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Today’s Lecture

● Matrix Algebra.
● Matrix Algebra.
● Matrix Algebra.
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Matrix Introduction

● Imagine you are interested in studying the cultural
differences in student achievement in high school.

● Your study gets IRB approval and you work hard to get
parental approval.

● You go into school and collect data using many different
instruments.

● You then input the data into your favorite stat package (or MS
Excel).

● How do you think the data is stored?
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Definitions

● We begin this class with some general definitions (from
dictionary.com):

✦ Matrix:

1. A rectangular array of numeric or algebraic quantities
subject to mathematical operations.

2. The substrate on or within which a fungus grows.

✦ Algebra:

1. A branch of mathematics in which symbols, usually
letters of the alphabet, represent numbers or members
of a specified set and are used to represent quantities
and to express general relationships that hold for all
members of the set.

2. A set together with a pair of binary operations defined
on the set. Usually, the set and the operations include
an identity element, and the operations are
commutative or associative.
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Matrices

● Away from the definition, a matrix is simply a rectangular way
of storing data.

● Matrices can have unlimited dimensions, however for our
purposes, all matrices will be in two dimensions:

✦ Rows

✦ Columns

● Matrices are symbolized by boldface font in text.

A =

[

4 7 5

6 6 3

]
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MATLAB

● To help demonstrate the topics we will discuss today, I will be
showing examples in MATLAB.

● MATLAB (Matrix Laboratory) is a scientific computing
package typically used in other technical fields.

● For many statistical applications MATLAB is very useful.

● SPSS and SAS both have matrix computing capabilities, but
(in my opinion) neither are as efficient, as user friendly, or as
flexible as MATLAB.

✦ It is better to leave most of the statistical computing to the
computer scientists.
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Matrix Elements

● A matrix is composed of a set of elements, each denoted it’s
row and column position within the matrix.

● For a matrix A of size r × c, each element is denoted by:

aij

✦ The first subscript is the index for the rows: i = 1, . . . , r.
✦ The second subscript is the index for the columns:

j = 1, . . . , c.

A =













a11 a12 . . . a1c

a21 a22 . . . a1c

...
...

...
...

ar1 ar2 . . . arc












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Transpose

● The transpose of a matrix is simply the switching of the
indices for rows and columns.

● An element aij in the original matrix (in the ith row and jth

column) would be aji in the transposed matrix (in the jth row
and the ith column).

● If the original matrix was of size i × j the transposed matrix
would be of size j × i.

A =

[

4 7 5

6 6 3

]

A′ =







4 6

7 6

5 3









Overview

Matrix Algebra
● Introduction
● Definitions
● Matrices
● Matrix Computing
● Matrices

Algebra

More Matrices

Wrapping Up

®

ERSH 8320 Slide 9 of 32

Types of Matrices

● Square Matrix: A matrix that as the same number of rows
and columns.

✦ Correlation and covariance matrices are examples of
square matrices.

● Diagonal Matrix: A diagonal matrix is a square matrix with
non-zero elements down the diagonal and zero values for the
off-diagonal elements.

A =







2.759 0 0

0 1.643 0

0 0 0.879







● Symmetric Matrix: A symmetric matrix is a square matrix
where aij = aji for all elements in i and j.

✦ Correlation/covariance and distance matrices are
examples of symmetric matrices.
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Vectors

● A vector is a matrix where one dimension is equal to size
one.

✦ Column vector: A column vector is a matrix of size r × 1.

✦ Row vector: A row vector is a matrix of size 1 × c.

● Vectors allow for geometric representations of matrices.

● The Pearson correlation coefficient is a function of the angle
between vectors.

● Much of the statistical theory given in this course (and
ANOVA-type courses) can be conceptualized by projections
of vectors (think of the dependent variable Y as a column
vector).
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Scalars

● A scalar is a matrix of size 1 × 1.

● Scalars can be thought of as any single value.

● The difficult concept to get used to is seeing a number as a
matrix:

A =
[

2.759
]
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Algebraic Operations

● As mentioned in the definition at the beginning of class,
algebra is simply a set of math that defines basic operations.

