Overview

Background of IRT and how it differs from CFA
Creating a scale

An introduction to common IRT models
> |tem Characteristic Curves
> Expected Scores
> Test Characteristic Curves
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ICPSR Item Response Theory Workshop

AN INTRODUCTION TO IRT
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Item Response Theory

Item Response Theory is a psychometric Theory and
family of associated mathematical models that relate
latent trait(s) of interest to the probability of Responses
to Items on the assessment

IRT is very general method, permitting:
» One or more traits
> Various (testable) model assumptions
> Binary or polytomous response data
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A Brief Review of Classical Test Theory

- CTT models the total score: Y; = T + e
> |tems are assumed exchangeable, and are not part of the model
for creating a latent trait estimate
> The latent trait estimate is the total score, which is problematic

for making comparisons across different test forms

+ ltem difficulty = mean of item (is sample-dependent)
+ ltem discrimination = item-total correlation (is sample-dependent)

> Estimates of reliability assume (without testing) unidimensionality
and tau-equivalence (alpha) or parallel items (Spearman-Brown)
+ Measurement error is assumed constant across the trait level

- How do you make your test more reliable?

> Get more items.
> What kind of items? More.
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A Brief Review of Confirmatory Factor Analysis

- CFA models the ITEM response: Y;; = u; + A;F, + ey

> Linear regression relating continuous Y to latent predictor F

> Both items and subjects matter in predicting responses
+ Item difficulty = intercept p, (in theory, sample independent)
+ Item discrimination = factor loading A, (in theory, sample independent)

> Factors are estimated as separate entities that predict the observed

covariances among items — factors represent testable assumptions
+ local independence :: Items are unrelated after controlling for factors

- Because item responses are modeled:

> Items can vary in discrimination and difficulty

» To make your test more reliable, you need items more highly related to the
latent trait(s)

. Measurement error is still assumed constant across the
latent trait
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Similarities of IRT and CFA

- IRT is a model-based measurement model in which latent trait estimates
depend on both persons’ responses and the properties of the items

> Like CFA, both items and persons matter, and thus properties of both are
included in the measurement model
+ Items differ in difficulty and discrimination as in CFA (sample-independent)

- After controlling for a person’s latent trait score (now called 8), the item
responses should be uncorrelated
> The ONLY reason item responses are correlated is Theta

> |In other words, we typically assume items are unidimensional

+ |f this is unreasonable, we can fit multidimensional models instead,
and then responses are independent after controlling for ALL Thetas

> This is the same “local independence” assumption as in CFA

+ Can be violated by unaccounted for multidimensionality (i.e., really need multiple
Thetas) or other kinds of dependency (e.g., common stem testlets)
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Differences of IRT and CFA

- IRT specifies a nonlinear relationship between binary, ordinal, or categorical
item responses and the latent trait (typically denoted by theta: 0)

> Probability is bounded at 0 and 1, so the effect (slope) of Theta must be
nonlinear, so it will shut off at the extremes of Theta (S-shaped curve)

Errors cannot have constant variance across Theta or be normal

> The family of non-linear measurement models for binary and categorical
outcomes are called “item response models (IRT)”
+ Or “item response theory” or “latent trait theory”

« IRT uses same family of link functions (transformations) as in generalized
models, it’s just that the predictor isn’t measured directly
> IRT is logistic regression on latent trait instead of linear regression in CFA

> Predictor is the latent factor in IRT (“Theta”) and still predicts the common
variance across item responses just like in CFA
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Nonlinearity in IRT

- The relationship between 6 and the probability of
response=1 is “nonlinear”

> Linear with respect to the logit, nonlinear with respect to
probability

> An s-shaped logistic curve whose shape and location are dictated
by the estimated item parameters

3.5 1.0
25 1 Bo=0 v //
F0 / 08
15 +—B+=1 s /
F 0-5 '\IT 0.6
z pd z
= -0.5 o 04
& 15 / s /
1. g
- / 02
_2.5 / /
'3.5 T T T T T T 0-0 T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Theta Theta

Lecture #2: 9 of 64



ICPSR Item Response Theory Workshop

THE PURPOSE OF IRT:
CREATING A SCALE
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IRT Purpose

- The main purpose of IRT is to create a scale for the
interpretation of assessments with useful properties

> “Scaling” refers to the process by which we choose a set of
rules for measuring a phenomenon

. Creating a “metric” or “scale” for a variable is to
systematically assign values to different levels

