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Introduction

● Recent national education policy decisions have placed an
emphasis on educational testing.

✦ Used to assess the quality of instruction students are
receiving.

✦ No Child Left Behind has ushered in an era of
“accountability.”

● Teachers are now spending large amounts of time preparing
their student for standardized assessments.

● Often, preparing students for tests is at odds with the
curriculum.
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Introduction

● Because of this divide, there is an opportunity to change the
way tests are constructed and analyzed.

✦ Allowing teachers to teach to the curriculum instead of
teaching strategies for taken standardized tests.

● Furthermore, there is a need to provide formative
assessment to students.

✦ Providing more informative paths for advancement or
remediation.
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Introduction

● Cognitive Diagnosis Models (CDMs) provide detailed
information about the extent of knowledge a student
possesses.

✦ Potentially filling the needs of post-NCLB assessments.

● Not all CDMs are valid in all applications.

✦ Currently used models can be ineffective when applied to
tests created for measurement of continua.

✦ Often the user will not know that the model is
inappropriate.

✦ Development of new models must be sensitive to realistic
construction of tests.
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Outline

Today’s talk will feature an introduction to the concepts of
cognitive diagnosis:

● Concepts underlying models for cognitive diagnosis.

● Common measurement models used for assessing skills.

Along with several examples of when cognitive diagnosis
models break down:

● Problems indicative of poor analyses.

● Description of models intended to resolve issues.

● Introduction of a new model designed to compensate for
deficiencies of current models.
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Cognitive Diagnosis or Skills Assessment?

● Prior to discussing the concepts of cognitive diagnosis, I
must note that there is some ambiguity in the name of these
models.

● Exactly why these models use the term “cognitive” is unclear
(although where this term came from is clear).

✦ Cognitively Diagnostic Assessment (1995) edited by
Chipman, Nichols, and Brennen.

● Such models are also called models for skills assessment, or
models for skills diagnosis.

● “Skills” seems to be preferred by many due to their rooting in
natural language.
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Concepts

Imagine a test covering basic math:

1.) 2 + 3 − 1 2.) 4 ÷ 2 3.) 3 × (4 − 2)

● Using traditional assessment methods, an individual’s score,
or general math ability, could be estimated.

● Instead, math ability can be expressed as a set of basic skills
(commonly called attributes):

✦ Add
✦ Subtract
✦ Multiply
✦ Divide

● Cognitive diagnosis models estimate a profile of the skills an
individual has mastered.
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Example Q-Matrix

Math Test Example Q-matrix
Add Sub Mult Div

2 + 3 − 1 1 1 0 0
4/2 0 0 0 1

3 × (4 − 2) 0 1 1 0

● Unlike unidimensional IRT, not every item measures each
attribute.

● A Q-matrix indicates which attributes are measured by each
item.

● Notice that the Q-matrix defines the nature of each attribute.
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Example Test Items and Examinees

Math Test Example Q-matrix
Add Sub Mult Div

2 + 3 − 1 1 1 0 0
4/2 0 0 0 1

3 × (4 − 2) 0 1 1 0

Possible Attribute Patterns
Expected

Add Sub Mult Div Correct Responses

α1 1 0 0 0 → None
α2 1 1 0 0 → #1
α3 1 1 0 1 → #1, #2
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Other Example Q-matrix

Of course, from our Napoleon Dynamite clip, the Q-matrix would look like:

Nunchucks Bowhunting Computer
Hacking

Girls 1 1 1

Possible Attribute Patterns

Expected
N B CH Response

Napoleon 0 0 0 → None
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Cognitive Diagnosis Models...

● Are latent class models with a set equality constraints placed
on class probabilities.

✦ Latent classes are defined by a set of dichotomous
attributes.

● Provide why students are not performing well in addition to
which individuals are not performing well.

● Such information comes in the form of a posterior probability
of mastery for each skill measured by the Q-matrix.
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Examinee Skill Assessment Estimates

Posterior probabilities of attribute mastery:
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Reading Skills

● We introduce a data set...

● Imagine we wanted to determine groups of examinees based
on their performance on this test.

✦ We could do a standard Latent Class Analysis.

✦ We could an analysis with a CDM.
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Reading Skills

● Data come from a large standardized test.

✦ A total of 38 items.

✦ Sample of 2,952 examinees.

