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Today's Class

Introduction to Discriminant Analysis
— From Sage book with same title by Klecka (1980).
— From Johnson & Wichern, Chapter 11.

Assumptions of DA.

How DA works.

— How to arrive at discriminant functions.
— How many discriminant functions to use.
— How to interpret the results.

How to classify objects using DA.



General Introduction



General Introduction

* DA is a statistical technique that allows the
user to investigate the differences
between multiple sets of objects across
several variables simultaneously.

DA works off of matrices used in

Multivariate Analysis of Variance
(MANOVA).



When to Use Discriminant Analysis

« Data should be from distinct groups.

— Group membership must already be known
prior to initial analysis.

* DA is used to interpret group differences.

* DA is used to classify new objects.



Assumptions

« Data must not have linear dependencies.
— Must be able to invert matrices.

* Population covariance must be equal for
each group.

« Each group must be drawn from a
population where the variables are
multivariate normal (MVN).



Notation

g = number of groups
p = number of discriminating variables
n. = number of cases in group |

n = number of cases over all the groups



More Assumptions

two or more groups g >= 2
at least two cases per group n, >= 2

any number of discriminating variables,
provided that they are less than the total
number of cases minus two: 0 <p < (n —2)

discriminating variables are measured at the
interval level

no discriminating variable may be a linear
combination of the other discriminating
variables



More Assumptions

5. no discriminating variable may be a
linear combination of the other
discriminating variables

6. the covariance matrices for each group
must be (approximately) equal, unless
special formulas are used

/. each group has been drawn from a
population with a MVN distribution on the
discriminating variables.



Example from Klecka

* To demonstrate DA, Klecka (1980) uses
an example of data taken from senatorial
factions (citing Bardes, 1975 and 1976).

 Bardes wanted to know how US Senate
voting factions changed over time

— How stable they were from year to year

— How much they were influenced by other
ISsues.



Groups of Senators

 Known Groups of Senators:

B~ wh =

Generally favoring foreign aid (9)
Generally opposing foreign aid (2)
Opposed to foreign involvements (5)
Anti-Communists (3)



Variables

* Six variables (from roll call votes):
1.CUTAID — cut aid funds

2.RESTRICT — add restrictions to the aid
program

3.CUTASIAN - cut funds for Asian nations

4 MIXED — Mixed issues: liberal aid v. no aid to
communists

5. ANTIYUGO — Anti-aid to Yugoslavia
6. ANTINUET — Anti-aid to neutral countries



Univariate Statistics

TABLE 1
Means for “Known’’ Senators

Group
Variable 1 2 3 4 Total
CUTAID 1422 3.000 2.200 2.100 1.900
RESTRICT 1.944 1.000 2.000 2.333 1.921
CUTASIAN 1.000 3.000 2.000 1.333 1.526
MIXED 2.667 2.000 1.800 1.667 2.211
ANTIYUGO 1.556 2.500 2.600 3.000 2.158

ANTINEUT 1.259 1.667 2.133 2.444 1.719




How Discriminant Analysis Works



Canonical Discriminant Analysis

The canonical discriminant function looks like
this:
f.i:m. = Ug + U1 X1pm + U2 Xofm + ...+ "H-I}Xp;“;.;_

Here:

— f., = the value (score) on the canonical discriminant
function for case m in the group k

— Xy, = the value on discriminating variable X, for case
m in group K
— u; = coefficients which produce the desired

characteristics of the function.



Number of Functions

« Because Canonical DA makes use of methods
similar to Canonical Correlations, a set of
discriminant functions are derived.

— The first function is built to maximize group
differences.

— The next functions are built to be orthogonal to the
first, and still maximize group differences.

* The number of functions derived is equal to
max(g-1,p)

— In the example, this would be max(4-1,6)=6.



Deriving the Canonical
Discriminant Functions

« To get at the canonical discriminant functions,
we must first construct a set of sums of squares
and crossproducts (SSCP) matrices.

— A total covariance matrix
— A within group covariance matrix
— A between group covariance matrix

* Once we have the between and within matrices,
we take the eigenvalues and eigenvectors of
each.



Total SSCP Matrix

Each element of the total SSCP matrix:

T L

g
t‘ij — Z Z [i-‘jfi.i:m. — }fi--} [i-:j!:j.i:m. — -J:J'--)

k=1 m=1

g = number of groups

n, = number of cases in group k

n = total number of cases over all groups

Xy = the value of variable i for case m in group k
X, = mean value of variable i for cases in group k
X, = mean value of variable i for all cases



Within SSCP Matrix

Eanh aloman‘l' nf tha within QQCNMD matriv:
T L

wij = T T (Xikm — Xig ) (X jkm — Xjr.)

k=1 m=1

g = number of groups

n, = number of cases in group k

n = total number of cases over all groups

Xy = the value of variable i for case m in group k
X, = mean value of variable i for cases in group k

X, = mean value of variable i for all cases



Between SSCP Matrix

* Once we have W and T, we can compute B by
the following formula:

B=T-W

 When there are no differences between the
group centroids (the mean vectors of each
group), W=T.

* The extent they differ will define the distinctions
among the observed variables.



