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Cognitive Diagnosis Models
The goal of cognitive diagnosis is to identify the set of
cognitive skills (known as attributes) an examinee
possesses.

Each item is created to measure a specific set of
attributes.

Central to models of cognitive diagnosis is the notion of
the matrix indicating each attribute thought to be
measured by each item, called the Q-matrix.

A concern of cognitive diagnosis is the accuracy or
completeness of the Q-matrix.

Popular models include the DINA and NIDA give only
cursory information regarding the completeness of the
Q-matrix.
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Unified Model
A preliminary cognitive diagnosis model that attempts to
measure the completeness of the Q-matrix is the
Unified Model (DiBello, Stout, and Roussos, 1995):
P (Xij = 1|αi, θi) = (1 − p)×
[

dj

K
∏

k=1

π
αik×qjk

jk r
(1−αik)×qjk

jk Pj (θi + ∆cj) + (1 − dj) Pj (θi)

]

The completeness of an item is measured by cj

The parameters of this model were shown to be
unidentified.
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The Reparameterized Unified Model
The RUM is an identified
reparameterization of the Unified
Model:

P (Xij = 1|αi, θi) =

π∗
j

K
∏

k=1

r
∗(1−αik)×qjk

jk

(

e1.701(cj+θi)

1 + e1.701(cj+θi)
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Unlike other cognitive diagnosis models, the RUM
incorporates a continuous examinee variable θ, which,
along with the c item parameter attempts to account for
the lack of completeness of an item’s Q-matrix entries.



Fusion Model
In order to estimate the RUM, an additional model was
created, called the Fusion Model.

The Fusion Model is nearly identical to the RUM with
the exception of the way the attributes are defined:

αik = I(α̃ik > φ−1(1 − pk))

I(·) is the binary indicator function.

φ−1 is the inverse of the standard normal CDF.

α̃ik is a continuous variable with joint distribution:

(α, θ) ∼ N(0,Σ)

To estimate the Fusion Model the program Arpeggio
was created.
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Markov Chain Monte Carlo
Due to the complexity of the Fusion Model, MCMC was
chosen as an estimation method.

The MCMC algorithm is a stochastic process whereby
the posterior distribution of the parameters given the
data is sampled.

Different methods of sampling from the posterior
distribution exist.

Two of the most practical sampling algorithms are the
Gibbs sampler and the Metropolis-Hastings within
Gibbs.

To illustrate the use of both algorithms, consider
sampling from the conditional distributions of two
normally distributed variables, X and Y, both with unit
variance, and with correlation ρ .
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MCMC: Gibbs Sampling
Note the distribution of
Y |X ∼ N(0,

√

1 − ρ2), and
X|Y ∼ N(0,

√

1 − ρ2)

With ρ = 0.5, sampling
from the conditional
distributes produces the
data on the right.

In practice, the conditional
distribution is usually not
easily obtainable, since
normalizing constants
typically require
integration.
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MCMC: Metropolis Hastings
The Metropolis-Hastings within Gibbs algorithm uses
rejection sampling to draw from the conditional
distribution.

Proposed values are drawn from a simple distribution.

The likelihood of the proposed values is evaluated using
a likelihood proportional to that of the conditional
distribution.

The likelihood is then compared with that of the current
value of the parameter, and accepted with probability:

rMH = min

[

P (X|τ∗

j )P (τ∗

j )q(τ t−1

j |τ∗

j )

P (X|τ t−1

j )P (τ t−1

j )q(τ∗

j |τ t−1

j )
, 1
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MCMC: Metropolis Hastings
Initial values: X = −3,
Y = 3.

ρ = 0.5.

Proposal values drawn
from U(−10, 10).

Normal likelihood
evaluated without 1√

2πσ2

constant.
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MCMC Comparison

Figure 1: Gibbs
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Figure 2: MHG
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MCMC in Practice
Parameter set blocking.

Choice of proposal distribution: symmetric, moving
window (Henson, Templin, and Porch, 2003), other.

Chain convergence.
Chain length.
Burnin size.
Convergence diagnostics.

Starting values.

Posterior estimates.

Latent variable estimates.
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Arpeggio MCMC Algorithm
Estimate pk parameter for each attribute k.

For each item j, estimate π∗ and r∗ parameters
simultaneously.

For each item j, estimate c parameter.

Estimate examinee attribute parameters, jointly, for
each examinee i (really estimate α̃i).

Estimate examinee θ parameters for each examinee i.
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Arpeggio Item Parameter Steps
Use Metropolis-Hastings within Gibbs.

