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Introduction

 Now that we have discussed the basic concepts of the 
models, their estimation, and final fit evaluation we want 
to consider how this information can be used to 
construct an optimal test.

 Specifically, if one were to know the item parameters, 
how might one construct or refine a test as to use only 
the “good” items

 Therefore, we will now discuss methods to quantify a 
good item, which will help with test construction

 Good in this case will be an item with high “discrimination”



Introduction

 In doing this we will first take an approach that is 

descriptive

 Related to item discrimination from Classical Test Theory 

(CTT)

 Then, I will briefly discuss a method based on the 

Kullback-Leibler Information

 Closely related to the goals of Item Response Theory (IRT)



CTT Discrimination

 One method of measuring an item discrimination using 

Classical Test Theory is to compute the point biserial

correlation

 High positive values are good

 However, as an alternative we may consider a basic 

comparison of probabilities

 Those who have performed well on the test (Maybe top 25%)

 Those who have performed poorly on the test (Maybe Lower 

25%)



CTT Discrimination

 If the probability of answering the item right is very 

different for the two groups (di = pu – pl) then the item 

discriminates well

where:

 Let pu denote the proportion of correct responses to an item 

for respondents from the upper tail of the total score 

distribution

 Let pl denote the proportion of correct responses to an item 

for respondents from the lower tail of the total score 

distribution



General DCM Item Discrimination

 This idea of comparing two probabilities can be used in 

DCMs.

 A person who has mastered all required attributes is 

expected to perform well

 A person who has not mastered any of the required 

attributes is expect to perform poorly



General DCM Item Discrimination

 A general definition of item discrimination is:
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Probability of a 
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Example

 Imagine that we have fit the LCDM for the item 4+1-2=?

 In this case we will get a parameter for the 

 Intercept

 Main Effect of Addition

 Main Effect of Subtraction

 Interaction between Addition and Subtraction
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Example

 Including a possible set of values

 And so:
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Attribute Discrimination

 Although the general measure of discrimination can be 

useful, it assumes that all attributes are being equally 

measured

 As an alternative we may be interested in quantifying the 

discrimination of an item for a particular attribute

 Here we can use the same concept, but now we are 

comparing the probability of a correct response given the 

attribute is mastered to the probability of a correct 

response assuming the attribute is not mastered



Attribute Discrimination

 In this case, the change in probability may actually depend 

on mastery of additional attributes

 Using the previous example focusing on Addition:

Frame for

Comparison
(Add, Sub) (Add, Sub)

1 (1, 1) (0, 1)

2 (1, 1) (0, 0)

3 (1, 0) (0, 0)

4 (1, 0) (0, 1)

h l



Attribute Discrimination

 One method is to simply pick the comparison that will 

maximize the discrimination index

 We must also assume that all other relevant attributes 

are fixed to be the same in the comparison

Frame for

Comparison
(Add, Sub) (Add, Sub)

1 (1, 1) (0, 1)

2 (1, 1) (0, 0)

3 (1, 0) (0, 0)

4 (1, 0) (0, 1)



Attribute Discrimination
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Attribute Discrimination

 So to complete the example for addition the two 

comparisons we have are :

Frame for

Comparison
(Add, Sub) (Add, Sub)

1 (1, 1) (0, 1) dj=.82-.38=.44

2 (1, 1) (0, 0)

3 (1, 0) (0, 0) dj=.50-.27=.23

4 (1, 0) (0, 1)



Attribute Discrimination

 One challenge of attribute discrimination is that multiple 
comparisons must be made

 However, if we are using specific models, this definition 
allows us to develop a set of general guidelines

 Specifically, for the LCDM you can simply use the 
magnitude of the weights associated with each attribute 
as a quick guideline

 In addition, for models such as the DINA, DINO, RRUM, 
and the Compensatory RUM we can use the following…



Attribute Discrimination

 Rupp, Temple, and Henson (Forthcoming)



IRT Approach

 Now we want to move to briefly introduce a concept 

that is similar to what you may expect in the context of 

IRT.

 That is, a typical method of item selection and 

determining an items value is based on Fisher’s 

Information

 Largely because of its relationship with Standard Error of 

Estimate

 Requires a continuous variable



DCMs

 So, our definition of a “good” test must be slightly 
changed.

 We will need to define what is meant by a good test 
because measurement error does not mean quite the 
same thing with latent classes.

 A “good” test is one that correctly classifies 
examinees.

 Correctly estimates examinees’ profiles.



Objective

 It is our goal to define an index or set of indices that:

 Relate to correct classification rates.

 Have similar properties as in IRT.

 Uses all of the relevant information.

 Have a meaningful interpretation.

 Defined for the item and the test.

 Are additive (the test index should equal the sum of item 

index).



Discrimination Indices

 We will define a set of indices that have these 

characteristics.

 Kullback-Leibler Information.

 Test discrimination index for DCMs (Cj).



Kullback-Leibler Information

 The Kullback-Leibler information, δ[f, g], is most 

commonly described as a distance measure.

 Specifically, the “distance” between the two probability 

distributions f(X) and g(X).
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Kullback-Leibler Characteristics

 Not quite a distance.

 It is not symmetric.

 Does not satisfy the triangle inequality.

 But, the higher the value the easier it is to discriminate 

between the two distributions.

 If the distributions are the same then δ(f, g)=0.



K-L for DCMs

 For DCMs we can start by thinking about any two 

skill patterns αu and αv .

 We define:

 So:
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K-L for DCMs

 The K-L defined in this way will measure the degree to 
which the distributions differ.

 This also is an indication of how well we can discriminate 
between skill pattern u and skill pattern v.

 Also, based on its definition, the test K-L comparing u to 
v is simply the sum of all item K-L for these two skill 
patterns.



Item Discrimination 

 However, there are 2k(2k-1) possible pairs of comparison

 So one possible method is to summarize these in a 

weighted average based on how distinct the attribute 

patterns are
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Item Discrimination

 In addition, any method of summarizing these 

comparisons would work well as a possible index of 

discrimination

 Although I will not go in to detail here, there are attribute 

discrimination indices. 



Summary

 In defining these new indices, we are able to determine 

the value of each item relative to all items being 

considered.

 In using this, we can refine, and construct “good” tests 

from a prespecified set of items.


