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Today’s Lecture

« Model fit assessment in Finite Mixture Models (as realized
through LPA).

Overview

« Absolute versions of model fit for mixtures of continuous
Latent Profile distributions.

Analysis

LA as & EMIM « Why absolute measures of fit matter.

LPA Example #1

Absolute Fit
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[< ! ' Finite Mixture Models

- Recall from last time that we stated that a finite mixture
model expresses the distribution of X as a function of the
Overview sum of weighted distribution likelihoods:

Latent Profile
Analysis

LPA as a FMM

G
F(X)=> nyf(Xlg)
Models g=1

0 LCA as a FMM

0 MVN « We are now ready to construct the LPA model likelihood.
O LPA with MVN

0 LCA as a FMM

e Here, we say that the conditional distribution of X given g is a
sequence of independent normally distributed variables.
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KU

Overview

Latent Class Analysis as a FMM

Latent Profile
Analysis

LPA as a FMM

O Finite Mixture
Models
J LCA as a FMM

0 MVN
0 LPA with MVN
0 LCA as a FMM

Lecture #15 - 4/13/2006

Using some notation of Bartholomew and Knott, a latent profile
model for the response vector of p variables (: =1, ..., p) with
Kclasses (j =1,..., K):

K

i—1 27T0ij

F0) =

p 2
1 N x._u..
M5 | | T eXP( ( 20_2. i) )
1

n; Is the probability that any individual is a member of class j
(must sum to one).

x; IS the observed response to variable s.

i 1s the mean for variable 7 for an individual from class ;.
- 07, is the variance for variable i for an individual from class j.
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[< ! | MVN

The multivariate normal distribution function is:

Overview 1

X) =
Latent Profile f( ) (27-‘-)]9/2 ‘ > ‘ 1/2 ¢

Analysis

~(X=m) X7 (X—p) /2

LPA as a FMM

0 Finite Mixture « The mean vector is p.
Models

0 LCA as a FMM

 The covariance matrix i1s X..

0 LPA with MVN
0 LCA as a FMM

o Standard notation for multivariate normal distributions Is
Np(l*l’v 2)

 Visualizing the MVN is difficult for more than two dimensions,
so | will demonstrate some plots with two variables - the
bivariate normal distribution.
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[< ! ' Expressing LPA with MVN

« Recall the LPA model has the strict assumption of local
Independence of variables given class.

Overview
] | « S0, for each class j, we estimate a mean vector, u ., and a
atent Profile _ _ _ J
Cighsi diagonal covariance matrix, 3;:
LPA as a FMM - - - 5 -
O Finite Mixture M1 4 011 0 c.. 0
Models 2
0 LCA as a FMM 12 0 o3, ... 0
0 MVN M = _ Ej — .
; :
0 LCA as a FMM 5
B ,an,j _ i O O . o O-’Lj ]

« We can then reexpress our LPA model by the MVN density
(this will follow us throughout the remainder of the mixtures
of MVN distributions).
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[< ! ' Latent Class Analysis as a FMM

Using some notation of Bartholomew and Knott, a latent profile

model for the response vector of p variables (: =1, ..., p) with
Overview Kclasses (j =1,..., K):
Latent Profile
Analysis
LPA as a FMM K ]
O Finite Mixture -1

X) = : exp (—(X — )2 (X —w.)/2

1 LOA 25 FMIM Jx) Z_:lnj [(2w)p/2|2j\1/2 p( ( py) 25 2 )
0 MVN J=
O LPA with MVN

J LCA as a FMM

n; Is the probability that any individual is a member of class j
(must sum to one).

x; IS the observed response to variable .

p; Is the mean vector for class j.

33, Is the diagonal covariance matrix for class j - implying
conditional independence of variables.
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[<! | LPA Example

 To illustrate the process of LPA, consider an example using
Fisher’s Iris data.

Overview

Latent Profile « The Mplus code is found on the next few slides.

Analysis

LPA as a FMM « We will use the Plot command to look at our results.

