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Today’s Class

• Review of Morris et al. (1998).

• Introduction to clustering with statistical models.
– Background of Latent Class Analysis

• One type of Finite Mixture Model.
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Subtypes of Reading Disability:
Variability Around a Phonological Core

Morris et al. (1998)
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Background Issues

• Researchers have believed that children with 
reading disability are a heterogeneous 
population.
– Because of heterogeneity, research is splintered

• Many hypotheses tested.
• Many inconsistent findings.

• Article attempts to define homogeneous 
groups of children with reading disabilities.
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Previous Attempts to Identify 
Subtypes

• Classification based on IQ discrepancies has 
been widely questioned due to failure to 
demonstrate the ecological validity of the 
result.

• Multivariate methods have not lead to reliable 
results.
– Consistency in groupings a problem.
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Author-identified Problems With Most 
Classification Based Studies in Field

• The authors state that a “successful 
classification study” comes from a theoretical 
framework leading to :
– A priori hypotheses about classification.
– Selection of attributes that best represent these 

hypotheses.
– Specification of analyses to evaluate how the 

groups differ from one another.



Psych 993 - Clustering and 
Classification

7

Study Conceptualization

• Three subtypes of phonological reading 
disability:
– Phonological awareness
– Phonology-verbal short term memory
– General cognitive
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Study Design
• “Cognitive measures selected according to contemporary hypotheses

addressing relation ship of language and reading skills” (p. 350), with 
measures of:

– Phonological awareness
– Naming skills
– Vocabulary-lexical skills
– Morphosyntactic ability
– Speech production and perception
– Verbal memory

• Nonverbal measures (thought to be weakly associated to reading ability):
– Nonverbal memory
– Visuospatial skills
– Visual attention

• Additionally, a systematic assessment of the consistency and reliability of 
the identified subtypes was used.
– Validation was thought of and demonstrated!!!
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Participant Selection

• A heterogeneous sample of children was selected:
– disability in reading
– disability in math
– disability in math and reading

• Contrast groups for all three (without disability).

• Sample ranged broadly in achievement and 
intellectual levels.
– Was this way to minimize any a priori beliefs about 

learning disability.
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Hold-out Sample

• To check the stability of the clustering 
solution, a hold out sample was created.

• This sample was not used in the original 
analysis, only used once groups were formed.

• The hold out sample consisted of children in 
the reading disability and nondisabled groups.
– Math disability and ADHD were held out.
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Measures Used To Classify

• Eight measures were used to classify children
– The eight were selected on the basis of a CFA onto 

characteristics of important factors.
– Measures were age-adjusted and standardized.

• Eight measures were then used to validate the 
classification.
– Matched the factors of the original eight measures.
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Measures Used To Classify



Psych 993 - Clustering and 
Classification

13

Additional Measures Used To 
Externally Validate Result

• Additionally, six measures from different domains 
of information was used to validate result.
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Overall Methods Used
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Clustering Methods Used
• Ultrametric hierarchical clustering procedures (all agglomerative):

– Ward’s method
– Single link
– Complete link

• K-means.
– Used to “clarify and refine the initial solutions produced by the three 

hierarchical methods.”

• Used multiple starting points.

• Funny quote about clustering procedures (p. 354):
– “These methods, although descriptive in nature and historically not founded in 

any significant mathematical theory, do have heuristic value and have been 
used in many scientific areas.”
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Distance Measures Used
• The authors tried:

– Squared Euclidean distance
– Pearson correlation

• Both measures quantified the distance between each 
child in the sample

• The Pearson correlation technique did not yield 
consistent results – so they went with squared 
Euclidean distance.
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Determination of Number of Clusters

• To decide the number of clusters, the authors 
examined several different measures:
– Review of changes in between/within variability
– Visual inspection of dendrogram
– Inspection of cluster profiles as clusters were 

merged (averages of variables)
– Visual inspection of individual child profiles 

within and across clusters.
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Results of Hierarchical Clustering

• Looked at concordance of results across 
methods:
– Total of 7-31 clusters examined.
– Highest level of concordance between 7-12 cluster 

solutions
• Concordance being greater than 80% agreement

– Used concordance to indicate optimal number of 
clusters.
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Applying K-means

• K-means clustering was applied to the 
solutions of each of the hierarchical procedures 
used.
– Six procedures for each hierarchical method

• ???
– “Iterated down to a five-cluster solution”

• ???

• Relocation methods resulted in 17 different 
solutions with 151 clusters.
– I am not sure why or what was done here.
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Reducing Clusters

• Because there were 17 different solutions and 151 
different clusters, something had to be done to 
identify consistent clusters.

• Three raters sorted the mean profiles of the attributes 
based on visual similarity.

• Ten profiles (subtypes) were selected – occurred 
repeatedly across most of the 17 solutions.
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Subtypes Identified

1. GD – Global Deficit
2. GL – Global 

Language.
3. PVR – Phonology –

Verbal short-term 
Memory

4. PVL – Phonology –
VSTM lexical

5. PVS – Phonology 
VSTM spatial

6. PR – Phonology – rate
7. RD – Rate – disabled
8. ND1 – Nondisabled
9. ND2 – Nondisabled
10. ND3 – Nondisabled
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Classifying Children
• To classify each child, an index of group membership 

was formed:
– For each of the 10 subtypes.
– For each of the 17 solutions.

