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- The simplest within-subject design with a single within-
subject factor is discussed, including:
> The basic analysis of variance
> Tests of contrasts
> Effect-size calculations
» Power determinations



m The Analysis of Variance —

Design and Notation

Table 16.1 shows the basic structure of the scores in a single-
factor within-subject design

The scores in the data table are denoted by Y., where the first

1)’

subscript i indicates the subject, and the second subscript j
indicates the particular level of factor A

There are a levels of factor A and n subjects

The subjects are nested within the groups, and this fact is
symbolized by denoting the subject factor S/A

It may be convenient and accurate to refer to this design as an
AxS design



The Analysis of Variance —

Design and Notation

Tahle 16.1: The notation system for an AxS design with a = 4 conditions and
n = 3 subjects.

Levels of factor A
Subiects m @y an fz,t! Srim
§1 Yo Yz Yo Y} o™
83 Ya; Yaz Y Ya | 52
83 Yy, Yaz Yas  Yaa 9




- And the grand mean: _

From Table 16.1 we have...

. The mean for each factor level: Y, =

- The mean for each subject: Vs =

i



m Partitioning the Variability

The amount of variability among the scores in a one-way
between-subject design is measured by the total variability,
as expressed by the total sum of squares:

SST — Z(Yij _Y—T )2

1]

Just as the between-subjects variability in the two-factor
AxB design with crossed factors is divided into two effects
and an interaction, the total variability in an AxS design is
divided into SS,, SS¢, and SS, <

There is no within-cell term comparable to SSg,,5 and SS, ¢
will be treated as error
> Only have one observation per subject per condition



m Computational Formulas

- The computational formulas for the A xS design are
presented in Table 16.2

> Note that df; = an - 1 that is one less than the total number
of observations

Table 16.2: Computational formulas for the Ax Y design.

Formulas for the analysis of variance

Source af 85 M8 ¥
4 a1 (Al - [7) ‘3?: Mfg,fj%
s S 18]~ [T %;f
AXS = D=1 Y] - A= (8] e 7] S
| Total ar ~ 1 Y- [T]

Farmulas for the bracket terms

Al . >3 —
[A] = E:,n L=nyl 31% (8] = 'Zmabi =qy Yg
Y] =5 ¥2 =L« n¥3
T Ly = o ARy




NUMERICAL EXAMPLE



m Searching for Letters

. Consider an experiment in which college students search for

a particular letter in a string of letters on a computer screen
> Half of the time the letter occurs in the string, and half of the time
it does not

« On one third of the trials the letter string is a word
(condition a,), on one third it is a pronounceable nonword
(a,), and on one third it is an unpronounceable set of
random letters (a,)

- The response measure is the average speed with which
subjects correctly detect the target letter, measured in
milliseconds

- The experiment is a single-factor AxS design with a=3 types
of letter strings



m The Old Style of Analysis

 Prior to running the repeated measures analysis, let’s
imagine we tried using what we already know about
ANOVA:

> Let’s run the analysis as if we have subjects nested within
each factor (not crossed)



Old Analysis — No Repeated Measures

Between-Subjects Factors

M

condition  1.00
2.00
3.00

Tests of Between-Subjects Effects

Dependent Variahle: time

Type lll Sum
Source of Squares hean Square F Sin.
Corrected Model 1a¥4.0002 2 Ta7.400 1.2849 a0z
Intercept 105202845 1 | 10582028450 |17353.524 .ooo
candition 1875.000 2 787.400 1.2849 a0z
Errar 9093500 14 BO6.233
Total 105305953.0 18
Corrected Total 10668.5900 17

4. R Sguared = 148 {Adjusted R Squared = .034)




m Repeated Measures: Data File in SPSS

cat singlefactor.sav [DataSet0] - SPSS Data Editor
File Edit ‘iew Data Transform Analyze Graphs  Utilities Add-ons  Window Help

E B W mph @ P EHER % @

16
subject | al | a2 | a3 | war | war |
1 1.00 745.00 7b4.00 74,00 The data are
2 2.00 77700 786.00 786.00 arranged in a wide-
3 3.00 734.00 733.00 7b3.00 format:
4 4.00 773.00 801.00 797.00 - One variable per
a 5.00 796,00 786,00 785.00 column.
b B.00 721.00 732.00 740.00
7
=
5
10
11
12




m Running the Analysis

Graphs  Utlities  Add-ons  Wwindow  Help Repeated Measures Define Factor(s)

w_ Reports r T {a Within-Subject Factar M ame:

Multiple Response
Cuality Cankral
Rz Curve,..