LPA Example #1

0 Results  Also, this time we will try fitting multiple classes to see if our
PR results change from time to time, and how the fit statistics

look for each type of solution.

« Specifically, we will compare a two-class solution to a
three-class solution (the correct one) and a 4-class solution.
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title:
2-Class Latent Profile Analysis
of Fisher’s Iris Data;
dat a:
file=iris.dat;
vari abl e:
nanes=x1- x4;
cl asses=c(2);
anal ysi s:
t ype=m xt ur e;
nodel :
YEOVERAL L%
YCH1%
x1-x4;
YECH2%
X1-x4;

QUTPUT:
TECH1L TECH5 TECHS;
PLOT:
TYPE=PLOT3;
SERIES IS x1(1) x2(2) x3(3) x4(4);

SAVEDATA:

FILE IS nyfil e2c. dat;
SAVE = CPROBABI LI Tl ES;

8-1



title:
3-Class Latent Profile Analysis
of Fisher’s Iris Data;
dat a:
file=iris.dat;
vari abl e:
nanes=x1- x4;
cl asses=c(3);
anal ysi s:
t ype=m xt ur e;
nodel :
YEOVERAL L%

%ECH1%
x1-x4;
YECH2%
x1- x4,
YECH3%
x1- x4,

QUTPUT:
TECHL TECHS5 TECHS;
PLOT:
TYPE=PLOTS;
SERIES IS x1(1) x2(2) x3(3) x4(4),

SAVEDATA:

FILE IS nyfil e3c. dat;
SAVE = CPROBABI LI Tl ES;

8-2



title:
4-Cl ass Latent Profile Analysis
of Fisher’s Iris Data;
dat a:
file=iris.dat;
vari abl e:
nanes=x1- x4;
cl asses=c(4);
anal ysi s:
t ype=m xt ur e;
nodel :
YEOVERAL L%

%ECH1%
x1-x4;
YECH2%
x1- x4,
YECH3%
x1- x4,
YECH4A%
x1-x4;

QUTPUT:
TECHL TECHS TECHS;
PLOT:
TYPE=PLOTS;
SERIES IS x1(1) x2(2) x3(3) x4(4),

SAVEDATA:

FILE IS nyfil e4dc. dat;
SAVE = CPROBABI LI Tl ES;

8-3



Model Results

 The table below shows the results of our models in for each class solution:

Model Parameters Log L AIC BIC Entropy
2-class 17 -386.185 806.371 857.551  1.000
3-class 26 -307.178 666.355 744.632 0.948
4-class 35 -264.848 599.695 705.067 0.948

« Based on AIC and BIC, we would choose the 4-class solution (and probably
should try a 5-class model).

« Note that by adding multiple starting points, the 3-class and 4-class solutions
started to demonstrate problems with:

0 Convergence in some iterations.

0 Multiple modes - something to think about!

« Any guesses as to why these problems didn’t show up in the two-class
solution?
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[< ! ' More Fit Info Needed?

« The model fit section just discussed is often where many
researchers stop in their evaluation of a LPA or FMM
Overview solution.

Latent Profile

Analysis « But do we really know whether what we did resembles
anything about the nature of our data?

LPA as a FMM

LPA Example #1 In other methods for analysis, for instance Structural

- . Equation Modeling, we are very concerned that our model

parameters resemble the observed characteristics of the
Confidence Regions data

« For instance, the discrepancy between the observed
covariance matrix and estimated covariance matrix is used in
several goodness-of-fit indices.

Well, similar measures can be constructed in FMM.
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[<! ' What Can We Do?

« We can begin look at our distributional assumptions and do
some bivariate plots featuring confidence regions.

Overview

« We can also use the estimated parameters of our solution to

Latent Profile

Analysis “predict” what the moments of the variables should be like:
e 0 The mean for each item (we will not find much variation
LPA Example #1 here regardless of model).

0 The covariance matrix for all pairs of items (this would be

analogous to what we do in SEM).

