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Latent Profile Analysis

Lecture 14
April 4, 2006

Clustering and Classification
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Today’s Lecture

● Latent Profile Analysis (LPA).

● LPA as a specific case of a Finite Mixture Model.

● How to do LPA.
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LPA Introduction

● Latent profile models are commonly attributed to Lazarsfeld
and Henry (1968).

● Like K-means and hierarchical clustering techniques, the
final number of latent classes is not usually predetermined
prior to analysis with latent class models.

✦ The number of classes is determined through comparison
of posterior fit statistics.

✦ The characteristics of each class is also determined
following the analysis.
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Variable Types Used in LPA

● As it was originally conceived, LPA is an analysis that uses:

✦ A set of continuous (metrical) variables - values allowed to
range anywhere on the real number line. Examples
include:

● The number of classes (an integer ranging from two
through...) must be specified prior to analysis.
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LPA Process

● For a specified number of classes, LPA attempts to:

✦ For each class, estimate the statistical likelihood of each
variable.

✦ Estimate the probability that each observation falls into
each class.

■ For each observation, the sum of these probabilities
across classes equals one.

■ This is different from K-means where an observation is a
member of a class with certainty.

✦ Across all observations, estimate the probability that any
observation falls into a class.
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LPA Estimation

● Estimation in LPA is more complicated than in previous
methods discussed in this course.

✦ In agglomerative hierarchical clustering, a search process
was used with new distance matrices being created for
each step.

✦ K-means used more of a brute-force approach - trying
multiple starting points.

✦ Both methods relied on distance metrics to find clustering
solutions.

● LPA estimation uses distributional assumptions to find
classes.

● The distributional assumptions provide the measure of
"distance" in LPA.
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LPA Distributional Assumptions

● Because LPA works with continuous variables, the
distributional assumptions of LPA must use a continuous
distribution.

● Within each latent class, the variables are assumed to:

✦ Be independent.

✦ (Marginally) be distributed normal (or Gaussian):

■ For a single variable, the normal distribution function is:

f(xi) =
1

√

2πσ2
x

exp

(−(xi − µx)2

σ2
x

)
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Joint Distribution

● Because, conditional on class, we have normally distributed
variables in LPA, we could also phrase the likelihood as
coming from a multivariate normal distribution (MVN):

● The next set of slides describes the MVN.

● What you must keep in mind is that our variables are set to
be independent, conditional on class, so the within class
covariance matrix will be diagonal.
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Multivariate Normal Distribution

● The generalization of the well-known normal distribution to
multiple variables is called the multivariate normal
distribution (MVN).

● Many multivariate techniques rely on this distribution in some
manner.

● Although real data may never come from a true MVN, the
MVN provides a robust approximation, and has many nice
mathematical properties.

● Furthermore, because of the central limit theorem, many
multivariate statistics converge to the MVN distribution as the
sample size increases.
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Univariate Normal Distribution

● The univariate normal distribution function is:

f(xi) =
1

√

2πσ2
x

exp

(−(xi − µx)2

σ2
x

)

● The mean is µx.

● The variance is σ2
x.

● The standard deviation is σx.

● Standard notation for normal distributions is N(µx, σ2
x), which

will be extended for the MVN distribution.
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Univariate Normal Distribution

N(0, 1)
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Univariate Normal Distribution

N(0, 2)
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Univariate Normal Distribution

N(3, 1)
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UVN - Notes

● Recall that the area under the curve for the univariate normal
distribution is a function of the variance/standard deviation.

● In particular:

P (µ − σ ≤ X ≤ µ + σ) = 0.683

P (µ − 2σ ≤ X ≤ µ + 2σ) = 0.954

● Also note the term in the exponent:

(

(x − µ)

σ

)2

= (x − µ)(σ2)−1(x − µ)

● This is the square of the distance from x to µ in standard
deviation units, and will be generalized for the MVN.
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MVN

● The multivariate normal distribution function is:

f(x) =
1

(2π)p/2|Σ|1/2
e−(x−µ)Σ

−1

(x−µ)/2

● The mean vector is µ.

● The covariance matrix is Σ.

● Standard notation for multivariate normal distributions is
Np(µ,Σ).

● Visualizing the MVN is difficult for more than two dimensions,
so I will demonstrate some plots with two variables - the
bivariate normal distribution.
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Bivariate Normal Plot #1

µ =

[

0

0

]

,Σ =

[

1 0

0 1

]

−4

−2

0

2

4

−4

−2

0

2

4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16



Overview

Latent Profile
Analysis

MVN
➤ Univariate Review
➤ MVN
➤ MVN Contours
➤ MVN Properties

LPA as a FMM

LPA Example #1

Wrapping Up

Lecture #14 - 4/4/2006 Slide 17 of 30

Bivariate Normal Plot #1a
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Bivariate Normal Plot #2
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Bivariate Normal Plot #2
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MVN Contours

● The lines of the contour plots denote places of equal
probability mass for the MVN distribution.

