Latent Trait Reliability
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ICPSR Item Response Theory Workshop
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Lecture Overview

Classical Notions of Reliability

Reliability with IRT

> |tem and Test Information Functions
+ Concepts
+ Equations
+ Uses and Examples
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Two Big Concerns about Scale Scores

- Reliability:
> “Extent to which the instrument does what it is supposed to with
sufficient consistency for its intended usage”

> “Extent to which same results would be obtained from the instrument
after repeated trials”

» Operationalized in many ways...

- Validity:
> “Extent to which the instrument measures what it is supposed to (i.e., it
does what it is intended to do)” or “Validity for WHAT?”

> |s measure of degree, and depends on USAGE or INFERENCES
+ Scales are not “valid” or “invalid” — validity is NOT a scale property
+ e.g., Test of intelligence: Measure 1Q? Predict future income?
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An Example From Practice

- From the Graduate Record Examinations® Guide to the
Use of Test Scores (2010-2011; p. 20)
» http://www.ets.org/s/gre/pdf/gre guide.pdf

Table 6 A: Conditional Standard Errors of Measurement at Selected Scores
for General Test Measures®

Measure 200 250 300 350 400 450 500 550 600 650 700 750 800
Verbal 14 21 26 28 31 35 34 33 33 33 34 32 20
Quantitative 26 42 48 55 55 54 50 49 42 39 35 26 9
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CLASSICAL NOTIONS OF RELIABILITY
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Conceptualizing Reliability:

Y;ota = True Score + error

- Wait a minute... if E(Y) =T...

> This idea refers to a single person’s data... if a test is reliable, then a
given person should get pretty much the same score over repeated
replications...(except for random “error” processes)

» But we can’t measure everybody a gazillion times...

> S0, we can conceptualize reliability as something that pertains to a
sample of persons instead... by writing it in terms of variances

. Var(Y) = Var(T) + Var(e) + 2Cov(T, e)
= Var(T) + Var(e)

- Reliability = Var(T) / Var(Y)

» Proportion of variance due to “true score” out of total variance
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How Only Two Scores Give Us

a Reliability Coefficient in CTT

> Y1 =T+ e, CTT assumptions to calculate reliability:

« Same true score (T) observed at both times

* e, and e, are uncorrelated with each otherand T
* e, and e, have same variance

* Y, and Y, have same variance

> Y,=T+e,

r Gyl,yZ . Gt+el,t+e2 _ Gt,t+ Gt,el+ Gt,62+ Gel,e2 _ )

2
_ t
yl,y2 2
6,0, 0,0, 6,0, C,

Same as: Reliability of Y = Var(True) / Var(Y)

We express unobservable true score variance in terms of the correlation
between the two total scores and the variance of the
total scores (assumed to be the same across tests)

We now have an index of how much of the observed variance is “true” (if we
believe all the assumptions)
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Y=T+e, so how do we get Var(e)?

3 main ways of quantifying reliability:
1. Consistency of same test over time
+ Test-retest reliability

2. Consistency over alternative test forms
+ Alternative forms reliability
+ Split-half reliability

3. Consistency across items within a test
+ Internal consistency (alpha or KR-20)
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Internal Consistency

- For quantitative items, this is Cronbach’s Alpha...
> Or ‘Guttman-Cronbach alpha’ (Guttman 1945 > Cronbach 1951)
> Another reduced form of alpha for binary items: KR 20

- Alphais described in multiple ways:
> |Is the mean of all possible split-half correlations
> |s expected correlation with hypothetical alternative form
of the same length
> Is lower-bound estimate of reliability under assumption
that all items are tau-equivalent (more about that later)

> As an index of “internal consistency”
+ Some very much dislike this term (not a measure of “consistency”)
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Where Alpha Comes From

-  The sum of the item variances is given by:
> Var(l,) + Var(l,) + Var(l,).... + Var(l,) = just the item variances

- The variance of the sum of the items is given by the sum of ALL
the item variances and covariances:
> Var(l; +1,+13)  =Var(l,) + Var(l,) + Var(l,) ...
+ 2Cov(l,1,) + 2Cov(l,,I5) + 2Cov(l,,l5) ...
> Where does the ‘2’ come from?

