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Introduction

* So now that you have a feel for how to
develop your own model based on Q-matrix
construction.

— We will assume that the Q-matrix is known.

* We will now get to test construction and scale
refinement.

* Specifically, we will answer the question:



Outline

* |n order to think about test refinement or test
construction (of fixed length) we are going to:

— Briefly discuss test construction when the latent
variable is continuous.

— Discuss what a “good” item is in cognitive diagnosis.

— Define a set of indices that can be used to measure a
good item.

— Discuss their use in application.



Traditional Test Construction

* We have methods of defining a good
item and a good test in traditional
settings where we assume that the
latent variable is a continuous latent
trait.

* A good test is one that measures the
latent variable well.

— Minimizes the standard error of estimate.



Traditional Test Construction

* For example:

— Classical Test Theory may define a good item
as one that correlates highly with test score.

— Item Response Theory defines a good item as
one that maximizes the Fisher’s information
for the ability score of interest.



Traditional Test Construction

* Based on this definition (and especially Iin
IRT), methods of test construction have
been developed.

* In IRT, one of the characteristics that is
focused on is that Fisher’'s information is
additive across items.



Cognitive Diagnosis

* One problem with trying to generalize the
concepts of test construction using traditional
methods to cognitive diagnosis models is that
cognitive diagnosis models have classes.

* Values such as Fisher’s information are not
defined in cognitive diagnosis.

* |n addition, the association of an item with test
score does not mean quite the same thing.



Cognitive Diagnosis

* S0, our definition of a “"good” test must be
slightly changed.

* We will need to define what is meant by a good
test because measurement error does not mean
quite the same thing with latent classes.

* A "good” test is one that correctly classifies
examinees.

— Correctly estimates examinees’ profiles.



Objective

* Itis our goal to define an index or set of indices
that:

— Relate to correct classification rates.

— Have similar properties as in IRT.
* Uses all of the relevant information.
* Have a meaningful interpretation.
* Defined for the item and the test.

— Are additive (the test index should equal the sum of
item index).



Discrimination Indices

 \We will define a set of indices that have
these characteristics.

— Kullback-Leibler Information.

— Test discrimination index for CDMs (C)).

— Attribute discrimination indices for CDMs.
- Indices d,,, and d .



Kullback-Leibler Information

* The Kullback-Leibler information, 9[f, ], is most
commonly described as a distance measure.

— Specifically, the “distance” between the two
probability distributions f(X) and g(X).

J(X)
g(X)

5(f,g)= E, plog




Kullback-Leibler Characteristics

* Not quite a distance.
— It Is not symmetric.
— Does not satisfy the triangle inequality.

* But, the higher the value the easier it is to
discriminate between the two distributions.

* If the distributions are the same then o(f,
2)=0.



K-L for CDMs

* For CDMs we can start by thinking about any
two skill patterns ¢, and «, .

+ We define.f (¥) = P(X, |a )
gx)= P(X,;|a,)
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K-L for CDMs

* The K-L defined in this way will measure
the degree to which the distributions differ.

— This also is an indication of how well we can
discriminate between skill pattern » and skill
pattern v.

* Also, based on its definition, the test K-L
comparing u to v is simply the sum of all
item K-L for these two skill patterns.



K-L for CDMs

* However, there are 2¢(2x-1) possible pairs
of comparison.

* For simplicity we will keep all comparison
for the j”item in a matrix D,
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Test Discrimination (C)

D. contains all possible comparisons of skill
patterns for item j.

One possible measure of discrimination is the
whole matrix.

For simplicity, we should summarize the matrix.

The summary will describe the discrimination
power between skill patterns.



Test Discrimination (C)

« So we will define C as

1
C. = h@ .0 )'D,
! Z h(au,av)*;v @0t) Dy

utv

* where % A count of the number of
2 _ _ skills that differ between
(CY u ,a v) - Z (0’ uk a jk) the two skill patterns.
=1

* Note that test index C, equals the sum of
the C,



Attribute Discrimination

One limitation is that C; describes alll
possible comparisons.

To reduce the loss of information, indices
are desired at the attribute level.

Separate indices for classification of
masters and classification of nonmasters

Two will be discussed.



Attribute Discrimination A

* The average discriminating power of the j” item
for attribute & holding all other attributes
constant.

1
Ay = K-

y D,
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Attribute Discrimination B

* The weighted average of the discriminating
power of the j* item for attribute £ holding
all other attributes constant.

d(A)jkl - z Wuijuv

{a 0,300

* Where
Wuk: p(au|auk: 1)



Attribute level Indices

* In general, there is an attribute level index
for the masters and the nonmasters.

* However, for simplification | will discuss
the case where we are interested in both
equally.

* In that case, we can simply average the
index for masters and for nonmasters.



Attribute level Indices

* Specifically, for the remainder of the talk
we will define the discrimination of the ;*
item for the & attribute using Attribute
index A as:

| |
d(A)jk B Edu)ﬁcl f Edu)jko

* We could do the same computation for
Index B.



A Small Example

* For this small example we will assume that we
have a single item for a test that measures two
attributes and is parameterized using the RUM.

- Q=(1, 0)
— 1*=.8

—r,, =125

* To compute any of the indices we will need the
matrix D..



A Small Example

Definition of any - E Hlo P, la“)DH
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A Small Example

* First we will compute the probability of a
correct response for all possible attribute
patterns.

