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Today’s Lecture

● Latent Class Analysis (LCA).

● LCA as a specific case of a Finite Mixture Model.

● How to do LCA.
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LCA Introduction

● From here out, we will consider clusters to be synonymous
with classes.

● Latent class models are commonly attributed to Lazarsfeld
and Henry (1968).

● Like K-means and hierarchical clustering techniques, the
final number of latent classes is not usually predetermined
prior to analysis with latent class models.

✦ The number of classes is determined through comparison
of posterior fit statistics.

✦ The characteristics of each class is also determined
following the analysis.
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Variable Types Used in LCA

● As it was originally conceived, LCA is an analysis that uses:

✦ A set of binary-outcome variables - values coded as zero
or one. Examples include:

■ Test items - scored correct or incorrect.

■ True/false questions.

■ Gender.

■ Anything else that has two possible outcomes.

● The number of classes (an integer ranging from two
through...) must be specified prior to analysis.
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LCA Process

● For a specified number of classes, LCA attempts to:

✦ For each class, estimate the probability that each variable
is equal to one.

✦ Estimate the probability that each observation falls into
each class.

■ For each observation, the sum of these probabilities
across classes equals one.

■ This is different from K-means where an observation is a
member of a class with certainty.

✦ Across all observations, estimate the probability that any
observation falls into a class.
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LCA Estimation

● Estimation in LCA is more complicated than in previous
methods discussed in this course.

✦ In agglomerative hierarchical clustering, a search process
was used with new distance matrices being created for
each step.

✦ K-means used more of a brute-force approach - trying
multiple starting points.

✦ Both methods relied on distance metrics to find clustering
solutions.

● LCA estimation uses distributional assumptions to find
classes.

● The distributional assumptions provide the measure of
"distance" in LCA.
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LCA Distributional Assumptions

● Because (for today) we have discussed LCA with
binary-outcome variables, the distributional assumptions of
LCA must use a binary-outcome distribution.

● Within each latent class, the variables are assumed to:

✦ Be independent.

✦ (Marginally) be distributed as Bernoulli:

■ The Bernoulli distribution states:

f(xi) = (πi)
xi (1 − πi)

(1−xi)

● The Bernoulli distribution is a simple distribution for a single
event - like flipping a coin.
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Bernoulli Distribution Illustration

● To illustrate the Bernoulli distribution (and statistical
likelihoods in general, consider the following example.

● As you may or may not know, today is a big day in collegiate
athletics.

✦ The NCAA Mens Basketball Tournament has now started.

✦ It is killing me to be here at this very moment.

✦ The match up I am most concerned with is tonight at 6:30:
Illinois v. Air Force
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Bernoulli Distribution Illustration

● For fun, I like to try to forecast the results of sporting events
using statistical data on past performances of the teams.

✦ You can see my predictions for today’s games on my
website,
http://www.people.ku.edu/~jtemplin/sports.

● To illustrate the Bernoulli distribution, consider the Illinois/Air
Force game as a binary-response item.

✦ Lets say X = if Illinois wins, and X = 0 otherwise.

✦ My prediction is that Illinois has about an 0.87 percent
chance of winning the game.

✦ So, π = 0.87.

● Likewise, P (X = 1) = 0.87 and P (X = 0) = 0.13.

http://www.people.ku.edu/~jtemplin/sports
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Bernoulli Distribution Illustration

● The likelihood function for X looks similar:

● If X = 1, the likelihood is:

f(xi = 1) = (0.87)1 (1 − 0.87)(1−1) = 0.87

● If X = 0, the likelihood is:

f(xi = 0) = (0.87)1 (1 − 0.87)(1−0) = 0.13

● This example shows you how the likelihood function of a
statistical distribution gives you the likelihood of an event
occurring.

● In the case of discrete-outcome variables, the likelihood of
an event is synonymous with the probability of the event
occurring.
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Independent Bernoulli Variables

● Although it makes little sense for this example, consider if we
were to play this game over and over again, with each trial
being independent.

● The probability of observing two Illinois wins would be the
product of the probability of having a single Illinois win.

P (X1 = 1, X2 = 1) = π1π2 = 0.87 × 0.87 = 0.76

● We can think about this as we would flipping a coin.

✦ The probability of observing two heads in two flips of a
“fair” coin is 0.5 × 0.5 = 0.25.
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Finite Mixture Models

● Recall from last time that we stated that a finite mixture
model expresses the distribution of X as a function of the
sum of weighted distribution likelihoods:

f(X) =

G∑

g=1

ηgf(X|g)

● We are now ready to construct the LCA model likelihood.

● Here, we say that the conditional distribution of X given g is a
sequence of independent Bernoulli variables.
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Latent Class Analysis as a FMM

Using some notation of Bartholomew and Knott, a latent class
model for the response vector of p variables (i = 1, . . . , p) with
K classes (j = 1, . . . , K):

f(xi) =

K∑

j=1

ηj

p∏

i=1

πxi

ij (1 − πij)
1−xi

● ηj is the probability that any individual is a member of class j

(must sum to one).