- Choosing a scale generally involves two important steps:
> |ldentifying anchor points
> Choosing the size of a unit (i.e., a meaningful distance)
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Scale Example

Temperature Scaling

Fahrenheit ( °F )

180 equal interval units between water freezing (32°) and boiling (212°)

0° 32° 212°
equal parts water water
water, ice, freezes boils
and salt

-17.77°_0° 100°
equal parts water water
water, ice, freezes boils
and salt

Celsius (°C)

100 equal interval units between water freezing (0°) and boiling (100°)
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IRT Scaling

- |IRT proceeds in much the same way

> A meaningful scale is chosen in order to measure subject
“ability” or “trait level”

> The scale can then be interpreted with reference to the
characteristics of test items

- Very important result from IRT: subject traits and item
characteristics are referenced to the same scale
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Fundamentals of IRT Scaling

- In CTT, scores have meaning relative to the persons in the same sample, and
thus sample norms are needed to interpret a given person’s score

> “lgotal2.Isthat good?”
“Well, that puts you into the 90" percentile.”

> “lgotal2.Isthat good?”
“Well, that puts you into the 10t percentile.”

> Same score in both cases, but different reference group!

- InIRT, the properties of items and persons are placed along the same
underlying continuous latent metric, called “conjoint scaling”
> This concept can be illustrated using construct maps that order both persons in
terms of ability and items in terms of difficulty
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A Construct Map Example

Theta 8, = Item A Latent Continuum of Theta 6, is
difficulty level at Disney Princesses interpreted
which one has a _ 4 _ relative to items,
50% probability Person Side Item Side not group norms
of response=1 Daphne Megara
(daughter)
My Sisters Rapunzel
Persons are ' ' Items are ordered
ordered by My Mom Aurora by
Theta : : difficulty/severity
ability/severity Average Adult Cinderella
Me Minnie Mouse?

Person Theta and item difficulty share the same latent metric
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Norm-referenced Measurement of CTT

In CTT, the ability level of
each person is relative to
the abilities of the rest of
the test sample

Here, we would say that
w0 Anna is functioning
“=*  relatively worse than
Paul, Mary, and Vera,
who are each above
average (which is 0)
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Item-Referenced Measurement in IRT

Ao S “* .« Each person’s Theta

' score reflects the level of
activity they can do on
their own 50% of the

| time

. { “~ %:*o.,,_%,:"’»,'% %, %, %, %+ The model predicts the
SRR “, AN probability of
Item Difmculty - accomplishing each task
given Theta
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Features of IRT Models

Person and item statistics are not dependent on
one another

Conditional probability of item performance is available
all along the scale of the trait being measured

An estimate of the amount of error in each trait
estimate, called the conditional SE of measurement,

is available

Test items and examinee trait levels are referenced to

the same interval scale
> Although in reality, a true interval scale is difficult to achieve
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IRT MODEL CHARACTERISTICS
AND ASSUMPTIONS
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Item Characteristic Curve

- The Item Characteristic Curve (ICC) is the primary
concept in IRT

- An ICCis a mathematical expression that connects or

links a subject’s probability of success on an item to the
trait measured by the set of test items

- The ICCis a non-linear (logistic) regression line, with
item performance regressed on examinee ability
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1.0 -

Example ICC:

0.9 -
The probability of
success Is a

0.7 7 monotonically

06  increasing function

0.8 -

Probability of Correct Response

of trait or ability The S-shaped
05 curve or ogive is
0.4 - obtained by
03 - modeling the
0y probability of
success using a

0.1 logistic model
0.0 | | | | | |

3 -2 -1 0 1 2 3

Ability (0)
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Important Assumptions in IRT

IRT is based on a set of fairly strong
(but testable) assumptions

If not met, the usefulness or validity of the IRT
estimates is severely compromised

Assumptions:

> Dimensionality of the Test
+ We will assume one dimension until Thursday

> Local Independence
»> Nature of the ICC
> Parameter Invariance
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Assumption of Unidimensionality

Unidimensionality states that the test measures only ONE
construct (e.g., math proficiency, verbal ability)

> Common to educational testing

> Less common in psychological (non-cognitive) tests

> We will use unidimensional models throughout the week to
provide a basis for understanding IRT

Question of interest: Does is make sense to report a single
score for an subject’s performance on the test?