Descriptive Statistics b factor]
Compare Means k
1 izeneral Linear Model 3 Univariate, .. = Mumber of Levels: |
450 Generalized Linear Models  » ralkivariate. ..
77 0 Mixed Models A  Repeated Measures...
. Correlate k ]
34.0 Regression , Yariance Components, ..
/9.0 Loglinear [ |
36.0 Classify L |
210  Data Reduction b Memanme Mems:
Scale »
Monparamekric Tests [
Time Series L
Survival L
', E
[

armos 7




m Running the Analysis

Il Repeated Measures E|
]

Repeated Measures Define Factor(s) E| & subict Within-Subjects Variables

within-Subject Factor Mame: )

BEIE

Mumber of Lewvels: a2l
_ ance

A 0

beazure Mame:
Between-Subjects Factor(z]:

]

Covanates:

]

b odel... ] [ Contrasts... ] [ Plats... ] [ Post Hoe. . ] [ Save... ] [ O ptions. ..




m Analysis Output: SPSS

factor

And:

Tests of Within-Subjects Effects

heasure:MEASLIEE 1

- There are two relevant parts to SPSS- a test for the

Type lll Sum
Soyrce of Sguares of hMean Sguare F Sig.
factort Sphericity Assumed 14745.000 2 Tar.a00 14.432 oo
Greenhouse-Geisser 14746.000 1.610 978.061 14432 .0o3
Huynh-Feldt 1675.000 2.000 Ta7.400 14432 001
Lovwer-haund 1575.000 1.000 1475.000 14 432 013
Errorffactor!)  Sphericity Assumed a44 66T 10 a4 867
Greenhouse-Geisser 45 66T g.052 B7.771
Huynh-Feldt 545 BET 10.000 54 56T
Lovwer-haund 545 66T 4.000 109,133
Tests of Between-Subjects Effects
Measure:MEASIIREE_1
Transformed Yariable:Avers
Type I Sum
Soyfre of Sguares if Mean Square F Sin.
Intercept 1.052E7 1 1.052E7 | B1583.773 .ooo
Error 4847833 A 1709567




m Analysis Output: Table 16.3

The A4S data table

Types of strings

Subjects a1 g as Sum
51 Z:,? ;gz :,:: g’ii? Calculation of the bracket terms
8 . » N 1 ) p
o 734 733 763 | 2230 ] = LA AL A0 FABITT o aios
54 779 801 797 2.377 ' m ‘ 6
P 756 786 785 2,327 5] = 5 5% _ 22837 + .- +2,193° — 10.598.830.3
sa 721 732 740 2,103 ) a 3 ST
Sum - 4512 - 4602 4647 13761 [¥] = 52 ¥4 = 745% + 7647 + -+ + 7327 + 7407 = 10,530,953.0
Y, YE 3,395,728 3534002 3,601,223 o
Mean  T752.00  T67.00 77450 ) = I~ BT 105202845
y 23.26 29.22 20.60 an  (3){6}
sa, 9.50 11.93 8.41
Summary of the analysis of variance
Sotree 54 df ME F
A [Al - [i] = 1,575.0 2 TRTHD  14.43%
5 : 1S~ [T = 85478 5 1,709.58
Ax S Y]~ [A] — {S] + [T = 5457 10 54.57
Total Vi~ = 10,6685 17

* < 05




m Matching Output to Interpretation

Measure:MEASLIRE 1

Tests of Within-Subjects Effects

Type Il Sum

Source of Sguares oif Mean Sguare

factor] Sphericity Assumed (Earmemululs £ .
Greenhousze-Geizser 14745.000 1.610 H78.061
Huynh-Feldt 1575.000 2.000 F87.a00
Lower-hound 1675.000 1.000 16875.000

Errorifactorly  Sphericity Assumed émuur ] af
Greenhouse-Geizser 545 667 g.052 67771
Huynh-Feldt 5445 667 10,000 54 567
Lower-haund 545 667 5.000 109,133

F Sii.

4352 om
14.432 003
14.432 am
14.432 013

Source: A

Tests of Between-Subjects Effects

Measure:MEASURE_1

Transformed VariahleAverage
Type [l Sum
Soyre of Squares if Mean Square i,
Intercept 1.052E7 1 1.052E7 1R3 773
Errar a4y 833 <—' a 1709567

Source: SxA

Source: S



EFFECT SIZE AND POWER



m Estimating Treatment Effects

- The estimate of the partial omega squared is:

a’*)z _ (a_l)(FA_l)
4 (a-1)(F,—1)+an

« Or, perhaps more readily obtainable is the partial
squared correlation ratio (n%or R?) is obtained by:

SS,
SS, +5S ¢

I\2 .
77<A> o



In Our Data...