+ Covariance matrix is symmetric

+ Sum the whole thing to get to the |1 |2 |3
variance of the sum of the items
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Cronbach’s Alpha

Covariance . . .
, k wvariance of total Y - sum of item variances
Version:  alpha=——-- :
. k-1 variance of total Y
k = # items

- Numerator reduces to just the covariance among items
> Sum of the item variances...
» Var(X) + Var(Y) = Var(X) + Var(Y) = just the item variances
> Variance of total Y (the sum of the items)...
» Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) = PLUS covariances
> So, if the items are related to each other, the variance of the total Y item
sum should be bigger than the sum of the item variances

+ How much bigger depends on how much covariance among the items — the
primary index of relationship
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Cronbach’s Alpha

Alpha is a lower-bound estimate of reliability under assumption
that all items are tau-equivalent :: equally related to true score

Correlation Version: 1 _ kr Where ; IS mean
e alpha = = S .
k = # items 1 +r(k-1) inter-item correlation

You’ll note alpha depends on two things (k and r), and thus there are 2
potential ways to make alpha bigger...

> Get more items and/or increase the average inter-item correlation

Potential problems:

> But can you keep adding more items WITHOUT decreasing the average inter-item
correlation???

> Does not take into account spread of inter-item correlation, and thus alpha does
NOT assess dimensionality of the items
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Kuder Richardson (KR) 20:

Alpha for Binary Iltems

- KR20 is actually the more general form of alpha
- From ‘Equation 20’ in 1937 paper:

k =# items
KR20 — ' ﬁ : (varia:u{te of t'rf}tc":l.]. Y — ?I:H,rffff over itf?IIlﬁ) p = prop. passing
: variance of tot: q = prop. failing

- Numerator again reduces to covariance among items...

> Sum of the item variances (sum of pq) is just the item variances
> Variance of the sum of the items has the covariance in it, too

> So, if the items are related to each other, the variance of the total sum should be
bigger than the sum of the item variances

+ How much bigger depends on how much covariance among the items
— the primary index of relationship
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How to Get Alpha UP

TABLE 1
Values of Cronbach’'s Alpha for Wanout Combmations of Diffargnt

Mumber of Items and Different Average Interitem Cormrelations
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Ta-da! Alpha as Reliability...

What could go wrong?

- Alpha does not index dimensionality = it does not index the
extent to which items measure the same construct

— —
TABLE 13.Z. Interitem Correlation Matrices for Two H'j']J‘I'.I’I.II.ElliEBJ Tests with the Samp
Coefficient Alpha Reliability of &1

Test A& with 10 Hems Test B owith & ilems

Yariabbe 1 2 3 4 35 & T B 9 Li¥ Yarigle 1 2 5 4 5 g

1. — I —_
2 i T z B =
3 33 — 3 & b —
i. B T T 4 A | 3 -
3. 23 3 3 — 3 B T s —
fi. I T T T T [ — t 3 i 6 & —
7 J 3 3 3 3 3 —
A I T T T T e -
i, A3 3 3 3 3 3 3 —
1. B T T T T T T R | ¥ =
———

- The variability across the inter-item correlations matters, too!
- We will use item-based models (CFA, IRT) to examine dimensionality
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Another Problem with Reliability

- Note that the formula for reliability is basically the Pearson

correlation
> Pearson r standardizes each variable, so that differences in mean and
variance between variables don’t matter...
> So Pearson correlation indexes relative, not absolute agreement

. But the reliability formula assumes that the mean and variance of

the true and observed scores are the same...
> What if this is not the case?
> Pearson correlation won’t pick this up!

> A different kind of correlation is needed... Intraclass correlation

+ Note: There are LOTS of different versions of these...
visit the McGraw & Wong (1996) paper for an overview
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Problems with Reliability

for Binary Iltems...