The items in a test are considered to be unidimensional
when a single factor or trait accounts for a substantial
portion of the total test score variance
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Assumption of Local Independence

- Local Independence assumes that item responses are
independent given a subject’s latent trait value

> Related to unidimensionality

> |f only ONE trait determines success on each item, then
subject theta is the ONLY thing that systematically affects
item performance

- Once you know a subject’s theta level, his/her
responses to items are independent of one another

> Important in estimation:: how IRT likelihood function
is constructed
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What Local Independence Provides

- Conditional independence provides us with statistically

independent probabilities for item responses (for items
iandi‘):
P(Yis = 1,Y;s = 1165) = P(Ys = 1]65) P(Y;s = 1]65)

- This will become important soon
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Nature of the Item Characteristic Curve

For dichotomously scored test items (i.e., binary items
scored “0” or “1”) logistic functions are used to model
the probability of “success” (i.e., a “1” vs. a “0”)

The logistic function specifies a monotonically
increasing function, such that higher ability results in a
higher probability of success

> Appropriateness of this function depends on situation

> Educational tests: more theta = higher chance of getting item
correct — plausible
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Parameter Invariance

- |F THE IRT MODEL FITS...

> |tem parameters are invariant over samples of examinees
from the population for whom the test is intended

> Ability parameters are invariant over samples of test items
from the population of items measuring the ability of

interest
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Probability of Correct Response

Relative Frequency
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0.0
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0
Ability

Two groups
may have
different
distributions

} for the trait

being
measured,
but the

same model
should fit
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Probability of Correct Response

Relative Frequency
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Parameter Invariance

If this seems like a very strong assumption, you’ve made
it before (perhaps without knowing it!)

The assumption of parameter invariance is a
cornerstone of linear regression

> How else could we apply the model to individuals other than
those used to estimate the model?
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IRT MODELS
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Model Identification in IRT (Setting the Scale)

- Before we begin, we must first decide on the anchoring method for our
scale (our latent trait)
> This means deciding on a mean and standard deviation for the latent trait

- The choice is arbitrary :: several popular methods are used
> Anchor by persons :: Set a fixed mean and variance
(suchas mean=0;SD=1)

+ Done when explaining the variance of the latent trait is not important — rather, when
providing a latent trait score is the focus

> Anchor by Items :: Estimate either the mean or SD or both (typically the SD;
done by “fixing” other model parameters)
+ Done when explaining the variance of the latent trait

- We will focus on the first: we will fix our latent trait to have a mean of
zero and a SD of one

> Important: The numerical scale doesn’t matter, all that matters is that
persons and items are on the same scale
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The One-Parameter Logistic Model

(A.K.A. Rasch Model)

exp(1.7a(6s — by))

(Ys; 165) 1+ exp(1.7a(95 - bi))

0, is the subject ability (for subject s)

> most likely latent trait score (Theta) for subject s given pattern of
item responses

b; is the item difficulty (for item i)
a is the common discrimination parameter

1.7 is a “scaling constant” which places the parameters of the logit onto
a similar scale as the probit

> Historical legacy which is slowly fading away

> Mplus version 7.11 does away with 1.7 but earlier versions keep it in place

Lecture #2: 33 of 64



1-PL (Rasch) Model Item Characteristic Curves

Item Characteristic Curves - 1-PL (Rasch) Model

1.0 b, = difficulty
0.9 location on latent
trait where
0.8 0= .50
0.7
— a = discrimination
30'6 slope at p = .50,
- 0.5 (at the point of
>".O.4 inflection of curve)
%0.3 Note: equal a’s
0.2 means curves will
never cross :: this is
01 called “Specific
0.0 ‘ ‘ w w Objectivity”
-3 -2 -1 0 1 2 3
Trait (0)
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The 2-Parameter Logistic Model

- The 1-PL (Rasch) model assumed each item had the
same discrimination
> This is unlikely to hold in most data

- The 2-PL model allows for each item to have it’s own
discrimination parameter:

exp(1.7a,;(95 — bl))
1+ exp(1.7ai(95 — b))

P(Ysi = 1|05) —
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P(Yis = 1| es)

Example 2-PL ICC

N =

Item: b=0.0
a=1.0
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1.0 1
0.9 -
0.8 -
0.7 -
0.6 -

Example 2-PL ICC

N =

Item: b=0.0

0.5 e

0.4 -

P(Yis = 1| es)

0.3
0.2
0.1

a=0.5
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P(Yis = 1| es)

N =

Example 2-PL ICC

Item: b=0.0
a=1.5
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2-PL Model Item Characteristic Curves

b, = difficulty = location on latent trait where p = .50
a, = discrimination slope at p = .50 (at the point of inflection of curve)