Tests of Within-Subjects Effects
Measure:MEASLUIRE 1

TI:IlﬁllfpSE l“agrg;n of hMean Sguare F Si
fga?:?nrﬁe Sphericity Assumed 1q5?5.nnn€ 7 Mﬁgm Source: A
Greenhouse-Geisser 1574.000 1.610 §78.061 14.432 003
Huynh-F eldt 1575.000 2.000 TET.S00 | 14432 a0
Lower-bound 1575.000 1.000 1676000 | 14432 03
Errorfactorl)  Sphericity Assurned T T —— L L Source: SxXA
Greenhouse-Geisser 546,667 8.052 6Y.771
Huynh-F eldt 545667 | 10000 54 567
Lower-bound 545 667 5.000 109,133

o (@R -l (3-1)@4.332-1)
“* (a-1)(F,-1)+an (3-1)(14.332-1)+3*6

Tests of Between-Subjects Effects

Measure:MEASURE_1
Transformed Yariahle Average

Type [l Sum
Soyrce of Squares if Mean Square F i, .
Intercept 1.052E7 1 1.052E7 | B1A3723 Source: S
Errar 8a47 833 <—' ] 1709.867
~ SS, 1575
77<A>

T 8S,+SS,. 15751545667



m Power and Sample Size

Power and sample-size calculations in the within-
subject design are based on the measures of effect size

- The example data (and the summary of the analysis of
variance) contained in Table 16.7 can be used to

illustrate the calculation of a required sample size to
achieve a given power



ADVANTAGES AND LIMITATIONS
OF RM ANOVA



m Advantages and Limitations

. A study conducted with a within-subject design obtains
more data from each subject than one conducted with a
between-subjects design, and the analysis has a smaller
error term

- Repeated observations of a subject, however, cannot be
collected under constant conditions, and any earlier
observation has the potential to influence later ones

- The assumptions that underlie the analysis are more
complex than those of the between-subjects designs



Advantages of the

Within-Subject Design

- The three principal advantages of a within-subject

design are:
1.  More efficient use of subject resources (i.e., the economy of
the design)

2. Greater comparability of the conditions (i.e., increased
control of subject variability)

3. Reduced error variance (i.e., the treatment-by-subject
interaction variability is almost always less than the pooled
within-group variability)



m Limitations of the

Within-Subject Design

- The within-subject design has both statistical and
nonstatistical limitations.:

1. The statistical problems mostly concern the sensitivity of the
assumptions of the analysis

+ The scores produced by a single subjects are more alike than are the
scores produced by different subjects (i.e., the observations are not
independent).

2. The nonstatistical problems arise from the fact that the
repeated observations must necessarily take place under
somewhat different conditions, and some aspect of this
difference, other than the treatment being investigated, can
affect the scores (e.g., incidental effects: practice and

fatigue, memory; carryover effect, contrast effect, context
effect)




m Limitations of the

- Within-Subject Design

. A carryover effect occurs when a treatment has a
transient effect that carries over to affect whatever
condition is administered immediately after it

- A contrast effect is a carryover effect that occurs when
two treatments interact in a way that depends on both
conditions

. A context effect occurs when a subject's behavior is
influenced by the context provided by exposure to
other conditions in an experiment



THE STATISTICAL MODEL



m Statistical Models

. The difference between the models for the between-subjects and
within-subject designs lies in the assumption of independence of
the scores

> Two different models have been applied to within-subject data (i.e.,
univariate and multivariate)

- Inthe univariate approach, each score Y;; is viewed as a separate
random variable made up of systematic and random

components, including a component specific to the subject

. In the multivariate approach, all the scores from a single subject
are treated as a single statistical entity; fewer assumptions about
the data are required

- The authors emphasized the univariate approach (see p. 373)



m The Univariate Model

- Ascore Y; is expressed by the equation:

Y, = +a;+S,+(Sa), +E,

« Where:

> My is the grand mean.

> q, is the treatment effect.

> S, is the overall ability of the subject i.
>

(Sa); is the idiosyncratic response of the subject in a
particular condition.

> E; is the variability of the individual observations.
> Note that S;~ N(0,04?), (Sa); ~ N(0,0, %), and E; ~ N(0,0

errorz)'



m Expected Mean Squares

- The expected mean squares are

1
n-1

E(MSS) aUS T Gerror
E(MSAXS) GAXS T G

E(MSA) ZO[ _I_GAXS +Gerror

error

« S0, MS,,. is the error term...because we expect F =1 if
zero treatment effects



m Assumptions...

