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Introduction
• So now that you have a feel for how to 

develop your own model based on Q-matrix 
construction.

– We will assume that the Q-matrix is known.

• We will now get to test construction and scale 
refinement.

• Specifically, we will answer the question:

– How do we know which items are good and which 
items are bad.



  

Outline
• In order to think about test refinement or test 

construction (of fixed length) we are going to:

– Briefly discuss test construction when the latent 
variable is continuous.

– Discuss what a “good” item is in cognitive diagnosis.

– Define a set of indices that can be used to measure a 
good item.

– Discuss their use in application.



  

Traditional Test Construction
• We have methods of defining a good 

item and a good test in traditional 
settings where we assume that the 
latent variable is a continuous latent 
trait.

• A good test is one that measures the 
latent variable well.

– Minimizes the standard error of estimate.

– Increases reliability.



  

Traditional Test Construction

• For example:

– Classical Test Theory may define a good item 
as one that correlates highly with test score.

– Item Response Theory defines a good item as 
one that maximizes the Fisher’s information 
for the ability score of interest.



  

Traditional Test Construction

• Based on this definition (and especially in 
IRT), methods of test construction have 
been developed.

• In IRT, one of the characteristics that is 
focused on is that Fisher’s information is 
additive across items.



  

Cognitive Diagnosis
• One problem with trying to generalize the 

concepts of test construction using traditional 
methods to cognitive diagnosis models is that 
cognitive diagnosis models have classes.

• Values such as Fisher’s information are not 
defined in cognitive diagnosis.

• In addition, the association of an item with test 
score does not mean quite the same thing. 



  

Cognitive Diagnosis
• So, our definition of a “good” test must be 

slightly changed.

• We will need to define what is meant by a good 
test because measurement error does not mean 
quite the same thing with latent classes.

• A “good” test is one that correctly classifies 
examinees.

– Correctly estimates examinees’ profiles.



  

Objective
• It is our goal to define an index or set of indices 

that:
– Relate to correct classification rates.

– Have similar properties as in IRT.
• Uses all of the relevant information.
• Have a meaningful interpretation.
• Defined for the item and the test.

– Are additive (the test index should equal the sum of 
item index).



  

Discrimination Indices

• We will define a set of indices that have 
these characteristics.

– Kullback-Leibler Information.

– Test discrimination index for CDMs (Cj).

– Attribute discrimination indices for CDMs.
• Indices d(A)jk and d(B)jk.



  

Kullback-Leibler Information
• The Kullback-Leibler information, δ[f, g], is most 

commonly described as a distance measure.

– Specifically, the “distance” between the two 
probability distributions f(X) and g(X).
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Kullback-Leibler Characteristics

• Not quite a distance.
– It is not symmetric.
– Does not satisfy the triangle inequality.

• But, the higher the value the easier it is to 
discriminate between the two distributions.

• If the distributions are the same then δ(f, 
g)=0.



  

K-L for CDMs
• For CDMs we can start by thinking about any 

two skill patterns αu and αv .

• We define:

• So:
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K-L for CDMs
• The K-L defined in this way will measure 

the degree to which the distributions differ.

– This also is an indication of how well we can 
discriminate between skill pattern u and skill 
pattern v.

• Also, based on its definition, the test K-L 
comparing u to v is simply the sum of all 
item K-L for these two skill patterns.



  

K-L for CDMs

• However, there are 2k(2k-1) possible pairs 
of comparison.

• For simplicity we will keep all comparison 
for the jth item in a matrix Dj
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Test Discrimination (Cj)

• Dj contains all possible comparisons of skill 
patterns for item j.

• One possible measure of discrimination is the 
whole matrix.

• For simplicity, we should summarize the matrix. 

• The summary will describe the discrimination 
power between skill patterns.



  

Test Discrimination (Cj)

• So we will define Cj as

• where 

• Note that test index C• equals the sum of 
the Cj
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Attribute Discrimination

• One limitation is that Cj describes all 
possible comparisons.