Confidence Regions

0 Both of these can be done either by statistical properties
of the models (hard sometimes) or by simulation (too easy
sometimes).

« We can also look at the proportion of observations we would
expect to classify correctly for each solution (although this is
somewhat problematic).
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Confidence Regions

KU

Overview

Latent Profile
Analysis

LPA as a FMM

LPA Example #1

Absolute Fit

Confidence Regions

Lecture #15 - 4/13/2006

o Just as with univariate statistics, we can construct
“confidence intervals” for the mean vector for multivariate
inference.

« These “Intervals” are no longer for a single number, but for a
set of numbers contained by the mean vector.

« The term Confidence Region is used to describe the
multivariate confidence intervals.

« In general, a 100 x (1 — «)% confidence region for the mean
vector of a p-dimensional normal distribution is the ellipsoid
determined by all p such that:

(K= ) 27 (K= ay) = B
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Building CRs - Population

« To build confidence regions, recall our last lecture about the
multivariate normal distribution...

Overview

Specifically:
Latent Profile
Analysis

X —pu)E" (X — p) = x2(a)
LPA as a FMM

LPA Example #1

provides the confidence region containing 1 — « of the probability mass of the
Absolute Fit MVN distribution.

Confidence Regions
[ Building CRs

« We then calculated the axes of the ellipsoid by computing the

eigenvalues and eigenvectors of the covariance matrix >::
Specifically:

X =)= (x—p) =c”

has ellipsoids centered at p, and has axes +cv/'\;e;.
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[< ! ' Building CRs - Sample

« A similar function is used to develop the confidence region
for the multivariate mean vector based on the sample mean
Overview (x) and covariance matrix (S).

Latent Profile

Analysis « Note that because we are taking a sample rather than the
population, the distribution of the squared statistical distance

is no longer x?2(«) but rather p(” 1))Fpn p(a)

LPA as a FMM

LPA Example #1

Absolute Fit « This means that the confidence region is centered at (X),
. | 0

Confidence Regions and has axes ++/\ \/p(n e..

O Building CRs (n—p) p n— p( ) {
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LPA CRs

Let's assume, for simplicity (because n; is only estimated),
that the number of observations in each class is infinite.

Overview

We could then draw ellipses for each class and see how they

Latent Profile

Analysis relate to our data.
LPA as a FMM . . . .
 In this case, we have diagonal matrices for our covariance
LPA Example #1 matrices within class.
Absolute Fit

Our ellipses are somewhat difficult to draw in R.

Confidence Regions

1 Building CRs Difficulty shouldn’t stop you from doing so, however.
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Overview

LPA Simulation

Latent Profile
Analysis

LPA as a FMM

LPA Example #1

Absolute Fit

Confidence Regions

[ Building CRs
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Given the difficulty in getting some plots to work, we can turn

to simulation to achieve our fit evaluation objectives.

It is here we will often see discrepancies between the model

estimates and the data.

Simulation is considerably easier than finding multivariate
confidence ellipses, and can often be done much quicker.

To demonstrate, look at the two text files with this week’s
lecture.
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[<! ' Final Thought

o Absolute measures of fit
are available in FMM and

Overview will provide you with

L il understandable and

Analysis interpretable numbers and
LPA as a FMM plots.

« The difficulty in evaluating

LPA Example #1 .
model fit should not make

SbsolulcBlL you run from doing so (|
Confidence Regions SuggeSt thIS o get yOU
ready to write and review

00 Final Thought papers).

« Because of the complexity in the modeling aspects of FMM,
people often forget about absolute measures of fit - which is
a bad thing to do.

« When using absolute measures, you could be simply looking
at two poorly-fitting models.
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Overview

Next Time

Latent Profile
Analysis

LPA as a FMM

LPA Example #1

Absolute Fit

Confidence Regions

(1 Next Class

Lecture #15 - 4/13/2006

« Estimation week begins on Tuesday - consider me one
happy person.

« Our next class:
0 Marginal ML estimation of FMM.

0 Estimation topics in general.
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