● CDM Q-matrix has four attributes.

✦ Average 1.32 attributes per item.

● Test originally developed to measure reading ability on a
single latent continuum.

● Imagine we wanted to determine groups of examinees based
on their performance on this test.

✦ We could do a standard Latent Class Analysis.

✦ We could an analysis with a CDM.
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Latent Class Analysis

● Latent class models are commonly attributed to Lazarsfeld
and Henry (1968).

● Use of latent class models in educational measurement date
to Macready and Dayton (1977).

● The final number of latent classes is not usually
predetermined prior to analysis with latent class models.

✦ But is determined through comparison of posterior fit
statistics.

✦ This is unlike CDMs.
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Latent Class Analysis

A latent class model for the response vector of individual i with
c = 1, . . . , C classes:

Structural Measurement

P (Xi = xi) =

C
∑

c=1

P (c)

J
∏

j=1

P (Xij = 1|c)

● P (c) is the probability that any individual is a member of
class c (must sum to one).

✦ c − 1 parameters.

● P (Xij = 1|c) is the probability individual i answers item j
correctly, given that individual i is a member of class c.

✦ Part where specific CDMs are defined.
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How Many Classes?

● In a latent class analysis, the first question asked is “how
many classes are needed to describe my data?”

● The answer to this comes from fitting models with increasing
numbers of classes and examining the relative fit of the
models.

● An index of fit sometimes used is the BIC (lowest is best):

Classes BIC

1 130,990.893

2 117,824.327

3 115,401.287

4 115,072.590

5 115,152.977

● For this application, the four-class model is considered the
best fitting by the BIC.
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Four Class Solution

Estimated Class

Membership Probabilities:

c P (c)

1 0.263
2 0.255
3 0.134
4 0.348

Estimated Item Response Probabilities:
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.164 0.139 0.343
1 0.321 0.336 0.657

Marginal 0.475 0.512 1.000
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.002 0.019 0.021
1 0.083 0.896 0.979

Marginal 0.085 0.915 1.000
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.481 0.212 0.693
1 0.213 0.094 0.307

Marginal 0.694 0.306 1.000
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.031 0.097 0.128
1 0.211 0.661 0.872

Marginal 0.242 0.758 1.000
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Validation - Total Test Score

As a measure of validation, consider examining the total test score as observed
and predicted by our model estimates:
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LCA Limitations

● LCA has limitations which make its application to educational
measurement difficult:

✦ Classes not known prior to analysis.

✦ Class characteristics not know until after analysis.

● Both of these problems are related to LCA being an
exploratory procedure for understanding data.

● CDMs can be thought of as confirmatory versions of LCA.

✦ By placing constraints on the class item probabilities and
specifying what our classes mean prior to analysis.
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Notation

I denotes the total number of examinees.

J denotes the total number of items.

K denotes the total number of attributes.

Q has elements qjk that indicate whether mastery of the kth

attribute is required by the jth item

qj· denotes the number of attributes measured by item j:

qj· =
K
∑

k=1

qjk

αi is a set of indicators of attribute mastery for examinee i for all
K attributes.
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CDM are a Subset of Latent Class Models

A latent class model for the response vector of individual i:

Structural Measurement

P (Xi = xi) =
∑

α

P (α)
J
∏

j=1

P (Xij = xij |α)

● For K attributes, total of 2K classes are defined.

● Equality constraints determined by:

✦ Choice of model.

✦ Q-matrix specifications.

● Basic CDMs assume local independence conditional on skill
pattern.
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Common CDMs

● The DINA model has two classes per item (mastered
everything or not).

● The NIDA model constrains the penalty for lacking an
attribute to be equal across all items.

● To parsimoniously parameterize the Unified Model (DiBello,
Stout, & Roussos, 1995), the Reparameterized Unified
Model (or RUM; Hartz, 2002) was developed.

● The RUM blends the two features of the DINA and NIDA
models:

✦ Parameterization of item-specific parameters (like the
DINA).

✦ Parameterization of multiple response classes per item
(like the NIDA).

● Additionally, the RUM incorporates a measure of Q-matrix
completeness per item (discussed later).
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RUM Demonstration

● Consider the item:

2 + 3 − 1

● Addition and Subtraction are skills needed to correctly
answer this problem.
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Reparameterized Unified Model (Hartz, 2002)

P (Xij = 1|αi) = π∗
j

K
∏

k=1

r
(1−αik)×qjk

jk

● Shown is the reduced form of the RUM (or REDRUM?),
which is commonly used in practical applications.