• To reduce the loss of information, indices 
are desired at the attribute level.

• Separate indices for classification of 
masters and classification of nonmasters

• Two will be discussed.



  

Attribute Discrimination A
• The average discriminating power of the jth item 

for attribute k holding all other attributes 
constant.

• where
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Attribute Discrimination B
• The weighted average of the discriminating 

power of the jth item for attribute k holding 
all other attributes constant.

• Where
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Attribute level indices

• In general, there is an attribute level index 
for the masters and the nonmasters.

• However, for simplification I will discuss 
the case where we are interested in both 
equally.

• In that case, we can simply average the 
index for masters and for nonmasters.



  

Attribute level indices
• Specifically, for the remainder of the talk 

we will define the discrimination of the jth 
item for the kth attribute using Attribute 
index A as:

• We could do the same computation for 
   Index B.
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A Small Example
• For this small example we will assume that we 

have a single item for a test that measures two 
attributes and is parameterized using the RUM.

– Q=(1, 0)
– π*=.8
– r11*=.125

• To compute any of the indices we will need the 
matrix Dj.



  

A Small Example
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A Small Example

• First we will compute the probability of a 
correct response for all possible attribute 
patterns.
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If (0,1) was αu

If (1,0) was αv



  

A Small Example

• So in this case, the final Dj would be:

0 0 1.36 1.36
0 0 1.36 1.36

1.14 1.14 0 0
1.14 1.14 0 0

j

 
 
 =
 
 
 

D

•By simply computing a weighted sum of 
all of these elements we would get Cj

Zeros such as 
this are the K-
L for attribute 
patterns that 
differ only by 
the second 
attribute, 

which was not 
required by 

this item



  

A Small Example (Attribute 1)

0 0 1.36 1.36
0 0 1.36 1.36

1.14 1.14 0 0
1.14 1.14 0 0

j

 
 
 =
 
 
 

D

(1,1)
(1,0)
(0,1)
(0,0)

Attribute 
pattern

To compute the attribute 
discrimination for attribute 1 (when 

mastery is the concern) we use 
these.

To compute the attribute 
discrimination for attribute 1 (when 
nonmastery is the concern) we use 

these.



  

A Small Example (Attribute 1)

0 0 1.36 1.36
0 0 1.36 1.36

1.14 1.14 0 0
1.14 1.14 0 0

j
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 =
 
 
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D

(1,1)
(1,0)
(0,1)
(0,0)

Attribute 
pattern

To compute the attribute 
discrimination for attribute 2 (when 

mastery is the concern) we use these

To compute the attribute 
discrimination for attribute 2 (when 
nonmastery is the concern) we use 

these



  

A Small Example

• So in this case Cj=.75

• Attribute Index A

01.36NonMast
01.14Masters

Skill 2Skill 1



  

A Small Example
• As was discussed previously, if we did not want 

to concern ourselves with Masters and 
Nonmasters we can simply average the two to 
get:

01.25Attribute 
Discrimination

Skill 2Skill 1



  

Index B
• Finally, to compute index B we need to 

assume that we know something about the 
probability distribution of attribute patterns.

• Then, instead of simply averaging the values 
from Dj,, we use a weighted average. 

( | 1)uk u ukw p α α= =



  

Summary of Indices

• So to summarize, for each item we 
could compute:

– The item discrimination Cj.

– The attribute level discrimination for 
determining mastery.

– The attribute level discrimination for 
determining nonmastery.



  

Summary of Indices

• These indices are general indices that can 
be used for any model.

• All one must do is compute the matrix Dj 
which is only a function of the probability 
of a correct response given each attribute 
pattern.



  

Summaries of Simulation 
Studies

• Simulation studies show that by selecting items with 
large Cj, correct classification rates are also high.

