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. Chapter 4 — Analytic comparisons
> The need for analytic comparisons
> Planned comparisons
» Comparisons among treatment means
> Evaluating contrasts with t-tests
> Orthogonal contrasts

- Chapter 5 - Analysis of trends

> Using contrasts to do something a bit more practical
+ Linear trends
+ Quadratic trends



Still Vigilant...
TODAY’S EXAMPLE DATA SET



m Vigilance Task While Sleep Deprived

There are a = 4 conditions,
namely, 4, 12, 20, and 28
hours without sleep

There are n = 4 subjects
randomly assigned to each
of the different treatment
conditions

The vigilance task score
represents the number of
failures to spot objects on a
radar screen during a 30-
minute test period




m Data (computation p. 51)

Hours without sleep

4 hr 12 hr 20 hr 28 hr
a, a, as a,
37 36 43 76
22 45 75 66
22 47 66 43
25 23 46 62
Mean: 26.50 Mean: 37.75 Mean: 57.50 Mean: 61.75



| SPSS Results

®

Descriptives
Efrors
95% Confidence Interval for
Mean
b M| Mean Std. Deviation Std. Error | Lower Bound | Ulpper Bound Minirmum M aximum
1.00 4 268000 714143 387071 15.1364 a7 .BE36 22.00 ar.on
2.00 4 37.7a00 1093542 46771 20.3493 8514807 23.00 47.00
2.00 4 a7y.a000 15.802649 779134 328318 821682 43.00 Fa.00
4.00 4 G1.7400 1381726 B.90363 39 TE3T 83.7363 43.00 FR.00
Tatal 16 4587450 18.47476 4 618649 36.03045 55.7195 22.00 TE.00
ANOVA
Errors
2um of
= Squares df hean Sguare F Si.

Between Groups 3314.250 3 1104.740 7.343 005

Within Groups 1805400 12 160.458

Total 5119.750 14




THE NEED FOR ANALYTIC
COMPARISONS



m The Need for Analytic Comparisons

- This chapter focuses on the analysis of experiments in
which the independent variable consists of qualitative
differences among the treatment conditions

> The interest is in comparing specific treatment conditions

« An analytical comparison:

> A meaningful comparison between two or more treatment
conditions that are components of a larger experimental
design (i.e., planned or post hoc comparisons)



m The Composite Nature of SS,

- For an equal n observations per group:



m The Composite Nature of SS,

« Because:




m Example Decomposition

A B C D

1 Comparison Meani Mean | (M _I-M )82
2 1v.2 26.5 37.75 126.5625
3 1v.3 26.5 57.5 961
4 |1v. 4 26.5 61.75 1242.5625
5 (2v.3 37.75 57.5 390.0625
6 2v.4 37.75 61.75 576
/ 3v. 4 57.5 61.75 18.0625
8 nfa=1

9 Sum*(n/a) 3314.25

3
J



m The Omnibus F Test

- The overall variation among the treatment means
reflected in SS, may be better understood by examining
these contributing parts

> The comparisons between pairs of means

. An F ratio based on more than two treatment levels is
called the omnibus or overall F test

. |ldentifying the sources that contribute to the significant
overall F should be performed to understand
differences among the treatment means



PLANNED COMPARISONS



m Planned Comparisons

. Analytical comparisons conducted directly on a set of
data without reference to the result of the omnibus F
test is possible

- These are called the planned comparisons



m Planned Comparisons

- For instance, instead of testing the overall hypothesis
> Hot g = 1y = 3 = 1y

. We may perform the following four comparisons:
(1) Hy:p=n,
(2) H,:p =p,
(3) Hy:p, =p,
(4) Hj:p;=u,



COMPARISONS AMONG
TREATMENT MEANS



m Comparisons Among Treatment Means

Comparisons that can be reduced to miniature
experiment are called also contrasts or single-df

comparisons
> ForeachA=2(i.e., df=1)

- We may extend the comparisons to situations where
the subsets of three or more means are tested.



m Linear Contrasts

From the null hypothesis of a comparison we may
represent the difference between two means with y

For example: H,:p, = Hs ;“3

. Hy, +H3 | _
Can be rewritten: HO'“I_( ) j—0—>\|1—0

Velding: =1 )+ G5 Jin)