Proposal values generated from moving window family
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Likelihood for each parameter set is based on the
responses of all I examinees for the specific item j.
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Arpeggio Examinee Variable Steps
Estimate examinee attribute parameters using MHG.

1. Proposal distribution is α̃i from N(0, ρ∗).
2. Accept or reject proposals for each examinee.
3. Compute order statistics of examinee variables: for

each attribute, k, order α̃ik into α̃ikm where m

indicates the order statistic for examinee i.
4. For each examinee, assign attribute value of 1 if

m > N(1 − pk), where N represents the number of
examinees.

Estimate examinee θ parameters.

Independently rescale all α̃ik and θ for each examinee.
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Analysis of Arpeggio Algorithm
The Arpeggio algorithm is very good, with only minor
issues.

Slow convergence of algorithm.

Unnecessary rescaling of examinee parameters at the
end of each step.

Unnecessary coercion of examinee attributes to match
pk at the end of each step.

Lack of ability to model α̃ik as a function of covariates or
higher order traits.
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General Examinee Estimation
Within an MCMC algorithm, for a single attribute k of an
examinee i, use a Gibbs sampler to draw examinee
variables from:

P (αik = 1|Xi, β) ∼ B(1, pik),

where:

pik = p(αik = 1|Xi, β) =

P (Xi|αij=1,β)P (αik=1)

P (Xi|αik=1,β)P (αik=1)+P (Xi|αik=0,β)P (αik=0)
,

with:
β = (π∗

1, π
∗
2, . . . , π

∗
J , r∗11, r

∗
21, . . . , r

∗
JK , c1, c2, . . . , cJ , θi, αi,l 6=k)

′



Uniform Prior for Attribute Mastery
Within the formula for pik is P (αik = 1), which is the
prior probability of examinee i mastering attribute k.

A simple prior for attribute mastery would be where that
set the probability of mastery equal for all attributes:
p11 = p12 = . . . = p1k = . . . = pik

For dichotomous attributes, this translates into:
pik = 0.5
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Uniform Prior Initial Study
HCS LCS

Parameter RMSE RMSE
π∗ 0.061 0.117
r∗ 0.050 0.233
c 0.442 0.438
θ 0.660 0.575

RMSE - Root Mean Squared Error:

RMSE(τ) =

√

√

√

√

T
∑

t=1

(τ̂t − τ0)2

HCS - High Cognitive Structure parameter set.
LCS - Low Cognitive Structure parameter set.



Uniform Prior Initial Study
HCS LCS

Parameter RMSE CR RMSE CR
α1 0.265 0.913 0.377 0.794
α2 0.289 0.901 0.452 0.700
α3 0.272 0.913 0.375 0.801
α4 0.304 0.900 0.419 0.760
α5 0.289 0.898 0.479 0.637
α6 0.279 0.915 0.467 0.704
α7 0.271 0.902 0.473 0.685
α8 0.277 0.925 0.414 0.766

CR - Classification Rate.



General Prior for Attribute Mastery
Consider a general model for the prior probability of
attribute mastery:

P (αik = 1) = P (α̃ik > κk|βk,Yi, λk, Gi),

where,

α̃ik = βkYi + λkGi + Eik

The distribution of (α̃ik|Yi, Gi) is fixed at
N(βkYi + λkGi, 1 − λ2

k).

Also, let Eik be uncorrelated normal variables with
mean zero and variance V ar(Ek) = σ2

k = 1 − λ2
k.

The function transforming α̃ik to a probability will be the
probit, denoted by Φ(·), which is the standard normal
CDF.
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General Prior for θ

Similar to the general model for the prior probability of
attribute mastery, the prior for the continuous examinee
variable of the RUM, θ:

θi = βθYi + λθGi + Eiθ

By definition, the distribution of (θi|Yi, Gi) is
N(βθYi + λθGi, 1 − λ2

θ).

Also, let Eiθ be an uncorrelated normal variable with
mean zero and variance V ar(Eθ) = σ2

θ = 1 − λ2
θ.

As an analog to the general prior for each attribute, the
prior for θ uses an identity link function.
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Attribute-wise Prior
An attribute-wise prior is equivalent across all
examinees for each attribute k, but can differ from
attribute to attribute:

p1k = p1k = . . . = pik

Expressed in terms of the general prior:

α̃ik = Eik

Again, α̃ik ∼ N(0, 1), and Eik ∼ N(0, σ2
k = 1).

The prior for the attribute is then given by:

P (αik = 1) = P (α̃ik > κk) = P (Eik > κk) =
P (Eik < −κk) = Φ(−κk)
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Attribute-wise Prior for θ

The prior for θ uses the same underlying variable model
as that for the attribute variables, but with an identity
link.