Item Characteristic Curves - 2-PL Model Note: unequal a’s

10 e implies curves will
091  "p =-1,a,=.5 cross. Violates
|tem2b - _1 a, = 1 P . o e
081 —item3, 2 _ 2 Specific Objectivity
. b3 - 0, a3 - -5
0.7 - —|tem4b = 0.3, =
4 » ¥4 _ .
= 06 - At Theta = -1:
:057 Items 3 & 4 are
> ‘harder’ than 1 & 2
o 0.4
(lower prob of 1)
0.3 -
0.2 7 At Theta = +2:
0.1 // ltem 1 is now
0.0 ‘ | ‘ ‘ ‘ ‘harder’ than Item 4
3 2 1 0 1 2 3 (lower prob of 1)

Trait (0)
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“IRT” Modeling vs. “Rasch” Modeling

- According to most IRT people, a “Rasch” model is just an IRT model with
discrimination a, held equal across items
> Rasch = 1-PL where difficulty is the only item parameter
> Slope = discrimination a, = strength of relation of item to latent trait
> “ltems may not be equally ‘good’, so why not let their slopes vary?”

- According to most Rasch people, the 2PL & rest of IRT is voo-doo

> Rasch models have specific properties that are lost once you allow the item
curves to cross (by using unequal a)) :: “Specific Objectivity”

+ Under the Rasch model, persons are ordered the same in terms of predicted
responses regardless of which item difficulty location you’re looking at

+ Under the Rasch model, items are ordered the same in terms of predicted responses
regardless of what level of person theta you’re looking at

+ The a, represents a person*item interaction :: the item curves cross, so the ordering
of persons or items is no longer invariant, and this is “bad”

> “Items should not vary in discrimination if you know your construct.”
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Which Model Fits Better? Relative Model Fit in IRT

Nested models can be compared with -2LL difference tests
> Step 1: Calculate -2*difference of LL,,and LL,,
> Step 2: Calculate difference in df,, and df, ., (given as “# free parms”)
> Compare -2LL on df = df . to x2 critical values (or excel CHIDIST)
> Add 1 parameter? -2LL, > 3.84, add 2: -2LL, ¢ > 5.99...

If adding a parameter, model fit gets better (LL up, -2LL down)
If removing a parameter, model fit gets worse (LL down, -2LL up)

AIC and BIC values (based off of -2LL) can be used to compare
non-nested models (given same sample), smaller is better

No easily obtainable trustable absolute global fit info available via ML for IRT
> Stay tuned for why this is...
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Local Model Fit under ML IRT

- IRT programs also provide “item fit” and “person fit” statistics (although not

provided by Mplus)
> Item fit: Predicted vs. observed ICCs — how well do they match?
Or via inferential tests (Bock Chi-Square Index or BILOG version)

Person fit “Z” based on predicted vs. observed response patterns
Some would advocate removing items or persons who don’t fit

- Under ML in Mplus: Local item fit available with TECH10 output
> Univariate item fits: How well did the model reproduce the observed response
proportions? (Not likely to have problems here)

> Bivariate item fits: Contingency tables for pairs of responses
+ Get x?value for each pair of items that directly tests their remaining dependency
after controlling for Theta(s); assess significance via x? table
+ This approach is more likely to be useful than traditional ‘item fit’ measures because
those use Theta estimates as known values

- Stay tuned for an easier option for assessing local fit...
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Two Types of IRT Models: Logistic and Ogive

exp(1.7a;(65—b;))
1+exp(1.7a;(085—b;))

1. Logistic: P(Y,; = 1]6;) =
Model predicts logit value that corresponds to prob(Y=1)
. Zi
2. Ogive: P(Y;=1|6,)=["" mexp ( ) dt
= ®(z;5) = P(—b; + a;0;)
Model predicts z-score for the to area to the left of prob(Y=1)
This is the same distinction as “logit” vs. “probit”

> Logit scale = Probit scale*1.7, so they predict the same curves

> Probit came along first, but used to be harder to estimate, so logit
was developed... and now logit is usually used instead
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Additional IRT Models: 3-Parameter Logistic

exp(1.7a;(6; — b;))
1+ exp(1.7a;(85 — b;))

P(Ysi — 1|95) =C; + (1 — Ci)

b, = item difficulty :: location

> Higher values mean more difficult items (lower chance of a 1)
a; = item discrimination :: slope

> Higher values = more discriminating items = better items
¢, = item lower asymptote :: “guessing” (where c. > 0)

> Lower bound of probability independent of Theta
> Can estimate a common ¢ across items as an alternative

