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Workshop Topical Overview

Monday: Foundations of Iltem Response Theory

- Tuesday: Estimation of IRT Models

- Wednesday: Reliability in IRT
Test Development
Computerized Adaptive Testing

- Thursday: Multidimensional IRT Models
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Workshop Daily Schedule

9:00 am Lecture

10:15 am (ish) Break #1

10:30 am Lecture

11:45 am Lunch

1:15 pm Lecture

2:30 pm (ish) Break #2

2:45 pm Lecture

4:00 pm Lab Activity/Personal Work Time
5:00 pm End of Day
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About Me...

Jonathan Templin
Associate Professor
Department of Educational Psychology
University of Kansas

Email:
itemplin@ku.edu

Website:
http://jonathantemplin.com
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Historical Perspectives
Basic Statistical Prerequisites

Lecture #1
ICPSR Item Response Theory Workshop
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Lecture Topics

A brief history of measurement

How IRT has come to be used in the
psychometric community

What IRT is...and isn’t

> Comparisons with other measurement models you may have
heard of or used before

A brief primer on statistics, logits, and other
mathy things
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IRT is a Part of a Broader Field: Test Theory

Test theory :: Psychometric Theory

> A general collection of statistical techniques used for
evaluating and developing psychological tests

> One of three dominant measurement paradigms
+ All three are interrelated

Although IRT was developed because of the needs of
certain psychological tests, its use has become much
more widespread (e.g., used in Political Science)

Now a part of a broader set of statistical techniques
> Generalized linear mixed models
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What is a Latent Trait?

- Latent trait: An unobservable ability or characteristic

1/

> e.g., “intelligence”, “extroversion”, or “political idealization”

- A person’s latent trait(s) are estimated (measured)
using a measurement model

> Measurement model: A statistical model linking the
unobserved latent trait with the observed outcome

+ In social/education research outcomes are generally test items
— We will use the term item throughout

- Latent traits are measured with multiple observed items
> Utilize common (co)variance among items
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A (Very) Brief History of Test Theory

- Modern beginnings date to mid 19" century
> Measurement of intelligence

- 1904 brought about two seminal papers by
Charles Spearman

> One showed how to estimate the amount of error in
test scores
+ Led to field of Classical Test Theory (CTT)

> One showed how measure a single trait from a test
+ Led to field of factor analysis

+ Modern versions feature measurement models under the name of
Confirmatory Factor Analysis (CFA)
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Development of the Field of Test Theory

- Motivated by problems in education and psychology
> Education :: measuring intelligence or achievement
> Psychology :: understanding structure of traits

- Early theory developed prior to computers
> Work prior to the 1960s relied on approximations
> IRT was developed largely in the 1960s and 1970s

- Mathematicians and statisticians have advanced the
field in recent years
> Brought rigor and validity to approaches
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Measurement Models

- Measurement models can be divided into two families of
models based on response format alone:
> Continuous responses :: Confirmatory Factor Models
> Categorical responses :: Iltem Response Models

- Both of these families fall under a larger framework:
Generalized Linear Latent and Mixed Models
> Provide measurement models for other types of responses

. Other relevant families (not covered in this workshop):

> Structural Equation Models :: provides estimates of correlations
amongst latent variables in measurement models

> Path Analysis :: simultaneous regression amongst multiple
observed variables
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Differences Among Measurement Models

- Fundamental difference is in unit of analysis

> Classical Test Theory (CTT) :: unit of analysis is the entire test
+ Sum of items = latent trait estimate
+ Positives: Can always be done; No need for advanced computing
+ Negatives: Restrictive assumptions; limited generalizability
> CFA and IRT :: unit of analysis is the item
+ Model how item response relates to latent trait
+ Different models for different types of item response formats
+ Provides a framework for testing adequacy of measurement models

- Each family of models has a different name for the trait:
> CTT :: True Score (T)
> CFA :: Factor Score (F)
> IRT :: Ability (commonly); Theta ()
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Classical Test Theory Basics

In CTT, the test is the unit of analysis:
Yiota =T + €

> True score T: best estimate of “latent trait”, mean over infinite
replications of the test