θi = Eiθ

Again, θi ∼ N(0, 1), and Eiθ ∼ N(0, σ2
θ = 1).

The likelihood function for the prior for θ is given by the
ordinate of the standard normal distribution evaluated at
θ:

f(θi) = 1√
2π

e(
−θ2

i
2

)
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Higher Order Prior
A higher order trait for the attributes can be used as a
prior:

α̃ik = λkGi + Eik

Again, (α̃ik|Gi) ∼ N(λkGi, 1 − λ2
k), and Eik ∼ N(0, σ2

k),

with σ2
k = 1 − λ2

k.

The prior for the attribute is then given by:
P (αik = 1) = P (α̃ik > κk|λk, Gi) =
P (λkGi + Eik > κk|λk, Gi) = P (Eik < λkGi − κk|λk, Gi) =

Φ(λkGi−κk√
1−λ2

)



Higher Order Prior
A higher order trait for the attributes can be used as a
prior:

α̃ik = λkGi + Eik

Again, (α̃ik|Gi) ∼ N(λkGi, 1 − λ2
k), and Eik ∼ N(0, σ2

k),

with σ2
k = 1 − λ2

k.

The prior for the attribute is then given by:
P (αik = 1) = P (α̃ik > κk|λk, Gi) =
P (λkGi + Eik > κk|λk, Gi) = P (Eik < λkGi − κk|λk, Gi) =

Φ(λkGi−κk√
1−λ2

)



Higher Order Prior
A higher order trait for the attributes can be used as a
prior:

α̃ik = λkGi + Eik

Again, (α̃ik|Gi) ∼ N(λkGi, 1 − λ2
k), and Eik ∼ N(0, σ2

k),

with σ2
k = 1 − λ2

k.

The prior for the attribute is then given by:
P (αik = 1) = P (α̃ik > κk|λk, Gi) =
P (λkGi + Eik > κk|λk, Gi) = P (Eik < λkGi − κk|λk, Gi) =

Φ(λkGi−κk√
1−λ2

)



Higher Order Prior for θ

The higher order prior for θ uses the same underlying
variable model as that for the attribute variables, but
with an identity link.

The model for θ is:

θi = λθGi + Eiθ

By definition, (θi|Gi) ∼ N(λθGi, 1 − λ2
θ), and by

constraint, Eik ∼ N(0, σ2
θ), with σ2

θ = 1 − λ2
θ.

The prior for θ is then the ordinate of the normal
distribution with mean λθGi, and variance σ2

θ , evaluated
at thetai.
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Higher Order Prior for θ

The higher order prior for θ uses the same underlying
variable model as that for the attribute variables, but
with an identity link.

The model for θ is:

θi = λθGi + Eiθ

By definition, (θi|Gi) ∼ N(λθGi, 1 − λ2
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Higher Order Prior Initial Study
HCS LCS

Parameter RMSE RMSE
π∗ 0.032 0.042
r∗ 0.042 0.128
c 0.584 0.216
θ 0.792 0.585

RMSE - Root Mean Squared Error:

RMSE(τ) =

√

√

√

√

T
∑

t=1

(τ̂t − τ0)2

HCS - High Cognitive Structure parameter set.
LCS - Low Cognitive Structure parameter set.



Higher Order Prior Initial Study
HCS LCS

Parameter RMSE CR RMSE CR
α1 0.198 0.952 0.325 0.859
α2 0.263 0.902 0.429 0.735
α3 0.217 0.943 0.333 0.843
α4 0.251 0.924 0.391 0.787
α5 0.255 0.919 0.423 0.735
α6 0.216 0.937 0.396 0.777
α7 0.213 0.939 0.360 0.813
α8 0.201 0.947 0.380 0.791

CR - Classification Rate.



Covariate Prior
A model for covariates for the attributes can be used as
a prior:

α̃ik = βkYi + Eik

Fix, (α̃ik|Yi) ∼ N(βkYi, 1).

The prior for the attribute is then given by:
P (αik = 1) = P (α̃ik > κk|βk,Yi) =
P (βkYi+Eik > κk|βk,Yi) = P (Eik < βkYi−κk|βk,Yi) =

Φ(βkYi − κk)
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Covariate Prior for θ

The covariate prior for θ uses the same underlying
variable model as that for the attribute variables, but
with an identity link.

The model for θ is:

θi = βθYi + Eiθ

By definition, (θi|Yi ∼ N(βθYi, 1).

The prior for θ is then the ordinate of the normal
distribution with mean βkYi, and variance 1, evaluated
at θi.
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