• Index was percentage of times child got classified 
into a subtype.

• Child was assigned to subtype with highest index, if 
value was greater than 0.7.
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Those Not In Subtypes

• Of the 40 children with index values below 
0.7:
– 19 had low membership indices across multiple 

subtypes
• Identified as outliers

– 21 were placed within best matching subtype 
based on their index and profile of scores.



Psych 993 - Clustering and 
Classification

24

Analyses of Internal Validity

• Concordance was checked.
– Not sure what was used.

• Holdout sample was added – reclustered using 
same procedures.
– 73% – 88% of original children were in same 

cluster.
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Conclusions about Internal Validity

• Final 10-subtype solution classified 92% of 
children from original sample

• When hold-out sample was added, 80% of 
children were classified
– 20% were “outliers”
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External Validity Checks

• To check external validity comparison of groups was 
made on second set of classification variables.

• Used discriminant analysis to do this.
– 97% of children were correctly put into same clustering 

group with second set of variables.

• This is not a strong test – high correlation between 
sets of variables.
– Used other variables to detect differences.
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External Validity Checks

• Did a series of MANOVAs to detect 
differences between groups on alternative 
classification varaibles.
– Found differences.

• Looked at external domain variables – found 
differences there, too.



Psych 993 - Clustering and 
Classification

28

Summary

• Methods described by Morris et al. (1998) 
present a cluster analysis that sought both 
internal and external verification of results.

• The analyses provided a wonderful description 
of the types of children with reading 
disabilities.

• What did you think?
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Introduction to “Model” Based 
Clustering Techniques
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Finite Mixture Models

• Finite mixture models are models that express 
a set of observable variables as a mixture 
(sum) of a set of distributions.

• The typical equation for such a mixture looks 
like:

P(X) = Σ πg f(X|g) = π1 f(X|g=1) + … + πG f(X|g=G)
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Finite Mixture Models

P(X) = Σ πg f(X|g) = π1 f(X|g=1) + … + πG f(X|g=G)

• Here, X is the data matrix.
• g is the distribution (g=1,…,G).
• f(X|g) is the statistical distribution of X given g.

– This can be, literally, anything.

• πg is the so-called “mixing proportion” for group g.
– This represents the probability that any observation from 

the population represented by the sample comes from 
group g.
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What is this g of which you speak?
• g – is the group/class/distribution 

a population may come from.

• Bartholomew and Knott develop a 
nice way of looking at g as a 
categorical latent variable.

– They give a table (p. 3) that is a 
bit misleading for general FMM 
approaches, but works for the 
topics covered in their book.

• We will discuss these terms in the 
following weeks.

– For now, consider the table 
complete
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Example of a Mixture Model

• Imagine you were interested in the effects of 
heavy smoking on lung cancer.

• You are able to tell:
– who is a heavy smoker (>1 pack per day)
– who has lung cancer

• Now imagine you get your study approved by 
the human subjects committee, and you go out 
and collect the data on the next page.
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Smoking and Cancer Contingency 
Table
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What About This Association?

• There appears to be a 
significant association 
between smoking and 
lung cancer.

• However, if there was a 
third variable lurking 
out there, this effect 
might be considered 
spurious.
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The Hidden Third Variable

• Notice how the original association has now changed 
(or vanished)?
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What The Example Means
• What we are trying to demonstrate is the idea that we 

can try to parse out groups from our data.
– Just like all of our clustering methods.

• Only here, we will say that certain groups have 
distributions for the variables that differentiate 
themselves from other groups.
– Here the non-urban group’s distribution of the two 

variables was different from the urban group’s distribution.
– The exact form of the distribution may differ, too (although 

here it did not).
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Where We Are Going

• Over the course of the next few weeks, we will 
learn about FMM, using differing 
distributions.

• Perhaps the easiest case to learn is that of 
Latent Class Analysis (LCA).
– LCA works with categorical manifest variables.
– Here the variables are assumed to be independent 

within group.
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After LCA
• After LCA, we will switch to Latent Profile Analysis 

(LPA):
– In LPA, the manifest variables are now assumed to be 

“metrical”
– Each distribution within group is considered MVN.
– Independence within group, however, still holds.

• After LCA and LPA, we will then move to more 
general mixture models.
– Differing distributions
– Differing assumptions about covariance within group.
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What Can FMM Do For You?

• FMM can be used to:
– Identify groups of people differing on sets of 

variables.
• Similar to our clustering methods.

– Identify outliers in your data.
– Provide goodness of fit of some (possibly none-

mixture method) to your data.
• What proportion of cases would you have to throw 

away to fit perfectly?
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Additional FMM Fun

• Because distributional assumptions are 
involved in FMM we can:
– Use likelihood-based methods to fit models.

• EM
• MCMC
• Method of Moments (like SEM)
• Minimization-optimization of Log Likelihood

– Attempt to validate our results by generating data 
assuming our model is true.

• See picture on next page for fun result of a mixture 
model.
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When FMM Go Bad
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Next Time

• Specifics of latent class analysis.

• How to do LCA.
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