- In binary items, the variance is dependent on the mean

- If two items (X and Y) differ in p, such that p, > p, :
> Maximum covariance: Cov(X,Y) = p,(1-p,)
> Maximum correlation will be smaller than -1 or 1:

: _ pX (1 py) pX py maxr
)Y py(l — px) 0.1 0.2 0.67
01 05 0.33
_ 01 0.8 0.17
> For Example: 05 0.6 0.82
05 0.7 0.65
05 09 0.33
0.6 0.7 0.80
0.6 0.8 0.61
06 09 0.41
0.7 0.8 0.76
0.7 09 0.51
0.8 09 0.67
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Summary: Reliability in CTT

- Reliability is supposed to be about the consistency of an individual’s score over
replications... but it’s not, really

- Instead, we get 2 scores per person (test-retest; alternate forms) or
k items for person (alpha), and do:

© Yioa =T+E or Var(Y;,,) = Var(True) + Var(Error)

> True score is an internal characteristic of the person
+ True score variance is assumed to differ across samples

> Erroris an external characteristic (test + environment)
+ Error variance is assumed to be the same across samples

> Reliability is a characteristic of a sample, not of a test
- Want to improve reliability? Examine the items...

> Because individual items are not in the CTT measurement model,
we have to make assumptions about them instead
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RELIABILITY IN IRT
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Reliability with IRT

In IRT, we are focused on a latent variable but the unit of
measure is the item, not the test

Reliability (precision) is a desirable property for a test

The more reliable a test is, the more precisely we can
measure the construct

For any scaling procedure (IRT or CTT), as reliability goes
up, the standard error of measurement goes down
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Reliability with IRT

. In CTT, reliability is a one-number summary of test
precision, and there is a corresponding single standard
error of measurement that is used for any test score

- In IRT, test precision is conceptualized as something
called Information, which is conditional on the trait
level being measured

> Some tests could measure certain trait levels very well but
measure others poorly...
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Reliability with IRT

A further advantage of IRT with respect to evaluating
reliability is that we can consider the amount of
Information an item and/or a test provides

In CTT, measures of item quality exist, but these are
only indirectly related to what the reliability of the test
will be

> Item/Total correlation, for instance

Lecture #7: 22 of 66



Item Information Function

. “Item Information” indicates an item’s

usefulness for assessing ability

.+ By “usefulness” we basically mean how

good an item is at distinguishing people
with lower ability levels from those with

higher ability levels

. Information :: Precision
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Item Information Function

. [tems are basically more informative where
the slope of the ICC is steepest, which
happens when...

b, is relatively close to O,
a; is relatively high, and
c; is relatively low

- If ¢;=0, an item provides its maximum
information when 6. = b,
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Item Information Function

IMPORTANT: information is a function of 6, which
means that an item could be very informative for some
ability levels and relatively uninformative for others

Example: difficult items are informative for higher ability
levels, but don’t tell us much about lower ability levels
(because they mostly get all those items wrongl!).
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Item Information Function

for the 3-PL

[P/ ®)]° _
Pi(6)(1-P;i(0))

I;(8) =

17261,12(1 — Ci)
lc; + exp(1.7a;(0 — b;)) ][1 + exp(—1.7ai(8 — bl-))]2
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- The roles of a; and c; are:
> as d; increases, information increases
> as c; increases, information decreases

- As ability moves away from b; (+ or -) the
denominator increases, so information
approaches zero
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Maximum Information

Hm ax

fc,=0,t
fc,>0,t

1
‘T 1.7aq;
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nen Information is maximized at b,

nen Information is maximized at

an ability level slightly greater than b,
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TEST (THETA) INFORMATION
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Test Information Function

. Just like we add up ICCs to get a TCC, we
add up IIFs to get a TIF

- Information will continue to increase as we
add test items, therefore increasing
precision

. All things equal, longer tests provide
increased measurement precision

Lecture #7: 39 of 66



Test Information Function

Defined for a set of items at each point along the ability
(0) scale

- Test information is influenced by the ‘quality’ and the
number of test items:
> [ = total number of test items
> I =item index
> I( ) = test information function

I
16) = ) 1,(6)
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Ability (0)
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Ability (0)
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Conditional Error for ML Estimates

Measurement precision and error are considered
conditional on 0

- Standard error of an MLE is: SE(@) = 1

- The imprecision of ability estimation is therefore
inversely related to the amount of Information with
respect to ability that is available

- Since Information increases with the quality and
number of items, the SE conversely decreases...which
hopefully makes some sense!
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Information vs. Reliability