● qj is the pre-specified row vector (1 × K) of Q-matrix entries
for item j.

✦ The RUM places 2qj· equality constraints on the 2K class
item response probabilities.

● π∗
j is the maximum probability of correct response

conditional on mastery of all Q-matrix attributes for item j.

● r∗jk is the “penalty” imposed for missing attribute k.
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Reduced Rum Item Response Constraints

Total Attributes: 4

Total Classes: 16

Model: Reduced RUM

Q-matrix:

α1 α2 α3 α4

Item Add Sub Mult Div

1.) 2 + 3 − 1 1 1 0 0

2.) 4/2 0 0 0 1

3.) 3 × (4 − 2) 0 1 1 0

Equivalence Classes Per Item: (2qj·)

Item 1 2 3

Classes 4 2 4

Equal P (Xij = 1|αi) Denoted By Color

Item
1 2 3α

[0000] π∗

1r∗

11r∗

12 π∗

2r∗

24 π∗

3r∗

32r∗

33

[0001] π∗

1r∗

11r∗

12 π∗

2 π∗

3r∗

32r∗

33

[0010] π∗

1r∗

11r∗

12 π∗

2r∗

24 π∗

3r∗

32

[0011] π∗

1r∗

11r∗

12 π∗

2 π∗

3r∗

32

[0100] π∗

1r∗

1 π∗

2r∗

24 π∗

3r∗

33

[0101] π∗

1r∗

1 π∗

2 π∗

3r∗

33

[0110] π∗

1r∗

1 π∗

2r∗

24 π∗

3

[0111] π∗

1r∗

1 π∗

2 π∗

3

[1000] π∗

1r∗

2 π∗

2r∗

24 π∗

3r∗

32r∗

33

[1001] π∗

1r∗

2 π∗

2 π∗

3r∗

32r∗

33

[1010] π∗

1r∗

2 π∗

2r∗

24 π∗

3r∗

32

[1011] π∗

1r∗

2 π∗

2 π∗

3r∗

33

[1100] π∗

1 π∗

2r∗

24 π∗

3r∗

33

[1101] π∗

1 π∗

2 π∗

3r∗

33

[1110] π∗

1 π∗

2r∗

24 π∗

3

[1111] π∗

1 π∗

2 π∗

3
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RUM Estimation

● To estimate the parameters of the RUM, an MCMC algorithm
was created.

● Arpeggio was created by Hartz (2002).

● Subsequent modifications by Henson and Templin (2003 -
2005) improved the efficiency and consistency of the
algorithm and parameter estimates.

● With an MCMC algorithm the first thing to do following an
analysis is to check convergence.

● To the user, this might seem as though we are validating the
result.

● As we will see, model convergence does not correspond to a
valid result.
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MCMC Convergence Check

The timeseries of the MCMC chain will indicate convergence:
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REDRUM Item Parameter Estimates

Reading Data: REDRUM Item Parameters

Item π∗ r∗1 r∗2 r∗3 r∗4
1 0.857 0.543 0 0 0
2 0.926 0 0 0.539 0
3 0.947 0.628 0 0 0
4 0.668 0 0.509 0 0
5 0.958 0 0 0.688 0.845
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Validation - Total Test Score

As a measure of validation, consider examining the total test score as observed
and predicted by our model estimates:
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Item Completeness

● The quality of cognitive diagnosis model estimates are
partially determined by the accuracy of the entries in the
Q-matrix.

● In practice, situations occur where the Q-matrix is not
accurately specified.

● For each item, the RUM maps the misspecified Q-matrix
entries onto a single latent continuum.

● The RUM incorporates a continuous examinee parameter,
denoted by θi, that represents the examinee’s latent “ability”
across the misspecified attributes.
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Reparameterized Unified Model (Hartz, 2002)

P (Xij = 1|αi, θi) = Pcj
(θi)

(

π∗
j

K
∏

k=1

r
(1−αik)×qjk

jk

)

● The π∗ and r∗ terms function as in REDRUM.

● The “completeness” term:

Pcj
(θi) =

(

e1.701(cj+θi)

1 + e1.701(cj+θi)

)

● The c parameter is similar to the difficulty parameter in a
Rasch model (c = −b).