2 2



m Linear Contrasts

From the null hypothesis of a comparison we may
represent the difference between two means with y
_ My Ty Ty

For example: Ho iy = 3

Ko +Hs T 1y
H,:u, —
Can be rewritten:  © "t ( 3

ij—)\V:O

Vielding: , _ (4 1Yy, )+ (— lj(luz)+ (— lj(u3)+ (— l)(m)

3 3 3



m The New Null Hypothesis

From the last slide, our contrast is:

o= () (5 i)+ - Jo)

2

- The numbers multiplied by each mean are called
coefficients
> Here they are +1, -.5, and -.5

Note that, now, Hy: y =0
» Our coefficients sum to zero



m Contrasts, In General

- The general formula is:
a
V=2 cm,
j=1
Here, c; represents the coefficient multiplying group |

. There is a constraint that the coefficients sum to zero
> Keeps the null hypothesis such that =0



m Vigilance Example Contrasts

For our vigilance example, the contrasts would be:

[ ]
. & | _a | __a

Mean: 26.50 Mean: 37.75 Mean: 57.50 Mean: 61.75
1) H,:p,=p, >y=Y,-Y,=2650-37.75=-11.25
(2) Hy:p,=p, >9=Y,-Y,=26.50-61.75=-35.25
3) H,:p,=p, > y=Y,-Y,=37.75-57.50=-19.75
(4 H,:p,=p, >¥=Y,-Y,=57.50-61.75=-4.25



m Constructing Coefficients

Pairwise comparison: a comparison between two groups
(e.8., v =1 1)

Complex comparison: a comparison between an average of
two or more groups and either a single group or an average
of two or more groups

B TR o S o N o

v 2 2

If the coefficients are expressed as a set of numbers
({.5, .5, -.5, -.5}), we call them the relative weights of the
groups



m The Sums of Squares for a Comparison

If a

- then the sum of squares for the contrast is:

A2
3§ =¥

a
2
ZCJ

j=1




For the vigilance example:

1) ¢, =-11.25->88, = % jz__ll)zlf(s;() =253.125

(2) ¥,=-3525->SS, = % 121305;2(5_2 iy =2485.125
3) ¥;=-19.75>8S, = ; j; ;1&7;: . 780.125

4)  §,=-425->SS, = 4425 36.125

C0+0+17 +(=1)



m Evaluating Comparisons

If the comparisons are planned comparisons, we may
not even bother to perform the omnibus F test

For each contrast, however, the F ratio is formed as

— MS\I’
MS,,

F

where df, = 1 and df;,, = A(n-1)

« Our null hypothesisis: H,, W =0
Our alternative hypothesisis: H,. W #0



m Vigilance, Continued

- From our vigilance example:
+ M5, =150.458 | e
. df " — 1; de/A — 12 ota 5119.750 15
(1) F. = Ssﬁfl/df\v _ 253.125 —1 68'p —0219 P-values obtained
¥, — = 1. s P — V. ing “fdist”
' MSg,  150.458 using fdis

function in Excel

SS, /df,  2485.125

2) F = — =16.52;p = 0.002
@ &, MS,,  150.458 P
SS. /df
3) F, =—n Y- 780125 _ 5 19.520.042
© MS,,  150.458
SS. /df
@) F ooow @ 36125 404000633

Yo MSg, 150458



m Unequal Sample Sizes

Up to this point, our formulae were for equal sample
sizes within group
> Not likely in practice

Let n; indicate the number of subjects in group a;
. The contrast sums of squares is

MS,, and F can be obtained accordingly



ORTHOGONAL CONTRASTS



m Orthogonal Contrasts

- We can divide any sum of squares into as many
independent sums of squares as there are df

Orthogonal comparisons reflect nonoverlapping pieces
of information

- The outcome of one comparison gives no indication
about the outcome of any other orthogonal comparison

Orthogonality means independence of information



m What is Orthogonal?

- A numerical test of the orthogonality of any two
comparisons is provided by the following relationship
between the two sets of coefficients:

cy; and c,; are corresponding coefficients in the two
comparisons.



m Are We Orthogonal?