ATriput
e

| Pattern

P(X]a)

(0,0)

(0,1)

(1,0)

(1,1)

.1
.1
.8
.8

If (0,1) was a,

If (1,0) was a,

log
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A Small Example

e« So Iin this case, the final Dj would be:

Zeros such as
this are the K-
L for attribute
patterns that
differ only by D
the second
attribute,
which was not
required by
this item

0 0 1.36 1.36
0 136 1.36

1.14 1.14 O 0

1.14 1.14 O 0

A

V

*By simply computing a weighted sum of
all of these elements we would get C,



A Small Example (Attribute 1)

Attribute

pattern

(0,0) 0 0 1.36 |1.36L
0,1) D - 0 0 1.36 |1.36

1.14 .14 0 0

C 10 1 0dCH

(
(1,0)
(1.1)

1.14 .14 0

k

~ Tocompute the attribute To compute the attribute
dlscrlmlna’gon for atiribute 1 (when discrimination for attribute 1 (when
mastery is the concern) we use nonmastery is the concern) we use
EsE, these.




A Small Example (Attribute 1)

Attribute
pattern

(0.0
01 | p
(1,0

(1,1)

N

To compute the attribute

discrimination for attribute 2 (when
mastery is the concern) we use these

0 [0 J1.36 1360
0 10 136 136¢
14 114 o0 [0 1
14 114 [0 |0

To compute the attribute
discrimination for attribute 2 (when
nonmastery is the concern) we use

these




A Small Example

« So in this case C=.75

* Attribute Index A

SKkill 1 Skill 2

Masters 1.14 0

NonMast 1.36 0




A Small Example

* As was discussed previously, if we did not want
to concern ourselves with Masters and
Nonmasters we can simply average the two to
get:

SKill 1 SKkill 2

Attribute

Discrimination 1.25 0




Index B

* Finally, to compute index B we need to
assume that we know something about the
probability distribution of attribute patterns.

* Then, instead of simply averaging the values
from D,, we use a weighted average.

Wuk: p(au auk: 1)




Summary of Indices

* So to summarize, for each item we
could compute:

— The item discrimination Cj.

— The attribute level discrimination for
determining mastery.

— The attribute level discrimination for
determining nonmastery.



Summary of Indices

* These indices are general indices that can
be used for any model.

» All one must do is compute the matrix D,

which is only a function of the probability
of a correct response given each attribute
pattern.



Summaries of Simulation
Studies

* Simulation studies show that by selecting items with
large C, correct classification rates are also high.

* By selecting items so that attribute level indices are high
for the test across all attributes, tests are generated with
high correct classification rates.

* Therefore, the results suggest that for a fixed test length,
the defined discrimination indices are related to correct
classification rates and should be used for test
construction and refinement.



Test Refinement (Using C)

* In a typical testing situation more items
have been generated than are necessary.

— For example, 40 are written with the intent of
keeping 30 for the test.

* In refining a test, it is assumed that the
item parameters have been obtained.



Test Refinement (Using C)

Compute C, for every item.

Eliminate the items with the lowest values until
desired test size has been reached.

One concern is that eliminating items in this way
may eliminate items that all measure the same
attribute.

So may simply make note of which items are
being eliminated.

— May incorporate constraints.



Test Refinement (Using d))

Compute the attribute level index for each
attribute for each item.

Eliminate the set of items that are minimally
discriminate for the attributes they measure.

Also, consider the test attribute level
discrimination when that item is eliminated.

Eliminate those items that keep all test level
attribute discrimination indices high.



Example

Assume that | have a test of 6 items measuring 2
attributes.

First, | will calibrate the items using the RUM,
although | could use whatever model is appropriate.

Given the item parameters, | can compute the
probability of a correct response for each item for all
attribute patterns.

And then compute D, for j=1 to 6, which is used to
compute the item discrimination C, and the attribute
discrimination.



Example

* So lets assume that

my indices for the 6
items are as follows.

* Here | will only give

Index A, because | am

assuming no prior
knowledge of the

population.

ST T
1181 6| 6
> | 84| 5
3 |.76 4
4 | 95| 4
5 | .87 .6
6 |.83 7




Example

eliminate an item
1 | 19 | .16 | .16 based on
attribute index
? 25 42 we would want
to consider
To eliminate one 3 27 45 eliminating item
item based on CJ. we number 2
would pick item 6 4 .58 .98
5 A7 24 .06
6 .09 16
Note that we do real well 1.80 0.83

with attribute 1 and not with
attribute 2.




Other Methods

* | have presented a set of methods of test
construction and model refinement, but they are
not the only methods.

* However, any test construction of refinement of
a fixed length test should be based on the K-L
information and or D,

* Because the discrimination indices (both item
and attribute) are additive, any method used to
construct tests base on IRT and Fisher’s
information can be used.



Quick Measures

* While item discrimination has meaning
and seems to be one of the best measures
of attribute discrimination there are simpler

indices that can help in test refinement of
construction.

* | will quickly talk about two



Quick Measures of Item Value

* The most basic idea behind this alternative set
of indices is that the most informative items are
those that perfectly determine the response.

— Given attribute pattern the response is known.

* Therefore, by defining indices that indicate the
extent that an item is determinant, we also
indicate the value of an item.

* Note these are also related to some degree to
the K-L information.



Quick Measures of Item Value

* The two example are:

* Dina Index: o _
=(I-5,)- g,

* RUM Attribute Index:

RUM _ * *
d." =T, -ﬂ]r]k—ﬂj(l-rjk)



Summary

* S0, we have defined a “good” test as a test that
correctly classifies individuals (i.e., correctly
assigns attribute profiles).

* We also defined discrimination based on K-L as
an intuitive measure of the value of an item.

— It is a summary of how easily response distributions
given attribute patterns can be differentiated.

— It is also additive across the items, allowing any
method of test construction used in IRT to apply.



Summary

* In defining these new indices, we are able
to determine the value of each item

relative to all items being considered.

* In using this, we can refine, and construct

"good” tests from a prespecified set of
items.



