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Today’s Lecture

● Taking what we have covered to this point and expressing
these values as a function of matrices.

✦ General Linear Model for Regression/ANOVA.

✦ All subsequent quantities that produce statistical
estimates.

● Making sense of matrices.
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Regression Analysis with Matrices

● Recall the “multiple regression” equation (for the ith

observation, prediction of Yi by k variables Xik):

Yi = a + b1Xi1 + b2X2 + . . . + bkXk + e

● The equation above can be expressed more compactly by a
set of matrices:

y = Xb + e

✦ y is of size (N × 1).

✦ X is of size (N × (k + 1)).

✦ b is of size (k × 1).

✦ e is of size (N × 1).
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Regression with Matrices
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Regression with Matrices

● Working the matrix multiplication and addition for a single case gives:
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Regression with Matrices

● Working the matrix multiplication and addition for a single case gives:
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Regression with Matrices

● Working the matrix multiplication and addition for a single case gives:
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Regression with Matrices

● Working the matrix multiplication and addition for a single case gives:
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Regression with Matrices

● Working the matrix multiplication and addition for a single case gives:
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Regression with Matrices

● Working the matrix multiplication and addition for a single case gives:
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Regression with Matrices

● Working the matrix multiplication and addition for a single case gives:
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Regression with Matrices

● Note that most everything is really straightforward in terms of
matrix algebra.

● The matrix of predictors, X, has the first column containing
all ones.

✦ This represents the intercept parameter a.

✦ This is also an introduction to setting columns of the X
matrix to represent design and or group controls (as in
ANOVA).



Overview

General Linear
Model
● Regression
● Error Distribution
● Estimation
● Numerical

Example
● SPSS Results

Other Matrix
Products

Wrapping Up

®

Slide 7 of 23

Distribution of Errors

● Recall from previous classes that we often place
distributional assumptions on our error terms, allowing for the
development of tractable hypothesis tests.

● With matrices, the distributional assumptions are no different,
except for things are approached in a multivariate fashion:

e ∼ NN (0, σ2
e IN )

● Having a multivariate normal distribution with uncorrelated
variables (from IN ) is identical to saying:

ei ∼ N(0, σ2
e)

for all i observations.
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Regression Estimation with Matrices

● Regression estimates are typically found via least squares
(called L2 estimates).

● In least squares regression, the estimates are found by
minimizing:

N
∑

i=1

e2 =

N
∑

i=1

(Yi − Y ′

i )2 =

N
∑

i=1

(Yi − a + b1Xi1 + . . . + bkXik)2

● As you could guess, we could accomplish all of this via
matrices.

● Equivalently:

N
∑

i=1

e2 =
N

∑

i=1

(yi − x′

ib)2 = (y − Xb)′(y − Xb) = e′e
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Regression Estimation with Matrices

● Thankfully, there are people to figure out the equation for b that minimizes
e′e.

b = (X′X)−1X′y

b = ( X′ X )−1 X′ y

((k + 1) × 1) ((k + 1) × N) (N × (k + 1)) ((k + 1) × N) (N × 1)

● This equation is what I have been talking about for quite some time, the
General Linear Model.

● For many types of data, in many differing analyses, this equation will provide
estimates:

✦ Multiple Regression
✦ ANOVA
✦ Analysis of Covariance (ANCOVA).
✦ Multiple Regression with Curvilinear relationships in X .
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Numerical Example

● For the past week we have strayed away from examples, but
now that we have been introduced to the GLM, an example
is warranted.

● From Chapter 5 of Pedhazur, p. 98, an example data set is
given.

● The data set attempts to predict Reading Achievement (Y )
as a function of Verbal Aptitude, (X1), and Achievement
Motivation, (X2).

● To demonstrate the GLM estimates with matrices, I will show
the results of the analysis from SPSS, and then replicate
these results in MATLAB.

● This data set will be the focal point of subsequent
demonstrations in this lecture.
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SPSS Results
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Other Regression Terms with Matrices

● Clearly, getting estimates for b isn’t the only focus of this
class.

● Most everything accomplished previously can be obtain via
matrices:

✦ Mean Vectors.

✦ Variance-Covariance Matrices.

✦ Correlation Matrices.

✦ Sums of Squares.

✦ Linear Combinations - Principal Components.
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A Vector of Ones

● Helpful in many applications is a simple vector of ones:

1N =













1

1
...
1













● Note that this vector is not the identity matrix (where ones
are on the diagonal).

● You can probably see the use for such a vector by the
following equation:

N
∑

i=1

Xi = x′1
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The Mean Vector

● To compute a vector of means for a set of variables
X1, . . . , Xk:

X̄(k×1) = X′

k×N1(N×1)(1
′

(1×N)1(N×1))
−1

● Don’t be dismayed by (1′

(1×N)1(N×1))
−1, this is simply:

1

N
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Sums of Squares and Cross Products

● The SSCP matrix contains:

✦ On the diagonal, Sums of Squares for each variable Zk:

N
∑

i=1

(Xik − X̄·k)2

✦ On the off-diagonal the Sum of Cross Products for each
pair of variables, Xk and Xk′ :

N
∑

i=1

(Xik − X̄·k)(Xik′ − X̄·k′)

✦ The matrix expression for the SSCP matrix is:

SSCP = (X − 1X̄
′

)′(X − 1X̄
′

)
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Covariance Matrices

● Once the SSCP is obtained, the covariance matrix is easily
obtained:
✦ On the diagonal, the variance for each variable Xk:

∑N

i=1 (Xik − X̄·k)2

N

✦ On the off-diagonal the covariance for each pair of
variables, Xk and Xk′ :

∑N

i=1 (Xik − X̄·k)(Xik′ − X̄·k′)

N

✦ The matrix expression for the covariance matrix is:

COV =
1

N
(X − X̄)′(X − X̄)
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Correlation Matrices

● Once the covariance matrix is obtained, the correlation
matrix is easily obtained.

● Let D be a diagonal matrix consisting of the standard
deviation of all variables (the square root of the diagonal
elements of the covariance matrix).

● The matrix expression for the correlation matrix is:

CORR = D−1COV D−1
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Regression Sums of Squares

● The Sum of Squares for the Regression can be obtained by
matrix calculations:

SSreg = b′X′y −

(
∑N

i=1 Y )2

N
= b′X′y −

1

N
(y′1)2
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Residual Sums of Squares

● The Residual Sum of Squares is also obtained by matrix
calculations:

SSres =
N

∑

i=1

ei
2 = e′e = y′y − b′X′y
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Squared Correlation

● Recall that the Squared Multiple Correlation Coefficient, or
R2, is found from:

R2 =
SSreg

∑N

i=1(Yi − Ȳ )2

● This is also obtainable by matrix calculations:

R2 =
b′X′y −

1
N

(y′1)2

y′y −
1
N

(y′1)2
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Variance of Regression Estimators

● The covariance matrix of the regression parameters contains
useful information regarding the standard errors of the
estimates (found along the diagonal).

● To find the covariance matrix of the estimates, the Residual
Sum of Squares is needed (dividing this term by the residual
degrees of freedom gives the error variance, or σ2

e ):

var(b) = σ2
e(X′X)−1 =

SSres

N − k − 1
(X′X)−1 =

1

N − k − 1
e′e(X′X)−1
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Final Thought

● Matrices are prevalent in
many statistical
applications, but do not fear
them.

● You will encounter matrix
notation from time to time,
but that should not be
cause for concern.

● Leave the heavy matrix lifting to the experts: let a stat or
math computer package do advanced matrix calculations.
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Next Time

● Chapter 7: Partial/Semipartial Correlation.
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