. Qur contrasts and coefficients:

1) 1 -1 0 0
2) 1 0 0 1
3) 0 1 1 0
(4) 0 0 1 -1

« Sum of crossproducts ( :E%% ):

(1)
(2)
(3)
(4) 0 1 1



m Orthogonality and ANOVA

- The number of orthogonal comparisons for a given set of
data is a-1,
> The df for the SS, (e.g., Helmert contrasts)

- Noin agreement on the issue of placing orthogonality
restrictions on the nature of the planned comparisons

. “Researchers must exercise judgment in the planning stages
to guarantee that the important questions studies in an
investigation can be answered unambiguously by the
proposed experimental design”

- Nonorthogonal comparisons require special care to avoid
logical ambiguities



COMPOSITE CONTRASTS DERIVED
FROM THEORY



m Contrast Coefficients that Match a Pattern

- The contrast coefficients that reflect theoretical pattern
can be constructed using the steps:

1. Use each predicted mean as a starting coefficient

2. Subtract the average of these means from the predicted
means so that they sum to zero

3.  Optionally, simplify the coefficients to be integers

- The testing of the observed pattern of means with the
theoretically-derived expectation as well as the
assessment of the fit of the outcome to the predicted
pattern can be performed



The University of Georgia

Chapter 5

Analysis of Trend
(or — specific types of contrasts)



ANALYSIS OF LINEAR TREND



- Trend analysis is a specialized form of single-df
comparisons when a quantitative independent variable
is manipulated

- Treatment levels represent different amounts of a single
common variable
> As in our vigilance task

- We usually plot the entire set of treatment means on a
graph, connect the points, and examine the display for
any underling shape or trend



m Data (computation p. 51)

Hours without sleep

4 hr 12 hr 20 hr 28 hr
a,; a, as A,
37 36 43 76
22 45 75 66
22 47 66 43
25 23 46 62
Mean: 26.50 Mean: 37.75 Mean: 57.50 Mean: 61.75



m Testing for Linear Trend

- A way of assessing linear trend is to use a set of
coefficients that represents an idealized version of a
straight line (see Appendix A.3 on p. 577)

- There are A-1 orthogonal polynomials possible

For our example, the linear trend would be:

-3 -1 1 3



m The Single-df Linear Trend Test

« The tests used in Chapter 4 are all the same
> Talk about convenient!

First, form the contrast: ¥=) cY,
j=1
55, = W’
- Then, compute the SS: v~ a ]
>e
J
j=1
MS
- Then, construct the F: F=—
MSS/A



« One of the easiest visual
plots possible is to look at _—

the mean for each group /

. X-axis: IV level 0 /
« Y-axis: Group mean 2

20

. Does this look linear?

10

0




m Linear Trend in Vigilance?

- We will now test for a linear trend in vigilance
- 1. We construct our contrast:

Y=Y cY =-3%265+-1*37.75+1%57.5+3%61.75

J=1

¥ =125.5

. 2. We construct the contrast sums of squares
~n2 2
n 4*125.5
SS, = —— =

Y& o (C3P (1) 412 +3
2.©
=

=3150.05




m Linear Trend in Vigilance?

- 3. We compute the contrast F-statistic

ANOVA
MS,  3150.05
\ * Sum of
F = = = 2 . 4 - Squares f Mean Sguare F Sig.
MS 1 5 O 45 8 Between Groups | 3314.250 3 T104.750 7.343 005
S/A . Within Groups | 1805500 12 150,458
Total 5119.750 15

- 4. We compute the p-value (fdist(20.94,1,12)):
> p=0.001

- From this, we reject the null hypothesis
> There is a linear trend in vigilance scores across sleep

deprivation



ANALYSIS OF QUADRATIC TREND



m Analysis of Quadratic Trend

- A quadratic trend is one that displays concavity, a single
bend either upward or downward

- The coefficients of orthogonal polynomials in Appendix
A.3 can be used to test quadratic trend

- The testing of quadratic trend can be accomplished by
the formulae on the next slide



m The Single-df Quadratic Trend Test

« The tests used in Chapter 4 are STILL all the same
> Talk about convenient!