● These contours can be constructed from the eigenvalues
and eigenvectors of the covariance matrix.

✦ The direction of the ellipse axes are in the direction of the
eigenvalues.

✦ The length of the ellipse axes are proportional to the
constant times the eigenvector.

● Specifically:

(x − µ)Σ−1(x − µ) = c2

has ellipsoids centered at µ, and has axes ±c
√

λiei.
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MVN Contours, Continued

● Contours are useful because they provide confidence
regions for data points from the MVN distribution.

● The multivariate analog of a confidence interval is given by
an ellipsoid, where c is from the Chi-Squared distribution with
p degrees of freedom.

● Specifically:

(x − µ)Σ−1(x − µ) = χ2
p(α)

provides the confidence region containing 1 − α of the
probability mass of the MVN distribution.
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MVN Contour Example

● Imagine we had a bivariate normal distribution with:

µ =

[

0

0

]

,Σ =

[

1 0.5

0.5 1

]

● The covariance matrix has eigenvalues and eigenvectors:

λ =

[

1.5

0.5

]

, E =

[

0.707 −0.707

0.707 0.707

]

● We want to find a contour where 95% of the probability will
fall, corresponding to χ2

2(0.05) = 5.99
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MVN Contour Example

● This contour will be centered at µ.

● Axis 1:

µ ±
√

5.99 × 1.5

[

0.707

0.707

]

=

[

2.12

2.12

]

,

[

−2.12

−2.12

]

● Axis 2:

µ ±
√

5.99 × 0.5

[

−0.707

0.707

]

=

[

−1.22

1.22

]

,

[

1.22

−1.22

]
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MVN Properties

● The MVN distribution has some convenient properties.

● If X has a multivariate normal distribution, then:

1. Linear combinations of X are normally distributed.

2. All subsets of the components of X have a MVN
distribution.

3. Zero covariance implies that the corresponding
components are independently distributed.

4. The conditional distributions of the components are MVN.
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Finite Mixture Models

● Recall from last time that we stated that a finite mixture
model expresses the distribution of X as a function of the
sum of weighted distribution likelihoods:

f(X) =

G
∑

g=1

ηgf(X|g)

● We are now ready to construct the LPA model likelihood.

● Here, we say that the conditional distribution of X given g is a
sequence of independent normally distributed variables.
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Latent Class Analysis as a FMM

Using some notation of Bartholomew and Knott, a latent profile
model for the response vector of p variables (i = 1, . . . , p) with
K classes (j = 1, . . . , K):

f(xi) =
K
∑

j=1

ηj

p
∏

i=1

1
√

2πσ2
ij

exp

(

−(xi − µij)
2

σ2
ij

)

● ηj is the probability that any individual is a member of class j

(must sum to one).

● xi is the observed response to variable i.

● µij is the mean for variable i for an individual from class j.
● σ2

ij is the variance for variable i for an individual from class j.
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LPA Example

● To illustrate the process of LPA, consider an example using
Fisher’s Iris data.

● The Mplus code is found on the next few slides.

● We will use the Plot command to look at our results.



title:
Latent Profile Analysis of Fisher’s Iris

data:
file=iris.dat;

variable:
names=x1-x4;
classes=c(3);

analysis:
type=mixture;

model:
%OVERALL%

%C#1%
x1-x4;
%C#2%
x1-x4;
%C#3%
x1-x4;

OUTPUT:
TECH1 TECH5 TECH8;

PLOT:
TYPE=PLOT3;
SERIES IS x1(1) x2(2) x3(3) x4(4);

27-1



SAVEDATA:
FILE IS myfile.dat;
SAVE = CPROBABILITIES;

27-2
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Interpreting Classes

● After the analysis is
finished, we need to
examine the item
probabilities to gain
information about the
characteristics of the
classes.

● An easy way to do this is to
look at a chart of the item
response means by class.
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Final Thought

● LPA is a wonderful
technique to use to find
classes with very specific
types of data.

● We have only scratched the
surface of LPA techniques.

● We will discuss estimation and other models in the weeks to
come.
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Next Time

● No class next two meetings (4-6 and 4-11).

● Our next class:

✦ More LPA examples/facets.

✦ A bit about estimation of such models.
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