- For the univariate model, the variances of all the
treatment conditions are identical (i.e., homogeneity of
variance) and the correlations between the scores are
identical (i.e., homogeneity of correlation)

- When these restrictions hold, the data are said to show
compound symmetry



m The Multivariate Model

. The set of scores has a multivariate normal distribution
> A multi-variable extension of the normal distribution

- The multivariate model relaxes the assumption of
compound symmetry

- When the assumptions of the univariate model hold,
however, the multivariate tests have less power

- We will not talk about the Multivariate approach in this class
> You will have to take ERSH 8350...



THE SPHERICITY ASSUMPTION



m The Sphericity Assumption

- Aslightly weaker assumption is all that is needed than
the assumption of compound symmetry

. Compound symmetry need not hold for the scores

themselves, but only for the differences between pairs
of scores

- This condition is referred to as circularity or sphericity



m The Sphericity Assumption

- There are tests for violations of sphericity of compound
symmetry

- The most widely used of these, a likelihood-ratio test
statistic W developed by Mauchly (1940), is included in
a number of computer programs

. This statistic should not be significant for the analysis to
proceed



m Dealing with Violations of Sphericity

- There are four approaches we can take.
1.  Box (1954a) suggested using the values:

df ,,=e(a-1) and dfy, ., =e(a-1)(n-1)

where e measures the extent to which sphericity is violated.

Use Geisser and Greenhouse (1958) or Huynh and Feldt (1976),
of which the latter has the greater power



m Dealing with Violations of Sphericity

2. The smallest value of e = 1/(a-1) can be used and,
hence,

df ,,=1 and df n-1.

denum

.« This is known as the conservative F test suggested by
Geisser and Greenhouse (1958) (i.e., Lower-bound in
SPSS).



m Dealing with Violations of Sphericity

3. We may use the multivariate approach.

4. We may forget about the omnibus test and use tests of
contrasts, which are immune to violations of
sphericity.



SPSS has your back...

®

Tests of Within-Subjects Effects

Measure:MEASUEE 1

Type Nl Sum

SnUfce af Sguares df Mean Sguare F Sig.
factort Sphericity Assumed 1574.000 2 veT.a00 14.432 .om

Greenhouse-Geisser 1575.000 1.610 9Fa.061 14,432 003

Huynh-Feldt 1875.000 2.000 Tar.a0o 14.432 001

Lovwer-bound 1875.000 1.000 1475.000 14.432 013
Error(factor!ty  Sphericity Assumed 44 BRET 110 a4 867

Greenhouse-Geisser 0445 66T 8.052 BY. 7T

Huynh-Feldt 545 bRT 10.000 54 867

Lowver-bound 448 667 5.000 109133




INCIDENTAL EFFECTS



m Incidental Effects

- Factors such as the position in testing sequence or the
type of material are examples of the nuisance variables

- When such a variable becomes an explicit factor in the
design, we will refer to it as either a nuisance factor or
an incidental factor



m Incidental Effects

- The biases that arise when the treatments are
confounded with incidental aspects of the study, such
as the order of testing or the materials, can be avoided
by breaking up any consistent relationship between
them

. There are two ways to do this:

> In randomization, the relationship between the treatments
and the incidental aspects of the study is chosen randomly

> In counterbalancing, it is constructed in a way that
systematically balances the incidental effects across the
study (e.g., Latin square, see p. 381)



m Randomization

- The randomization procedures are the easiest to apply,
but they cannot assure that the incidental factor is

completely balanced across treatment and may have
large error term



m Counterbalancing and the Latin Square

- The arrangement of the conditions in Table 17.1 is
known as a Latin square

- The key feature of the Latin square arrangement is that

every latter appears exactly once in each row and each
column



ANALYZING A
COUNTERBALANCED DESIGN



m The Omnibus Analysis

See the analysis using the numerical example in Table 17.2.

Two within-subject analyses were performed, one for the
treatment conditions (factor A) and the other for the order
in which the conditions were administered (factor P).

The error sum of square is
> SS = $S,.. - SS - SS¢

residual

with the degrees of freedom
> df = df, .y - df, - dfe

residual



m The Importance of Interactions

in a Latin Square

- The particular configuration of conditions in a Latin

square makes it impossible to extract information about
any interaction that may be present

- See Table 17.3 for the steps to test an effect after
removing the influence of an incidental factor from the
individual scores. See Table 17.4 for an example



- The repeated measures ANOVA partitions variability

due to a subject

Removing such variability aids in the power of the test

- The repeated measures analysis described in this class

was an initial first pass at the approach



« |In Lab:
> How to do repeated measures ANOVA in SPSS

. Homework:

> Assigned tomorrow morning, due Wednesday, December 2 before
class

. Next week:

> Thanksgiving break
+ Have a good break

- The week after:
> No reading — intro to mixed models lecture
> Final exam discussion (bring your questions)
> Lab on mixed models