> Error e: mean of zero, uncorrelated with T

. Variance of test scores: o¢ = 0% + 0/

- Goal is to quantify reliability :: proportion of test variance
accounted for by true score variance:

P ="

.- Items are assumed to be exchangeable (all count the same)
> More items means higher reliability, regardless of type
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More Classical Test Theory

- Erroris a unitary construct in CTT
> Error variance has been quantified in various ways

> Goal is to reduce error variance as much as possible
+ Standardization of testing conditions (reduces confounds)
+ Aggregation of additional items (errors should cancel out)

> |tems are exchangeable

- Followed by generalizability theory to decompose error
» e.g., rater variance, person variance, time variance...
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Even More Classical Test Theory

Brief history of solutions for quantifying reliability:
> 1904: Spearman:: from alternate forms or test-retest

> 1945: Guttman:: from the relations between the items within a
test (i.e., coefficient alpha)

> 1951: Cronbach further developed Guttman’s work
“Cronbach’s alpha”
+ Cronbach’s work further elaborated into generalizability theory

> 1950: Gulliksen classic text for CTT
+ See also Nunnally’s texts from the 1970’s - 1990’s

- Around that point, psychometrics started to shift to focus on
the item

> Although the item had been investigated for years in another
framework (CFA)
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Developing Statistical Models for Test Data

At this point we will diverge from psychometric history
and review some basic statistical models that will help
in developing CFA and, ultimately, IRT

> In sum: we need to discuss linear regression

Imagine that you have:
> A continuous outcome variable:: Y
> A continuous predictor variable:: X

You wish to examine the relationship between X and Y,
using values of X to predict values of Y
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Linear Regression (Both X and Y Observed)

- The prediction of Y is done using a linear regression:

Y=,BO+,81X+8

B, is the intercept (where
the line crosses the Y
axis)

Y =-0.2954+1.0276X
R?=0.7329 Y

B is the slope (the
increase in Y for a one
unit increase in X) Y

e is the error (or
residual), with estimated
error variance o2

o - N w BN [6)] » ~ oo ©
1 1 1 1 1 1 1 1 )
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Confirmatory Factor Analysis (CFA) Models

Main idea of CFA:: Build a measurement model for response variables that
measure the same trait

> CFA = Linear regression model predicting each continuous observed outcome
variable (item, subscale) from a latent trait predictor variable(s)

Ysi = u; + AiFs + eg;

s = subject

I =item

W; is the item intercept

A; is the item slope (factor loading)

es; is the error for the item and subject

Y;; is the item response (continuous) to item i for subject s
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Confirmatory Factor Analysis (CFA) Models

CFA differs from exploratory factor analysis (which is not a model if conducted
as it typically is with principal components-based methods):

> Number and content of factors is decided a priori

> Alternative models are comparable and testable

Uses of confirmatory factor analysis models:

> Analyze relationships among subscales that have normal, continuous
distributions (or “incorrectly” to analyze item-level data)

> Provide comparability across persons, items, and occasions
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Factor Analysis (Y Observed; F latent)

- The prediction of Y is done using a linear regression:

Ysi = mi + AiFs + e

y; is the item intercept
(where the line crosses
the Y axis)

y = - 0.2954+1.0276F
R?=0.7329 Y

A; is the item’s slope (the
increase in Y for a one
unit increase in F) Y

eg; is the error (or
residual), with estimated
error variance y;

o - N w BN [6)] » ~ oo ©
1 1 1 1 1 1 1 1 )
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Confirmatory Factor Analysis (CFA)

Dimensionality is assumed to be known

> Local Independence is assumed = conditional on the number of dimensions in
the model

+ Errors are independent after controlling for factor(s)

CFA is a linear model :: a one-unit change in latent trait/factor F has same
increase in expected response Y at all points of Y

> Implicitly assume that Y is a continuous variable

ltems are allowed to differ from each other in how much they relate to the
latent trait, but a good item is equally good for everybody

-  CFA won’t work well for binary or categorical data
> Thus, we need IRT

Lecture #1: 21 of 49



A History of “Common Factor Theory” (CFA)

1900’s :: Spearman’s G
> Went looking for single-factor model... and “found” it
> Led to development of other 1Q tests (Stanford-Binet, Wechsler)