✦ Identity

✦ Zero

✦ Addition

✦ Subtraction

✦ Multiplication

✦ Division

● Matrix algebra is simply the use of these operations with
matrices.
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Matrix Addition

● Matrix addition is very much like scalar addition, the only
constraint is that the two matrices must be of the same size
(same number of rows and columns).

● The resulting matrix contains elements that are simply the
result of adding two scalars.
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Matrix Addition

A =











a11 a12

a21 a22

a31 a32

a41 a42











B =











b11 b12

b21 b22

b31 b32

b41 b42











A + B =











a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32

a41 + b41 a42 + b42













Overview

Matrix Algebra

Algebra
● Algebra
● Addition
● Subtraction
● Multiplication
● Identity
● Zero
● “Division”
● Singular Matrices

More Matrices

Wrapping Up

®

ERSH 8320 Slide 15 of 32

Matrix Subtraction

● Matrix subtraction is identical to matrix addition, with the
exception that all elements of the new matrix are the
subtracted elements of the previous matrices.

● Again, the only constraint is that the two matrices must be of
the same size (same number of rows and columns).

● The resulting matrix contains elements that are simply the
result of subtracting two scalars.
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Matrix Subtraction

A =











a11 a12

a21 a22

a31 a32

a41 a42











B =











b11 b12

b21 b22

b31 b32

b41 b42











A − B =











a11 − b11 a12 − b12

a21 − b21 a22 − b22

a31 − b31 a32 − b32

a41 − b41 a42 − b42










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Matrix Multiplication

● Unlike matrix addition and subtraction, matrix multiplication is
much more complicated.

● Matrix multiplication results in a new matrix that can be of
differing size from either of the two original matrices.

● Matrix multiplication is defined only for matrices where the
number of columns of the first matrix is equal to the number
of rows of the second matrix.

● The resulting matrix as the same number of rows as the first
matrix, and the same number of columns as the second
matrix.

A B = C
(r × c) (c × k) (r × k)
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Matrix Multiplication

A =











a11 a12

a21 a22

a31 a32

a41 a42











B =

[

b11 b12 b13

b21 b22 b23

]

AB =











a11b11 + a12b21 a11b12 + a12b22 a11b13 + a12b23

a21b11 + a22b21 a21b12 + a22b22 a21b13 + a22b23

a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b23

a41b11 + a42b21 a41b12 + a42b22 a41b13 + a42b23










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Matrix Multiplication

A =











a11 a12

a21 a22

a31 a32

a41 a42











B =

[

b11 b12 b13

b21 b22 b23

]

AB =











a11b11 + a12b21 a11b12 + a12b22 a11b13 + a12b23

a21b11 + a22b21 a21b12 + a22b22 a21b13 + a22b23

a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b23

a41b11 + a42b21 a41b12 + a42b22 a41b13 + a42b23










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Matrix Multiplication

A =











a11 a12

a21 a22

a31 a32

a41 a42











B =

[

b11 b12 b13

b21 b22 b23

]

AB =











a11b11 + a12b21 a11b12 + a12b22 a11b13 + a12b23

a21b11 + a22b21 a21b12 + a22b22 a21b13 + a22b23

a31b11 + a32b21 a31b12 + a32b22 a31b13 + a32b23

a41b11 + a42b21 a41b12 + a42b22 a41b13 + a42b23










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Multiplication and Summation

● Because of the additive nature induced by matrix
multiplication, many statistical formulas that use:

∑

can be expressed by matrix notation.

● For instance, consider a single variable Xi, with i = 1, . . . , N
observations.

● Putting the set of observations into the column vector X, of
size N × 1, we can show that:

N
∑

i=1

X2 = X′ X



Overview

Matrix Algebra

Algebra
● Algebra
● Addition
● Subtraction
● Multiplication
● Identity
● Zero
● “Division”
● Singular Matrices

More Matrices

Wrapping Up

®

ERSH 8320 Slide 20 of 32

Matrix Multiplication by Scalar

● Recall that a scalar is simply a matrix of size (1 × 1).
● Matrix multiplication by a scalar causes all elements of the

matrix to be multiplied by the scalar.
● The resulting matrix has all elements multiplied by the scalar.