• By selecting items so that attribute level indices are high 
for the test across all attributes, tests are generated with 
high correct classification rates.

• Therefore, the results suggest that for a fixed test length, 
the defined discrimination indices are related to correct 
classification rates and should be used for test 
construction and refinement.



  

Test Refinement (Using Cj)

• In a typical testing situation more items 
have been generated than are necessary.

– For example, 40 are written with the intent of 
keeping 30 for the test.

• In refining a test, it is assumed that the 
item parameters have been obtained.



  

Test Refinement (Using Cj)

• Compute Cj for every item. 

• Eliminate the items with the lowest values until 
desired test size has been reached.

• One concern is that eliminating items in this way 
may eliminate items that all measure the same 
attribute.

• So may simply make note of which items are 
being eliminated.
– May incorporate constraints.



  

Test Refinement (Using dj)
• Compute the attribute level index for each 

attribute for each item.

• Eliminate the set of items that are minimally 
discriminate for the attributes they measure.  

• Also, consider the test attribute level 
discrimination when that item is eliminated.

• Eliminate those items that keep all test level 
attribute discrimination indices high.



  

Example
• Assume that I have a test of 6 items measuring 2 

attributes.

• First, I will calibrate the items using the RUM, 
although I could use whatever model is appropriate.

• Given the item parameters, I can compute the 
probability of a correct response for each item for all 
attribute patterns.

• And then compute Dj for j=1 to 6, which is used to 
compute the item discrimination Cj and the attribute 
discrimination.



  

Example
• So lets assume that 

my indices for the 6 
items are as follows.

• Here I will only give 
Index A, because I am 
assuming no prior 
knowledge of the 
population.

6
5
4
3
2
1

Ite
m

.7.83

.8.6.87
.4.95

.4.76
.5.84

.6.6.81

r2
*r1

*π*



  

Example

6
5
4
3
2
1

.16.09

.06.24.17
.98.58

.45.27
.42.25

.16.16.19

d(A)j1d(A)j1Cj

To eliminate one 
item based on Cj we 

would pick item 6

However, to 
eliminate an item 

based on 
attribute index 
we would want 

to consider 
eliminating item 

number 2

1.80          0.83Note that we do real well 
with attribute 1 and not with 

attribute 2.



  

Other Methods
• I have presented a set of methods of test 

construction and model refinement, but they are 
not the only methods.

• However, any test construction of refinement of 
a fixed length test should be based on the K-L 
information and or Dj

• Because the discrimination indices (both item 
and attribute) are additive, any method used to 
construct tests base on IRT and Fisher’s 
information can be used. 



  

Quick Measures

• While item discrimination has meaning 
and seems to be one of the best measures 
of attribute discrimination there are simpler 
indices that can help in test refinement of 
construction.

• I will quickly talk about two



  

Quick Measures of Item Value
• The most basic idea behind this alternative set 

of indices is that the most informative items are 
those that perfectly determine the response.

–  Given attribute pattern the response is known.

• Therefore, by defining indices that indicate the 
extent that an item is determinant, we also 
indicate the value of an item.

• Note these are also related to some degree to 
the K-L information. 



  

Quick Measures of Item Value

• The two example are:

• Dina Index:

• RUM Attribute Index:

(1 )DINA
j j jc s g= − −

* * * * *(1 )RUM
jk j j jk j jkd r rπ π π= − = −



  

Summary
• So, we have defined a “good” test as a test that 

correctly classifies individuals (i.e., correctly 
assigns attribute profiles).

• We also defined discrimination based on K-L as 
an intuitive measure of the value of an item.

– It is a summary of how easily response distributions 
given attribute patterns can be differentiated.

– It is also additive across the items, allowing any 
method of test construction used in IRT to apply.



  

Summary

• In defining these new indices, we are able 
to determine the value of each item 
relative to all items being considered.

• In using this, we can refine, and construct 
“good” tests from a prespecified set of 
items.