● In practice, the completeness parameter is difficult (if not
impossible) to estimate.

● Incompleteness only penalizes the examinee.
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RUM Illustrated

Consider an item requiring two attributes (qj· = 2):
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More on Completeness

● The completeness term relaxes the LI assumption of the
LCA portion of the model.

● Inclusion of the completeness term makes the RUM more
like a Finite Mixture Model.

● Because of the Rasch model parameterization, conditional
on class, the RUM fixes the tetrachoric correlation between
items to be approximately 0.5.

✦ The tetrachoric correlation between items given class is
the same for all pairs of items and for all classes.

✦ Perhaps a cause in the problems estimating the model?
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RUM Item Parameter Estimates

Reading Data: RUM Item Parameters

Item π∗ r∗1 r∗2 r∗3 r∗4 c

1 0.932 0.848 0 0 0 1.213
2 0.993 0 0 0.959 0 1.198
3 0.991 0.978 0 0 0 1.227
4 0.799 0 0.656 0 0 1.529
5 0.983 0 0 0.956 0.909 1.505
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Validation - Total Test Score

As a measure of validation, consider examining the total test score as observed
and predicted by our model estimates:
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The Search for a Better Model

● Because of the difficulties involved in parameterizing and
estimating the RUM, a new model was needed.

● The new model would have to be one that would be sensitive
to item incompleteness.

● It would also be nice if the new model did not add many more
parameters.

● The result of the process was the development of the
Random Effects Reparameterized Unified Model (or
RERUM; Templin & Henson, 2005).
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Random Effects RUM

P (Xij = 1|αi, θi) = Φ (τj + cjθi)
K
∏

k=1

r
(1−αik)×qjk

jk

● The r∗ functions as in RUM.

● The Φ(·) function is the standard normal CDF.

● c ranges from zero (item is complete) to one (item is
incomplete).

✦ c could also go to negative one.

● The τj is the intercept parameter

● Same number of parameters as the RUM.
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RERUM Illustrated

Consider an item requiring two attributes (qj· = 2):
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Conditional Correlations

● The RERUM completeness term also relaxes the LI
assumption of the LCA portion of the model.

● Conditional on class, the RERUM fixes the tetrachoric
correlation between items to be the product of the c
parameters:

ρxj ,xk|α = cjck

● The tetrachoric correlation between items conditional on
class is now estimated as part of the model.

● Items with high conditional correlations may indicate places
to modify Q-matrix.
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RERUM Item Parameter Estimates

Reading Data: RERUM Item Parameters

Item τ r∗1 r∗2 r∗3 r∗4 c

1 0.396 0.959 0 0 0 0.495
2 0.668 0 0 0.888 0 0.597
3 0.687 0.966 0 0 0 0.595
4 0.080 0 0.950 0 0 0.405
5 0.684 0 0 0.934 0.890 0.538

Conditional Item Correlations:

1 2 3 4

2 0.296
3 0.295 0.355
4 0.200 0.242 0.241
5 0.266 0.321 0.320 0.218
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Validation - Total Test Score

As a measure of validation, consider examining the total test score as observed
and predicted by our model estimates:
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In Summary

● Cognitive diagnosis models have the potential to provide
meaningful information to the test-taker, instructor, and
legislator.

● However, there are obstacles to overcome when choosing
the type of model to be applied.

● Retrofitting of IRT-built tests is not often successful.

● Diagnostic test construction methods do exist (see Henson,
2004).

● Validation should not be forgotten.

● Oh, and about model fit...
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Comparing All of Today’s Models

Here is a plot of the test score distributions for all of today’s models, along with
one from a 2PL model:
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Additional CDM Topics

● Polytomous item model extensions.

● Polytomous attribute model extensions.

● Different ways of modeling of examinee proficiency space.

● Estimation Methods.

● Model fit.

● Psychological Applications.

● Exploratory methods for Q-matrix discovery.
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Concluding Remarks

● Cognitive diagnosis models provide a method for estimating
latent skills.

● Such models are in their infancy - time will tell if these
models are effective at giving information about examinees.

● A good way to start using such models is from the beginning
- design tests with diagnosis/classification in mind.

● Perhaps the first issue solved will be the debate over skills
assessment or cognitive diagnosis...

● Thank you.
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