A =











a11 a12

a21 a22

a31 a32

a41 a42











s × A =











s × a11 s × a12

s × a21 s × a22

s × a31 s × a32

s × a41 s × a42










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Identity Matrix

● The identity matrix is defined as a matrix that when multiplied
with another matrix produces that original matrix:

A I = A

I A = A

● The identity matrix is simply a square matrix that has all
off-diagonal elements equal to zero, and all diagonal
elements equal to one.

I(3×3) =







1 0 0

0 1 0

0 0 1






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Zero Matrix

● The zero matrix is defined as a matrix that when multiplied
with another matrix produces the matrix:

A 0 = 0

0 A = 0

● The zero matrix is simply a square matrix that has all
elements equal to zero.

0(3×3) =







0 0 0

0 0 0

0 0 0






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Matrix “Division”: The Inverse

● Recall from basic math that:

a

b
=

1

b
a = b−1a

● And that:
a

a
= 1

● Matrix inverses are just like division in basic math.
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The Inverse

● For a square matrix, an inverse matrix is simply the matrix
that when pre-multiplied with another matrix produces the
identity matrix:

A−1A = I

● Matrix inverse calculation is complicated and unnecessary
since computers are much more efficient at finding inverses
of matrices.

● One point of emphasis: just like in regular division, division
by zero is undefined.

● By analogy - not all matrices can be inverted.
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Singular Matrices

● A matrix that cannot be inverted is called a singular matrix.

● In statistics, common causes of singular matrices are found
by linear dependence among the rows or columns of a
square matrix.

● Linear dependence can be cause by combinations of
variables, or by variables with extreme correlations (either
near 1.00 or -1.00).
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Advanced Matrix Functions/Operations

● We end our matrix discussion with some advanced topics.

● Some of these topics go beyond the scope of the book, but
may be encountered in your course as “self-sufficient
statisticians.”

● All of these topics are related to applied regression analyses.
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Matrix Determinants

● A square matrix can be characterized by a scalar value
called a determinant.

det A = |A|

● Much like the matrix inverse, calculation of the determinant is
very complicated and tedious, and is best left to computers.

● What can be learned from determinants is if a matrix is
singular.

● Matrices with determinants that are greater than zero are
said to be “positive definite,” a byproduct of which is that a
positive matrix is non-singular.
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Matrix Orthogonality

● A square matrix (A) is said to be orthogonal if:

AA′ = A′A = I

● Orthogonal matrices are characterized by two properties:

1. The product of all row vector multiples is the zero matrix
(perpendicular vectors).

2. For each row vector, the sum of all elements is one.
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Eigenvalues and Eigenvectors

● A square matrix can be decomposed into a set of
eigenvalues and eigenvectors.

Ax = λx

● From a statistical standpoint:
✦ Principal components are comprised of linear combination

of a set of variables weighed by the eigenvectors.

✦ The eigenvalues represent the proportion of variance
accounted for by specific principal components.

✦ Each principal component is orthogonal to the next,
producing a set of uncorrelated variables that may be
used for regression purposes.
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Spectral Decompositions

● Imagine that a matrix A is of size k × k.

● A then has:

✦ k eigenvalues: λi, i = 1, . . . , k.

✦ k eigenvectors: ei, i = 1, . . . , k (each of size k × 1.

● A can be expressed by:

A =
k

∑

i=1

λieie′

i

● This expression is called the Spectral Decomposition, where
A is decomposed into k parts.

● One can find A−1 by taking 1
λ

in the spectral decomposition.
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Final Thought

● Matrices allow for complex
mathematical formulas to
be displayed concisely.

● You may encounter matrix
functions as you learn
about statistical
techniques.

● This lecture may have very little influence on your day-to-day
life, but it sets the stage for the next: the General Linear
Model.



Overview

Matrix Algebra

Algebra

More Matrices

Wrapping Up
● Final Thought
● Next Class

®

ERSH 8320 Slide 32 of 32

Next Time

● Matrices help us get things we are familiar with.

● The General Linear Model.
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