In terms of Reliability (for standard mean zero variance/one
thetas):

1(6)
1(6) + 1

Reliability = p(é) =

This comes from the classical definition of reliability (only with
theta representing the “true score”
of a person):

or

P="— 2
o7 + Og

Here O'T is the variance of the estimate of theta (the true score
here); o7 is the variance of error (the overall population variance
for the true score)
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Info(p) and SE(0)

8-item Test Information Function
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Info(9) and SE(0)

10 -

Information may be spread across
a relatively wide range...
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Ability (6)
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Info(9) and SE(0)

10 -

or maximized around an ability
level of interest

(e.g., a cutscore)
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Info and SE Example

At 6=10, 1(@=1)=9

SE(0) = ——— =

Jig o

-0.33

A

If9=1.0, SE(0)=0.33




Info and SE Example

At 0=0.0, 1(@=0)=3

If0=00, SE()=0.8




Info and SE Example

At 0=-10, 1(@=-1)=1
1 1

=—=1.0
Ji@g

SE(6) =

Vo \

If6=-1.0, SE@)=1.0




95% Confidence Interval

« Because MLEs are asymptotically normally distributed,
we create a 95% confidence interval around a point
estimate of ability by adding and subtracting 1.96

standard errors:

Estimate £ 1.96 SE

(recall critical values from a standard normal distribution)
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Standard Normal Distribution

057 0.95
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95% Confidence Interval

« For0=1,SE=0.33 > 1.0%+0.65

- 95% chance that examinee’s true ability is in
between 0.35 and 1.65

. For0=0,SE=0.58 > 0.0+1.14

- 95% chance that examinee’s true ability is in
between-1.14 and 1.14

e« For0=-1,SE=1.0 > -1.0t1.96

- 95% chance that examinee’s true ability is in
between -2.96 and 0.96
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95% Confidence Interval

« As information increases...
- SE decreases
- Cl becomes narrower
- Increased trust in ability estimate

« As information decreases...
- SE increases
- Cl becomes wider
- Decreased trust in ability estimate
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Notes on IIF and TIF

Note that the contribution of .(8) to I(0) does not
depend on the particular combination of test items
> Each item contributes independently

- This is a very big advantage of IRT over CTT: reliability
can be described conditionally (as information), and it
does not depend on the particular set of items
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Mini-CTT lesson

In CTT, item discrimination (quality) is the item-total
correlation

This will depend on the item itself, but is also influenced
by the other test items

Adding items changes the total score, thus changing the
correlation

Therefore, it is difficult to anticipate the reliability of a
test when creating a form from a bank of previously
piloted items, unless those items all appeared together
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CTT versus IRT

In IRT, item quality is Information, which is affected by
a, b, c,and @

An item’s information function will be independent of
the other items on the test, as will its contribution to
the TIF

Adding more and/or better items will increase TIF, but
won’t impact any IIF

It is easy to anticipate the reliability of a test when
creating a form from a bank of previously piloted items
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Excel Spreadsheet Demo

- Show Excel Spreadsheet containing
eight items, their ICCs, TCC, IIFs, TIF
and SE

. Specify different item parameters and
determine how changes affect the
resulting graphs
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Uses of Item and Test Information Functions

1) Providing conditional SE of trait

2) Building a test to meet desired
statistical specifications

3) Revising an existing test
4) Comparing tests
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WRAPPING UP
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Concluding Remarks

. Reliability in IRT is built upon item information

. Item information tells us
> Where items are best at measuring a latent trait

- Item information becomes test information when
aggregated across items of a test

> Which can be used for building a test of a given target
> |s used in many applications
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A Return to the Example From Practice

- From the Graduate Record Examinations® Guide to the
Use of Test Scores (2010-2011; p. 20)
» http://www.ets.org/s/gre/pdf/gre guide.pdf

Table 6 A: Conditional Standard Errors of Measurement at Selected Scores
for General Test Measures®

Measure 200 250 300 350 400 450 500 550 600 650 700 750 800
Verbal 14 21 26 28 31 35 34 33 33 33 34 32 20
Quantitative 26 42 48 55 55 54 50 49 42 39 35 26 9
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. Putting item and test information to good use:
> Test Development
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