First, form the contrast: ¥=) cY,
j=1
55, = W’
- Then, compute the SS: v~ a ]
>e
J
j=1
MS
- Then, construct the F: F=—
MSS/A



- Quadratic contrast coefficients (Appendix A.3):

1 -1 -1 1

. 1. We construct our contrast:
P=> ¢ Y =1%265+-1%37.75+-1%57.5+1%61.75

j=1

¥ =-7.00
. 2. We construct the contrast sums of squares
n 2 2
n 4*—7
SS, = —— = = 49

R I () o G ) SN
c’
2.°;



m Quadratic Trend in Vigilance?

- 3. We compute the contrast F-statistic

ANOVA

MS, 49

F = Y — =0.33
— = = V. - Squares f Mean Sguare F Sig.
MS 1 5 O 45 8 Between Groups | 3314.250 3 T104.750 7,343 005
S/A . Within Groups 1805 500 12 150 458

Total 5119.750 15

- 4. We compute the p-value (fdist(0.33,1,12)):
» p=0.579

- From this, we retain the null hypothesis
> There is not a quadratic trend in vigilance scores across sleep
deprivation



m Higher-Order Trend Components

. Testing for Higher-Order Trends:

> A curve that has two reversals is called a cubic trend
component, and one that has three reversals is called a
quartic trend component

> The higher-order trend can be tested with the coefficients in
Appendix A.3.

> For example, we may calculate the cubic trend for a =4

. In general, you keep testing until you retain a null

hypothesis for a trend
> We retained the quadratic so we could have stopped
> Will continue to demonstrate contrast effects



- The cubic contrast coefficients (Appendix A.3):

-1 3 -3 1

1. We construct our contrast:
Y=>cY =-1%26.5+3%37.75+-3%57.5+1%61.75

j=1

W = —24.00
2. We construct the contrast sums of squares
A2
4%_04
3§ =¥ _ ~115.2

! icz (1) +3* +(=3) +1°

j=1



m Cubic Trend in Vigilance?

- 3. We compute the contrast F-statistic

ANOVA

MS 115.2 e

df

fean Square

Sig.

F = v = = 077 =»
MS,, 150.458 Wit Grope

Total

3314.240
18045.500
5119.750

3
12
15

1104.740
140.448

7.343

.004

- 4. We compute the p-value (fdist(0.766,1,12)):

> p=0.399

- From this, we retain the null hypothesis

> There is not a cubic trend in vigilance scores across sleep

deprivation




m Are We Orthogonal?

- The three previous contrasts were orthogonal:

(1) -3 -1 1 3
(2)
(3) -1 3

« Sum of crossproducts ( :E%% ):

(1)
(2) 0
3) 0 0



m Contrast Orthogonality

- When contrasts are orthogonal and complete (using all
A-1 of them), the sum of SS, sums to SS,

. SS,  =3150.05
* SSquadratic =49
d SSCUbiC - 115.2

* SSIinear t SSquadratic t SScubic @
/ ANCWVA
Errors

Sum of
= Sguares df Mean Square F Sig.
Between Groups 3314.250 3 1104.750 ¥.243 .00a

Within Groups 1805500 12 150.458
Total A119.740 15




PLANNING A TREND ANALYSIS



m Issues in Trend Analysis

- There are two questions that surround the choice of
intervals:
> The nature of the spacing between adjacent levels
> The number of intervals

. |tis better to use equally spaced intervals

- Trend Coefficients for Unequal Intervals:
> Coefficients can be found by simply picking numbers that agree
with the actual spacing and adjust them to sum to zero
- The Number of Intervals:

> Seriously consider investing in a substantial experiment that
includes a sufficient number of treatment conditions to provide
convincing evidence of the trends



« Other Functional Forms
> Other functions (e.g., exponential or logarithm) can be used

- Monotonic Trend Analysis

> When we have only predicted the rank order of the
conditions, we have a monotonic hypothesis based on a
monotonic function

> We may apply the logic behind the trend coefficients in
Appendix A.3 appropriately modified for a given problem



. Contrasts are specific hypothesis tests that examine how
each mean may differ from all the other means

- Trend analysis takes the idea of contrasts and maps it
onto looking at trends

- Trend analysis is typically conducted when the factor
levels have some understandable scale

. All contrasts are executed the same way — convenient!



. In Lab:

> How to do contrasts and tests for trends in SPSS

- Homework
> Up on ELC now, due at the start of class on 9/16

- Reading for next week:
> Chapter 6: Pairwise Comparisons