Obtaining Discriminant Functions

* Once we have B and W, we then find the

solutions (v;) to the followina equations:

Z bty = A Z W05
Z bo;; = A Z Wa; V5

Z b pili = A Z Wity

 There is also a constraint that the sum of
the squared v, equal one (as typical in
PCA).



Step 2: Converting to Functions

* Once the A and v, parameters are found,
one then converts these into the weights
for the discriminant functions:

u; = vi\/n. — g

P
g = — E i X,
=1



Interpreting the Discriminant Functions



Example Results

TABLE 4
Unstandardized Discriminant Coefficients

Unstandardized Coefficient

Variable Function 1 Function 2 Function 3
Constant {ug) 5.4243 3.5685 —4.3773
CUTAID .8078 —.5225 1.6209
RESTRICT .7940 —-1.1177 —.3339
CUTASIAN —4.6004 -1.1228 -1.1431
MIXED —.6957 —1.3160 1.1418
ANTIYUGO —-1.1114 1.1132 .3781
ANTINEUT 1.4387 1.0422 .2000




Example Function Scores for an
Observation

MV e W

Computation of Discriminant Scores for Senator Aiken

FUNCTION 1 FUNCTION 2 FUNCTION 3
Variable Coeff. X Value = Contribution Coeff. X Value = Contribution Coeff. X Value = Contribution
Constant 5.4243 3.5685 —-4,3773
CUTAID .8078 1.0 .8078 —.5228 1.0 —.5225 1.6209 1.0 1.6209
RESTRICT .7940 3.0 2.3820 -1.1177 3.0 —3.3531 —.3339 3.0 —1.0017
CUTASIAN —4.6004 1.0 —4 6004 —1.1228 1.0 ~1.1228 —1.1431 1.0 —1.1431
MIXED ~.6957 3.0 —2.0871 —1.3160 3.0 —-3.9480 1.1418 3.0 3.4254
ANTIYUGO -1.1114 1.0 —-1.1114 1.1132 1.0 1.1132 3781 1.0 3781
ANTINEUT 1.4387 1.0 1.4387 1.4387 1.0 1.0422 .2000 1.0 .2000

discriminant score 2.2539 -3.2225 —.8977




Example Interpretation

In the example, we saw that Senator Aiken had
discriminant scores of 2.25, -3.22, and -0.90.

— These scores are in standard deviation units...of the
discriminant space

Positive values shows an object being high on a
dimension.
Negative values shows an object being low on a
dimension.

We will come to learn how to interpret the
dimensions.



Group Centroids

« What we are really after is the group means for
each of the discriminant functions.

« The means in this case are:
1. 1.74,-0.94, 0.02
2. -6.93, -0.60, 0.28
3. -1.48, 0.69, -0.30
4. 1.86, 2.06, 0.25

 These will be used to classify our
observations.



Standardized Coefficients

 To interpret each dimension, we look at the standardized

coefficients. _
Wwis

Ci = UWUjq -

« Standardized coefficients are created by: n.—4g

TABLE 6
Standardized Discriminant Coefficients

Standardized Coefficiant

Variabie Function 1 Function 2 Function 3
CUTAID 6094 —.3942 1.2227
RESTRICT .7068 —.9950 —. 2973
CUTASIAN —2.1859 —.53356 —.5432
MIXED —.4760 —.2004 7812
ANTIYUGO —.8077 8090 .2748

ANTINEUT 1.0168 .7365 1414




How Many Significant Functions?

« To see how many functions are needed to
describe group differences, we need to look at
the eigenvalues, A, for each dimension.

« We will have a test statistic based on the
eigenvalue.

« The statistic provides the result of a hypothesis
test testing that the dimension (and all
subsequent dimensions) are not signficant.



Example Test Statistics

TABLE 10
Residual Discrimination and Test of Significance

Functions Degrees of Significance
Derived, k Wilks’s Lambda ChiSquare Freedom Level

0 0345 43.760 18 .001

1 3680 12.996 10 224

2 9492 .678 4 954




Classifying Objects



Classifying Objects

Several methods exist for classifying objects.

Each is based on the distance of an object from
each group’s centroid.

— The object is then classified into the group with the
smallest distance

Many classification methods use the raw data.

The canonical discriminant functions can be
used as well.



Validation of Classification

« \We will show more about classification in the
next class.

« Basically, once we classify objects, we need to
see how good we are at putting our objects into
groups.

* There are multiple ways to test whether or not
we do a good job.

— Most easy is to just classify all of our objects and see
how good we recover our original groups.



Classification Matrix Example

TADLLC 1<

Classification Matrix

Predicted Group

e

Original Group 1 2 3 4
1 8 0 0 1

2 0 2 0 0

3 0 0 5 0

4 0 0 0 3
Unknown 33 10 27 4




Wrapping Up

» Discriminant Analysis is a long-standing method
for deriving the dimensions along which groups
differ.

* We will see that it is often the first method used
when approaching a classification problem

 We must have a training data set in place to be
able to use this method.
— All of our other methods will not require this.



Next Time

* How to do discriminant analysis in R

* Presentation of Anderson (20095) article.