1930’s and 1940’s :: Thurstone elaborated Spearman’s model into a “multiple
factor” model

> Beginnings of exploratory factor analysis to do so

> Later applied in other personality tests (e.g., MMPI)

1940’s and 1950’s: Guttman’s work

> Factor analysis and test development is about generalizing from measures we
have created to more measures of the same kind

> Thus, need to think about structure before-hand
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Common Factor Theory, continued

1940’s: Lawley provided a rigorous foundation for statistical treatment
of common factor analysis
> But had to wait for better computers to be able to implement methods

1952: Lawley provided the beginnings of the confirmatory factor model
> Later extended by Howe and Bargmann (1950’s)
> Further extended by Joreskog (LISREL — 1970’s)

But this linear model should not be applied to dichotomous
(or categorical) responses...

> Probability of correct response will go out of bounds

> Errors can’t be normally distributed with constant variance

Enter Item Response Theory
> IRT is CFA for categorical variables
> The field of IRT is an example of generalized models
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Item Response Theory (IRT)

. IRT resulted from combination of ideas from factor analysis and
phi-gamma law of psychophysics
> When detecting stimuli of varying intensity (e.g., light), the response

follows a smooth, S-shaped curve that can be represented by the
cumulative normal distribution

> That response function also works to model probability of a correct
response given (1 to 4) model parameters

.« 1950: Lazarsfeld introduced “latent structure analysis”

> Essentially a form of factor analysis for dichotomous items
> Formed the beginnings of item response theory

- 1952: Lord introduced two-parameter normal ogive model
> Now called an item factor model
> Precursor to more common models today
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Revisiting Our Regression Review

Consider the following scenario:

> You wish to predict Y from X, BUT

+ Y is now binary (can be either 0 or 1)
+ X is still continuous

In this case, traditional regression will not work
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Binary versus Continuous Outcome Variables

Variable types:

> Continuous: ranges from negative infinity to infinity
> Binary: 0/1

- Means: ~
» Continuous outcome mean: Y
» Binary outcome mean: proportion of 1’s = py

- Variances:
>N (Y-7)?

> Continuous: Var(Y) =
> Binary: Var(Y) = py(1 - Py5 = PyQy = S%

+ The variance IS determined by the mean!

TABLE 3.2
Binary Item Variance and Difficulty
p 0 1 2 3 4 5 .6 .7 .8 Rt} 1.0
. 0 09 16 21 24 .25 24 21 i6 48 G
varahecemrm——0 /0 0 /
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A Linear Model for Binary Outcomes

. If your outcome variable is binary (0 or 1):

> Expected mean is proportion of people who havea 1l
(or “p”, the probability of Y=1)
+ The probability of having a 1 is what we’re trying to predict
for each person, given the values on the predictors

- Under the regression model: Y=08,+ 3, X+ e
> B, = expected probability when all predictors are 0

> B, = expected change in probability for a one-unit change in
the predictor
> e = difference between observed and predicted values

- Model becomes Y = (predicted probability of 1) + e
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A Linear Model for Binary Outcomes

- ButifYis binary, then e can only be two things:

> e = Observed Y minus Predicted Y
+ IfY=0then e =(0- predicted probability)
+ IfY=1thene=(1- predicted probability)

- Mean of errors would still be O...

- Variance of errors cannot be constant over levels of X
like we assume in general linear models
> The mean and variance of a binary outcome are dependent

> This means that because the conditional mean of Y
(p, the predicted probability Y= 1) is dependent on X,
then so is the error variance
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A Linear Model for Binary Outcomes

- Needed: a method to translate probabilities bounded by
zero and one to the entire number line
- Options:
> lgnore bounding and use traditional general linear model
> Transform probability to something continuous

1.40 1.40
1.207 / 120 -
1.00 1.00
= 0.80 = 0.80
> 0.60 | > 0.60 |
§ 0.0 | § 0.0 |
% 0.20 - % 0.20 -
0.00 - 0.00 -
-0.20 - -0.20 -

-0.40 — T -0.40 — T

1 2 3 456 7 8 91011 1 2 3 456 7 8 9 1011
X Predictor X Predictor
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3 Problems with Linear Regression Models for

