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Today’s Lecture

● General Linear Model.

● General Linear Mixed-Effects Model.

✦ Growth models are mixed-effects models.

● Mixtures of the General Linear Mixed-Effects Model.

✦ Specifically, Growth Mixture Models.
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General Linear Model

● Recall the “multiple regression” equation (for the ith

observation, prediction of Yi by k variables Xik):

Yi = α + β1Xi1 + β2X2 + . . . + βkXk + ǫi

● The equation above can be expressed more compactly by a
set of matrices:

y = Xβ + ǫ

✦ y is of size (N × 1).

✦ X is of size (N × (1 + k)).

✦ β is of size (k × 1).

✦ ǫ is of size (N × 1).
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GLM Illustrated

● In matrices, the regression equation from the previous slide gives:
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Additional Notes

● Note that most everything is really straightforward in terms of
matrix algebra.

● The matrix of predictors, X, has the first column containing
all ones.

✦ This represents the intercept parameter α.

✦ This is also an introduction to setting columns of the X
matrix to represent design and or group controls (as in
ANOVA).
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Distribution of Errors

● We often place distributional assumptions on our error terms,
allowing for the development of hypothesis tests.

● With matrices, the distributional assumptions are no different,
except for things are approached in a multivariate fashion:

ǫ ∼ NN (0, σ2
ǫ IN )

● Having a multivariate normal distribution with independent
(uncorrelated) variables (from IN ) is identical to saying:

ǫi ∼ N(0, σ2
ǫ )

for all i observations.
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Error Covariance Matrix

● Therefore, the fixed-effects GLM assumes the following
covariance matrix for the residuals:

σ2
ǫ IN =
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● In repeated measures or growth modeling, this assumption is
not valid.

● The observations are not independent, so we must model
the dependency into the error covariance matrix.



Overview

General Linear
Model

General Linear
Mixed Effects Model
➤ Assumptions
➤ Growth Models
➤ Example
➤ Parameterization
➤ Covariance

Structure
➤ Estimates

Growth Mixture
Models

Wrapping Up

Lecture #16 - 5/2/2006 Slide 8 of 24

Mixed Models

● The general linear mixed model is given by:

y = Xβ + Zγ + ǫ

✦ y is of size (N × 1).

✦ X is of size (N × (1 + k)) - observations from fixed
variables.

✦ β is of size (k × 1) - fixed effects.

✦ Z is of size (N × g) - containing g variables for random
effects.

✦ γ is of size (g × 1) - random effects.

✦ ǫ is of size (N × 1).
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Mixed Model Assumptions

● The main assumption in the mixed model analysis is that γ

and ǫ are both normally distributed with:

E

[

γ
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]

=

[

0
0

]

and

Var
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]

=

[

G 0
0 R

]

● The resulting model estimated variance of y given X and Z is:

Var (y) = ZGZ′ + R
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Growth Models

● Growth models are mixed models with very specific features:

✦ Random intercept parameter.

✦ Random slope (although this is sometimes omitted).

● Because of how they fit into the Linear Mixed Effects (LME)
modeling framework, such growth models can be
conceptualized by latent variable modeling methods such as
structural equation models.

● Additionally, such growth models can be conceptualized as
two-level hierarchical linear models.

✦ First level are the observations.

✦ Second level are the subjects.

■ Observations nested within people.
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Growth Model Example

● To demonstrate a growth model consider an example from a
study of reading ability in a midwestern public school.

● The dependent variable, Nonsense Word Fluency (NWF)
was measured across six consecutive time points (each
separated by three month intervals).

● So, for each student, we have six observations of NWF
(ignore issues of missing data for the moment).
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Growth Model Example

● To parameterize the model as a LME model, we go back to our original LME
model parameterization of y = Xβ + Zγ + ǫ:
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Model Specified Covariance of Y

● The variance of y is a block-diagonal matrix formed by the
matrix product:

Var (y) = ZGZ′ + R

● Here, the matrix G is a 2× 2 covariance matrix of the random
effects:
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Model Specified Covariance of Y

● Similar to the fixed effects model, the R matrix is a diagonal
matrix containing the residual variance, or σ2

ǫ IN :

R =
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● So, the covariance matrix of y is then block diagonal, with
repeating elements representing the covariation between
observations within a person.
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Estimates of Growth Model Parameters

● So, to show how this works, I went and estimated a growth
model for the example data.