● xi is the observed response to item i.

● πij is the probability of a positive response to item i from an
individual from class j.
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LCA Example

● To illustrate the process of LCA, consider the example
presented in Bartholomew and Knott (p. 142).

● The data are from a four-item test analyzed with an LCA by
Macready and Dayton (1977).
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LCA Example

● Recall, we have three pieces of information we can gain from
an LCA:

✦ Sample information - proportion of people in each class.

✦ Item information - probability of correct response for each
item from examinees from each class.

✦ Examinee information - posterior probability of class
membership for each examinee in each class.

● Here, we will look at output from a program I wrote to do LCA
(you will get a copy next time).



Class Probabilities
Class Probability
1 0.586523874
2 0.413476126

Item Parameters
class: 1
item prob ase(prob)
1 0.75345 0.05125
2 0.78029 0.05108
3 0.43161 0.05625
4 0.70757 0.05445

class: 2
item prob ase(prob)
1 0.20861 0.06047
2 0.06834 0.04848
3 0.01793 0.02949
4 0.05228 0.04376

15-1



Examinee Information
Posterior Probabilities

examinee 1 2 ML Class Max Prob
73 0.17747 0.82253 2 0.82253
74 0.17747 0.82253 2 0.82253
75 0.17747 0.82253 2 0.82253
76 0.99939 0.00061 1 0.99939
77 0.99939 0.00061 1 0.99939
78 0.99939 0.00061 1 0.99939
79 0.99939 0.00061 1 0.99939
80 0.974 0.026 1 0.974
81 0.974 0.026 1 0.974
82 0.97532 0.02468 1 0.97532
83 0.97532 0.02468 1 0.97532
84 0.97532 0.02468 1 0.97532
85 0.97532 0.02468 1 0.97532
86 0.97532 0.02468 1 0.97532
87 0.47399 0.52601 2 0.52601
88 0.47399 0.52601 2 0.52601

15-2
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Interpreting Classes

● After the analysis is
finished, we need to
examine the item
probabilities to gain
information about the
characteristics of the
classes.

● An easy way to do this is to
look at a chart of the item
response probabilities by
class.

● Here, we would say that Class 1 represents students who
have mastered the material on the test.

● We would say that Class 2 represents students who have not
mastered the material on the test.
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How Many Classes?

● For our second example, we will consider data from a large,
standardized test.

✦ A total of 38 items.

✦ A sample of 2,952 examinees.

● Test originally developed to measure reading ability on a
single latent continuum.

● Imagine we wanted to determine groups of examinees based
on their performance on this test.
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How Many Classes?

● In a latent class analysis, the first question asked is “how
many classes are needed to describe my data?”

● The answer to this comes from fitting models with increasing
numbers of classes and examining the relative fit of the
models.

● An index of fit sometimes used is the BIC (lowest is best - we
will revisit this next class):

Classes BIC

1 130,990.893

2 117,824.327

3 115,401.287

4 115,072.590

5 115,152.977

● For this application, the four-class model is considered the
best fitting by the BIC.
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Four Class Solution

Estimated Class

Membership Probabilities:

c P (c)

1 0.263
2 0.255
3 0.134
4 0.348

Estimated Item Response Probabilities:
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.164 0.139 0.343
1 0.321 0.336 0.657

Marginal 0.475 0.512 1.000
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.002 0.019 0.021
1 0.083 0.896 0.979

Marginal 0.085 0.915 1.000
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.481 0.212 0.693
1 0.213 0.094 0.307

Marginal 0.694 0.306 1.000
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LCA Local Independence

● LCA has the property of local independence - that given
class, item responses are independent.

● To give an example, consider Items 1 and 2:

P (Xj = 1|c)

Item j c = 1 c = 2 c = 3 c = 4

1 0.512 0.915 0.306 0.758
2 0.657 0.979 0.307 0.872

Item 1
Item 2 0 1 Marginal

0 0.031 0.097 0.128
1 0.211 0.661 0.872

Marginal 0.242 0.758 1.000
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Validation - Total Test Score

As a measure of validation, consider examining the total test score as observed
and predicted by our model estimates (we will revisit this next time, too):
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LCA Limitations

● LCA has limitations which make its general application to
educational measurement difficult:

✦ Classes not known prior to analysis.

✦ Class characteristics not know until after analysis.

● Both of these problems are related to LCA being an
exploratory procedure for understanding data.

● Cognitive diagnosis models can be thought of as
confirmatory versions of LCA.

✦ By placing constraints on the class item probabilities and
specifying what our classes mean prior to analysis.
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Final Thought

● LCA is a wonderful
technique to use to find
classes with very specific
types of data.

● We have only scratched the
surface of LCA techniques.

● We will discuss estimation and other models in the weeks to
come.
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Next Time

● No class next week (Spring Break!).

● Our next class:

✦ Empirical research article on LCA:

✦ More LCA examples/facets.
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