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Today’s Class

• Introduction to Discriminant Analysis 
– From Sage book with same title by Klecka (1980).
– From Johnson & Wichern, Chapter 11.

• Assumptions of DA.
• How DA works.

– How to arrive at discriminant functions.
– How many discriminant functions to use.
– How to interpret the results.

• How to classify objects using DA.



General Introduction



General Introduction

• DA is a statistical technique that allows the 
user to investigate the differences 
between multiple sets of objects across 
several variables simultaneously.

• DA works off of matrices used in  
Multivariate Analysis of Variance 
(MANOVA).



When to Use Discriminant Analysis

• Data should be from distinct groups.
– Group membership must already be known 

prior to initial analysis.

• DA is used to interpret group differences.

• DA is used to classify new objects.



Assumptions

• Data must not have linear dependencies.
– Must be able to invert matrices.

• Population covariance must be equal for 
each group.

• Each group must be drawn from a 
population where the variables are 
multivariate normal (MVN).



Notation

• g = number of groups

• p = number of discriminating variables

• ni = number of cases in group i

• n. = number of cases over all the groups



More Assumptions
1. two or more groups g >= 2
2. at least two cases per group ni >= 2
3. any number of discriminating variables, 

provided that they are less than the total 
number of cases minus two: 0 < p < (n. – 2)

4. discriminating variables are measured at the 
interval level

5. no discriminating variable may be a linear 
combination of the other discriminating 
variables



More Assumptions

5. no discriminating variable may be a 
linear combination of the other 
discriminating variables

6. the covariance matrices for each group 
must be (approximately) equal, unless 
special formulas are used

7. each group has been drawn from a 
population with a MVN distribution on the 
discriminating variables.



Example from Klecka

• To demonstrate DA, Klecka (1980) uses 
an example of data taken from senatorial 
factions (citing Bardes, 1975 and 1976).

• Bardes wanted to know how US Senate 
voting factions changed over time
– How stable they were from year to year
– How much they were influenced by other 

issues.



Groups of Senators

• Known Groups of Senators:
1. Generally favoring foreign aid (9)
2. Generally opposing foreign aid (2)
3. Opposed to foreign involvements (5)
4. Anti-Communists (3)



Variables

• Six variables (from roll call votes):
1.CUTAID – cut aid funds
2.RESTRICT – add restrictions to the aid 

program
3.CUTASIAN – cut funds for Asian nations
4.MIXED – Mixed issues: liberal aid v. no aid to 

communists
5.ANTIYUGO – Anti-aid to Yugoslavia
6.ANTINUET – Anti-aid to neutral countries



Univariate Statistics



How Discriminant Analysis Works



Canonical Discriminant Analysis
• The canonical discriminant function looks like 

this:

• Here:
– fkm = the value (score) on the canonical discriminant 

function for case m in the group k
– Xikm = the value on discriminating variable Xi for case 

m in group k
– ui = coefficients which produce the desired 

characteristics of the function.



Number of Functions

• Because Canonical DA makes use of methods 
similar to Canonical Correlations, a set of 
discriminant functions are derived.
– The first function is built to maximize group 

differences.
– The next functions are built to be orthogonal to the 

first, and still maximize group differences.
• The number of functions derived is equal to 

max(g-1,p)
– In the example, this would be max(4-1,6)=6.



Deriving the Canonical 
Discriminant Functions

• To get at the canonical discriminant functions, 
we must first construct a set of sums of squares 
and crossproducts (SSCP) matrices.
– A total covariance matrix
– A within group covariance matrix
– A between group covariance matrix

• Once we have the between and within matrices, 
we take the eigenvalues and eigenvectors of 
each.



Total SSCP Matrix
• Each element of the total SSCP matrix:

• g = number of groups
• nk = number of cases in group k
• n. = total number of cases over all groups
• Xikm = the value of variable i for case m in group k
• Xik. = mean value of variable i for cases in group k
• Xi.. = mean value of variable i for all cases



Within SSCP Matrix
• Each element of the within SSCP matrix:

• g = number of groups
• nk = number of cases in group k
• n. = total number of cases over all groups
• Xikm = the value of variable i for case m in group k
• Xik. = mean value of variable i for cases in group k
• Xi.. = mean value of variable i for all cases



Between SSCP Matrix
• Once we have W and T, we can compute B by 

the following formula:
B = T – W

• When there are no differences between the 
group centroids (the mean vectors of each 
group), W = T.

• The extent they differ will define the distinctions 
among the observed variables.



Obtaining Discriminant Functions

• Once we have B and W, we then find the 
solutions (vi) to the following equations:

• There is also a constraint that the sum of 
the squared vi equal one (as typical in 
PCA).



Step 2: Converting to Functions

• Once the λ and vi parameters are found, 
one then converts these into the weights 
for the discriminant functions:



Interpreting the Discriminant Functions



Example Results



Example Function Scores for an 
Observation



Example Interpretation
• In the example, we saw that Senator Aiken had 

discriminant scores of 2.25, -3.22, and -0.90.
– These scores are in standard deviation units…of the 

discriminant space
• Positive values shows an object being high on a 

dimension.
• Negative values shows an object being low on a 

dimension.
• We will come to learn how to interpret the 

dimensions.



Group Centroids
• What we are really after is the group means for 

each of the discriminant functions.

• The means in this case are:
1. 1.74, -0.94, 0.02
2. -6.93, -0.60, 0.28
3. -1.48, 0.69, -0.30
4. 1.86, 2.06, 0.25

• These will be used to classify our 
observations.



Standardized Coefficients
• To interpret each dimension, we look at the standardized 

coefficients.

• Standardized coefficients are created by:



How Many Significant Functions?

• To see how many functions are needed to 
describe group differences, we need to look at 
the eigenvalues, λ, for each dimension.

• We will have a test statistic based on the 
eigenvalue.

• The statistic provides the result of a hypothesis 
test testing that the dimension (and all 
subsequent dimensions) are not signficant.



Example Test Statistics



Classifying  Objects



Classifying Objects

• Several methods exist for classifying objects.
• Each is based on the distance of an object from 

each group’s centroid.
– The object is then classified into the group with the 

smallest distance
• Many classification methods use the raw data.
• The canonical discriminant functions can be 

used as well.



Validation of Classification
• We will show more about classification in the 

next class.

• Basically, once we classify objects, we need to 
see how good we are at putting our objects into 
groups.

• There are multiple ways to test whether or not 
we do a good job.
– Most easy is to just classify all of our objects and see 

how good we recover our original groups.



Classification Matrix Example



Wrapping Up
• Discriminant Analysis is a long-standing method 

for deriving the dimensions along which groups 
differ.

• We will see that it is often the first method used 
when approaching a classification problem

• We must have a training data set in place to be 
able to use this method.
– All of our other methods will not require this.



Next Time

• How to do discriminant analysis in R

• Presentation of Anderson (2005) article.