Binary Outcomes

1. Restricted range (e.g., 0 to 1 for binary item)

> Predicted values can each only be off in two ways
+ Soresiduals can’t be normally distributed

2. Variance is dependent on the mean, and not estimated

> Fixed and random parts are related
* So residuals can’t have constant variance

3. Residuals have a limited number of possible values

> Predicted values can each only be off in two ways
+ Soresiduals can’t be normally distributed
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Differing Types of Outcomes

- @Generalized Linear Models are General Linear Models
> with differently distributed error terms
» with transformed outcome variables

- Many kinds of non-normally distributed outcomes have

some kind of generalized linear model to go with them:

Binary (dichotomous)

Unordered categorical (nominal) These two are often called
Ordered categorical (ordinal) “multinomial” inconsistently
Counts (discrete, positive values)

Censored (piled up and cut off at one end — left or right)
Zero-inflated (pile of 0’s, then some distribution after)
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Parts of a Generalized Linear Model

. Link Function (main difference from GLM):

> How a non-normal outcome gets transformed into something that is
continuous (unbounded)

> For outcomes that are already normal, general linear models
are just a special case with an “identity” link function (Y * 1)
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Generalized Models for Binary Outcomes

- Rather than modeling the probability of a 1 directly,
we need to transform it into a more continuous variable
with a link function, for example:

» Transform probability into an odds ratio:
+ Odds ratio: (p / 1-p) = prob(1) / prob(0)
+ Ifp=.7,then Odds(1) = 2.33; Odds(0) = .429
+ Odds scale is way skewed, asymmetric, and ranges from 0 to infinity

> Take natural log of odds ratio : called “logit” link
+ LN (p/ 1-p): Natural log of (prob(1) / prob(0))
+ If p=.7,then LN(Odds(1)) = .846; LN(Odds(0)) = -.846
+ Logit scale is now symmetric about O
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Model Background

- The log-odds is called a logit

Logit(P(Y :1)):11{ P(Y =1) j

1-P(Y =1)

- The logit is used because the responses are binary
- Responses are either (1) or (0)
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More on Logits
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From Logits to Probabilities

- Whereas logits are useful as the are unbounded
continuous variables, categorical data analyses rely on
estimated probabilities

- The inverse logit function coverts the unbounded logit

to a probability
> This is also the form of an IRT model (and logistic regression)

exp(Logit(P(Y =1)))
P =)= Logi P =1)
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Non-Linearity in Prediction

. The relationship between X and the P(Y = 1)
is “non-linear”

> An s-shaped logistic curve whose shape and location are dictated by the
estimated model parameters (slope, intercept)

> Linear with respect to the logit, non-linear with respect to probability

35 1.0
- / N . //
15 By =0 e /
Il | T
z 1 / = /
£ -0.5 / g 04
S -15 & /
Ny 0.2
'35 T T T T T T 00 T T T T T T
3 2 1 0 1 2 3 3 2 1 0 1 2 3
Predictor X Predictor X

- The logit version of the model will be easier to explain; the
probability version of the prediction will be easier to show
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The Logistic Model

- Outcome is log odds (logit) of probability instead of probability

> Symmetric, unbounded outcome

> Assume linear relationship between predictors and log odds (logit)

> This allows an overall non-linear (S-shaped) relationship between X’s and
probability of Y=1

. Errors are not assumed to be normal with constant variance
> ‘e will be missing — residual variance is NOT estimated
> Errors are assumed to follow a logistic distribution with a known residual
variance of t?/3 (3.29)

> Still assume errors are independent
+ Clustered data would need a generalized mixed model that would include random
effects that account for any dependency
+ Items are like clustered data — items are typically treated as being nested
within a person
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Item Response Theory (IRT) Models

- Linear regression is to confirmatory factor models as to:

> Logistic regression is to binary IRT models
> Ordinal/nominal regression is to polytomous IRT models
> IRT = Regression model predicting each categorical observed outcome variable

from a latent variable(s) by using link functions

- “Rasch models” are a subset of IRT models with more restrictive

assumptions...(but don’t let Rasch people hear you saying that)
> The cult of Rasch: http://www.rasch.org

- Uses of IRT models:
> *Correctly* analyze item-level data (binary items, Likert scales)