● Because we will use Mplus for our growth mixture models, I
used Mplus to fit the model.

● Nearly any software package can be used to fit the
single-class model, including SAS, SPSS, LISREL, and so
forth.

● The estimates:
Parameter Estimate

α 24.011 (2.613)
β1 0.605 (1.216)

σ2
γ1

675.386 (104.564)
σ2

γ2
157.171 (23.034)

σ2
γ1,γ2

-162.651 (37.564)
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Growth Mixture Models

● In the LME models, our assumptions were that conditional
on X and Z, y was distributed multivariate normal with:

E(y|X, Z) = Xβ

Var (y) = ZGZ′ + R

● In the growth model case, we have a very specific structure
of, Z, G, and R - but this methodology is not limited to just
growth models.

● Plugging these results into the MVN density function:

f(y|X, Z) =
1

(2π)p/2|ZGZ′ + R|1/2
e
−(y−Xβ)

h

Z′GZ+R
i

−1

(y−Xβ)
′

/2
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Linear Mixed Effects Mixture Models

● Recall that we stated that a finite mixture model expresses
the distribution of X as a function of the sum of weighted
distribution likelihoods:

f(X) =

G
∑

g=1

ηgf(X|g)

● We are now ready to construct the GMM or (LMEMM)
likelihood.

● Here, we say that the conditional distribution of X given g is a
sequence of multivariate normal variables.
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LMEMM/GMM as FMM

Using some notation of Bartholomew and Knott, a LMEMM for the response
vector of p variables (i = 1, . . . , p) with K classes (j = 1, . . . , K):

f(y|X, Z) =
K

∑

j=1

ηj
1

(2π)p/2|ZGjZ′ + Rj |1/2
e
−(y−Xβ

j)
h

ZGjZ′

+Rj

i

−1

(y−Xβ
j)

′

/2

● ηj is the probability that any individual is a member of class j (must sum to
one).

● βj is the set of fixed effects for class j.

● Gj is the covariance matrix of the random effects γj for class j.

● Rj is the covariance matrix of ǫ for class j.
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GMM Example

● To demonstrate what we get from GMM, we consider trying
to extract a number of latent classes from the original data
used for the mixed model.

● As usual, a common method for determining the number of
classes to extract is the BIC (common 6= good).

● The fit results for a set of classes are:

Classes BIC

1 6492.360
2 6452.427
3 6423.997
4 6364.526*
5 6375.993

● The four-class solution is selected by us of the BIC.
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GMM Example

● The estimates:

Parameter Class 1 Class 2 Class 3 Class 4

α 96.900 22.238 25.867 14.736
β1 -26.323 7.550 19.778 -5.723

σ2
γ1

277.266 277.266 277.266 277.266
σ2

γ2
22.774 22.774 22.774 22.774

σ2
γ1,γ2

-69.707 -69.707 -69.707 -69.707

η 0.07080 0.23894 0.17699 0.51327

● Notice anything strange?

● Can you find the Mplus default (which I didn’t realize until after 2:00AM last
night)?

● That’s nice, but what do these look like?
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GMM Example
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Issues in GMM

● One of the biggest problems in GMM is the extraction of too
many classes.

● This is not unlike what we witnessed with using LPA on
Fisher’s Iris data.

● Like in Fisher’s Iris data, over extraction of classes occurs
when violations of the assumptions are present.

● Clear need for model diagnostics, especially at one-class
model.
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Final Thought

● GMM is but one example of
FMM applied to a specific
example.

● The use of GMM has
increased markedly in
Psychology over the past
few years.

● Running GMM without understanding the pitfalls can lead to
seriously misleading results.

● I am going to bring out the “bad science” label for instances
of reckless use of GMM.
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Next Time

● How to fit GMM in Mplus.

● Empirical example (from Kevin).
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