Probability model starts at ‘guessing’, then depends on

Theta and a, b
> 3-PL model with c or ¢, currently not available within Mplus
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P(Yis = 1| es)

1.0 1

0.9 -

0.8 -

0.7 1

0.5 1

0.4 -

0.3 1

0.2 1

0.1

0.0

Example 3-PL ICC

Ability 0
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P(Yis = 1| es)
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P(Yis = 1| es)

Example 3-PL ICC

Ability 0
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P(Yis = 1| es)

Example 3-PL ICC

Ability 0
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P(Yis = 1| es)

1.0 1

0.9 -

0.8 -

0.7 1
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0.3 1
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0.1

0.0

Example 3-PL ICC

Item: b=0.0

a=1.0
c=0.2

Ability 0
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Item Characteristic Curves - 3-PL Model (a = .5)

Top: Items with lower
discrimination (a, = .5)

Below: Items with higher
discrimination (a, = 1)

Iltem Characteristic Curves - 3-PL Model (a=1)

Trait (0)

Note that difficulty b, values are
no longer where p = .50

The expected probability at b, is
moved upwards by the lower
asymptote ¢, parameter

Trait (0)
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Yet Another One: The 4-Parameter Logistic Model

exp(1.7a;(8s — b;))
P(Ys; = 116;) = ¢; + (d; — ¢;) 1+ exp(1 7la-29 _lb'))
. L S l

b, = item difficulty :: location
a;, = item discrimination :: slope
c; = item lower asymptote :: “guessing”

d. = item upper asymptote :: “carelessness” (so d. < 1)
> Maximum probability to be achieved independent of Theta
> Could be carelessness or unwillingness to endorse no matter what

Probability model starts at ‘guessing’, tops out at
‘carelessness’, then depends on Theta and a,, b, in between
> 4-PL model with d or d. currently not available within Mplus
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IRT MODEL SPECIFICS
AND PREDICTIONS
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An Expected Score in IRT

- The probability of a correct response for a given ability
level is equal to the expected score for subjects
on that item

E(Y,) = P(Y;. = 1|6,) = [IRT MODEL]

- The relative frequency of correct answers for subjects of
a given ability should be equal to the model
predicted probability

> This is sometimes used to assess the fit of a model
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More on the Expected Score

If P(Y;; = 1]|0,) = 0.80 then 80% of the subjects with
that theta should answer the item correctly
> The remaining 20% should answer the item incorrectly

- Since dichotomous items are scored either right or
wrong, from basic statistics:

E(Y,;) = (0.80 x 1) + (0.20 x 0) = 0.80
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Example ltems

Parameter ltem 1 ltem 2 ltem 3 ltem 4
b 0.0 -1.0 1.0 1.0
a 1.0 0.5 1.0 2.0
C 0.2 0.0 0.0 0.1
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Test Characteristic Curve

A test characteristic curve (TCC) is created by summing each
ICC across the ability continuum

I
TCC(O:) = ) P(Ye = 116,)
=1

The vertical axis now reflects the expected score on the test
for a subject with a given ability level

Since P(Y;; = 1|6;) is the expected score for the item, the
TCCis the expected score, E(Y), for the test

> How many items we expect a subject with a particular ability level
to answer correctly
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Expected Score

Ability (0)
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Expected Score

We expect that examinees
with ability 6= 0.49 on

3 average will answer 2 out

of the 4 items correctly.

Ability (0)
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WRAPPING UP
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Lecture #2 Wrap Up

IRT is a family of models that specify the relationship between the latent trait
(“Theta”) and a link-transformation of probability of Y

> Linear relationship between Theta and Logit (Y=1) (or probit of y=1)
:: nonlinear relationship between Theta and Prob (Y=1)

The form of the relationship depends on:
> At least the location on the latent trait (b))

> Perhaps the strength of relationship may vary across items (a))
+ If not, its a “1-PL” or “Rasch model”

> Also maybe lower and upper asymptotes (c, and d.)

Ability is unidimensional; item responses are locally independent

ltem, ability parameters are estimated, assumed invariant, and model-data fit
is assessed
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The Big Picture

. If the model fits the data and the assumptions are met
(IMPORTANT), IRT model fitting gives rise to a whole
host of powerful procedures

> Construct tests with known properties

> Create banks of items on a common scale
> Equate separate test forms reliably

> Evaluate Differential [tem Functioning

> And many more...
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- More basics of IRT models, some review

- Model Specifications

- Scale Characteristics
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