> Examine sensitivity of measurement across range of latent trait
> Provide comparability across persons, items, and occasions
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Example Item Response Curves

a = Discrimination = slope of ‘line’ c = Lower Asymptote of ‘line’
b = Difficulty = location of ‘line’ d = Upper Asymptote of ‘line’
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Item Response Theory, continued

« IRT unit of analysis is the individual ITEM
> Nonlinear response model that simultaneously accounts for differences
between persons AND differences between items
+ Items and persons are put on the same latent metric

+ Probability of getting an item right depends (at least)
on the subject’s ability and the item’s difficulty

+ Ability is interpreted relative to item performance,
not (just) relative to other people in the sample

> All items are NOT created equal (not exchangeable)
+ Having items that differ in their properties is a GOOD THING

> Erroris not a static characteristic of the test

+ Reliability varies across ability level, and depends specifically
on how well the items match the subjects (i.e., on information)
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Item Response Theory, continued

1952: Lord’s seminal paper: Spearman’s single-factor model can be applied to
dichotomous items
> Dichotomous responses modeled by normal ogive function

> Elaborated in 1960’s by Birnbaum :: Transform outcome using logit link, assume
Bernoulli error

1968: Lord & Novick = first CTT text to also include IRT

> Well-connected to emerging scholars in both educational testing and
psychometric methods

1960: Separate line of development by Rasch (no ‘a’/factor loading parameter)

> Restricted IRT model, but with highly desirable properties
> ...and somewhat different philosophical viewpoint
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Unified View of Test Theory

(courtesy of McDonald, 1999)

Classical test theory can be viewed as a restricted form of the common factor
model, but the focus is the TEST...

> Originated by Spearman, elaborated by Thurstone, formalized by Lawley, and
made practical by Joreskog

ltem response (and Rasch) models for dichotomous data are basically
nonlinear common factor models...
> Developed by Lord, Birnbaum, and Rasch and their students

Common factor models (CFA) are a linear approximation to the item response
model when applied to dichotomous or ordinal responses
> Approximation with varying degrees of success

Other newer measurement models to measure latent traits
> Count, zero-inflated, two-part....
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Advantages of the Measurement Model

Framework (CFA, IRT, and beyond)

Explicit, testable models of dimensionality

Concrete guidelines for selecting items to builds scales

Assess measurement sensitivity across range of latent trait
(i.e., know where the ‘holes’ are)

Provide comparability across persons, items (different forms scales or
different scales), and occasions

Examine comparability across distinct groups (perhaps bias exists)
> Confirmatory factor analysis :: “Measurement invariance”
> Item response theory :: “Differential item functioning”

Internal and external evidence for construct validity

Flexible measurement models for different response formats and distributions
(CFA, IRT, and others)
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Disadvantages of Framework (CFA and IRT)

- Primary: Required sample size
> Casts of 100s for sure, and preferably 1000s

> Uses maximum likelihood (although WLSMV in Mplus can now be used
for multidimensional IRT models on fewer cases)

. Technical difficulties
> Estimation difficulties
> Fighting with software
> References written in Greek (literally)
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Summary: Psychometric Introduction

- Test Theory is a collection of statistical models used to
evaluate the quality of an instrument in measuring
a latent trait

> “Classical Test Theory” (CTT)

+ Just add items up: Focus on TEST as unit of analysis
+ Simple, yet very restrictive; requires belief instead of evidence

> “Latent Trait Models” (CFA, IRT... and beyond)

+ Estimate a latent trait; Focus on ITEM as unit of analysis
+ Flexible models that differ by response format of items
+ More complex, but more powerful and useful

- The nuances of IRT are due to the nature of modeling
categorical data and the needs of the fields that are using
the methods
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CONCLUDING REMARKS
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IRT :: CFA as

Logistic Regression :: Linear Regression

Outcome Type Observed X Latent X
Model Family

Continuous Y Linear Confirmatory
“General Linear Model” Regression Factor Models
Discrete Y Logistic ltem Response
“Generalized Linear Model” Regression Models

The basis of Item Response Theory lies in models for discrete
outcomes, which are called “generalized” models

Thus, IRT and CFA seek to achieve the same results with
different types of data
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Basics of IRT models
Model Specifications

Scale Characteristics
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