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Today’s Class

* More two-factor ANOVA:

— Linear statistical model.
— Blocking factors.

— Measuring effect size.

— Determining sample size.



THE STATISTICAL MODEL



The Linear Model

* The model underlying the present analysis is:

Yk = U + B + (0P )i TEije.
 Where:

— W, is the overall mean of the population.

— 0, = I, - Yy is the average treatment effect at level a,

— Bk W, - K is the average treatment effect at level b
— (aB); = My - Wy~ Ky + My is the interaction effect at ceII
ajbk_

— B = Yy - Wy is the experimental error associated with
each score.



Null Hypotheses

* The null hypothesis for the A main effect:

Hyoa,=0,=...=0,=0

* The null hypothesis B main effect:
Ho: B;=B,=...=B,=0

* The null hypothesis for the A xB interaction:
Ho: (0B),; = (aB), = ... = (aB),, =0



Expected Mean Squares

* The E(MSg/,5) = 0> and other expected
values of the mean squares are:

E(MSA) = Game”™ + bn(64°)

EEMEE} = Gﬂ_-u;.'-:': + E—“EBEJ:I':

E(MS4 .5) = Oamee” + 0(84 .57,



Fixed-Effects Model Expected Mean

Squares
N a
847 = .:_‘
1=1
- a-1
b
DB
O = k=1
b-1



E(MS) Notes

* Note that E(MS)'s are the average values of the respective
mean squares obtained with repeated sampling from a
given set of population.

 Under the assumption that the null hypotheses are true, no
effects are present.

— Consequently, all 62 terms will be deleted from the expected
mean squares.

* The ratios of the mean squares of the effect and the error
will follow the respective F distributions with a set of two
degrees of freedom (numerator and denominator).



The Linear Model in a 2 x2 Table

* |[n a2 x2 design, the linear model is
particularly simple because all the tests have
one degree of freedom so are equivalent to
contrasts on the means.



Violating the Assumptions

The independence assumption is fundamental to the
analysis.

Normality and variance homogeneity concern with the
distribution of scores within the treatment
populations.

For the test of normality, we may use Kolmogorov-
Smirnov type tests (Conover, 1999).

We can test heterogeneity with either the Levene test
or the Brown-Forsythe test.

Alternatively, we may use the F__, procedure.

— If F,, > 3, then we may employ a more stringent
significance level.



DESIGNS WITH A BLOCKING FACTOR



The Randomized-Blocks Design

* One may introduce a blocking factor to
capture variability that is irrelevant to the
effect of interest and thereby reduce the size
of error term.

— Perhaps to make groups of subjects more
homogeneous within a block.

* |n a randomized-blocks design, the blocking is
part of the original study and controls the
assignment of subjects to groups.




RBD Example

* Suppose that a researcher is investigating the effects of
four sets of instructional material on how well college
students learn a body of quantitative material - for
example, say statistics.

 The simplest procedure is to obtain a sample of 60
students, say, and to randomly assigh n=15 subjects to
each of four groups to create a completely randomized
single-factor experiment.

* Suppose the researcher realizes there is great
variability in the student performance arising from
differences in their quantitative skills before the study
started.



More of the RBD Example

* The variability makes the MS;, large and
limits the power of the design to detect
differences among the instruction conditions.

— To increase power one can increase the sample
size — but here cannot do that.

— Another way to increase power is to decrease the
variability of the scores.

* Creating a blocking factor will aid in
decreasing the variability of the scores.



Table 11.10

Table 11.10: A comparison of a completely randomized single-factor design and a
randomized-blocks design.

Completely randomized (unblocked) design

Instructions (Factor A) Source df
i @0 (3 4 i A a—1= 3
] n=A5 i n =15 =151 0= 15 SiA {71} = 56
[ Total are —- 1 =59

Randomized-blocks design

hstructions (Factor A) Source df
Hlocks 2 i s a4 A g—1= 3
by nw=H {n=50 | n=h| n=p i B howdla 2
by n=din=5n=81n=h ! AxB  {o-1)b-1)= 6
fa n=hHin=5nmi |l nwb ;} SIAB ab{n-—-1) = 48
Total abry — 1 = 59




Post-Hoc Blocking

* |n a post-hoc design, the second factor is
created after the data are collected.

e Use the analysis of covariance (see Chapter
15) when the potential blocking information is
available as a numerical quantity.



MEASURING EFFECT SIZE



Complete Omega Squared

A general formula for the complete omega
squared is:

':-_l'a_rﬁa_n:tz
(D st~ = i (26)
Gt{}talz
Where:
d — 21 2L 21 2 Y
Oiptal™ = T4~ TOp~ 04 -5~ T0Oz48". (27)

Recall, 02 comes from the MS for each term.

We use also the F values to obtain the omega
squared (see Equation 11.20).



Obtaining Effect Size Estimates

 We may obtain estimates of the above terms
using:

effect

m
effect

total

e Where:

] /AR =:"n"153,:.,3.



More Formulae

2 2 2

¥ ¥
8] =g +o_ +oc ~_ +g -
total A E A =B S/ABR

) dfa(MS, - MSsa8)
g = ] (32)
A abn

b

dfp(MSg - M35 48)
o = : (33)

abn

dfa .e(MS4 .5 - MSsia8)
g = ] (34)

abn



Partial Omega Squared

* The partial omega squared is defined as:

O affact
)] -"'_'I'__l'-".*\:t_. =

Oafact™ T Oamns

* The estimate is given by

0] - =
effect

* The partial omega squared relates the treatment
component to the sum of only two (i.e.,

treatment and error) components.



Descriptive Effect Measures

* The squared correlation ratio R? ., can be
obtained using:

Fima=



More Descriptive Measures

* Another descriptive measure is the standard
difference between means.

* For example,

Y -Y
11 21
dal’:-l.ai':-l =

I:SSH T 55;1} 'Lidfll T df}lj’



DETERMINING SAMPLE SIZE



Determining Sample Size from
Population Effects

e Using the Sample Size Table with a Main
Effect: Use Table 8.12.

— Note that the effect with a partial measure (e.g.,
w4°) should be employed.

— The sample size can be found for all the subjects
at a level of whichever factor you use, not for
those in one cell (e.g., b, instead of n).



Power Charts

e Using the Power Charts:

— If you need values of power or effect size other
than those in Table 8.1, you can use the power
charts in Appendix A.7. The total sample size N
(e.g., abn)is

D:Eij,iﬂim_l,}ﬁmﬁ:
N =

O affuct
 where ¢ is the noncentrality parameter from
Appendix A.7.



Using Estimated Treatment Effects

* The easiest way to transfer information from
one study to another is to use the estimates of
partial omega squared [*(W)] cfrect’

 We can use Table 8.1 if we are only interested
in the main effects.

 We can use Equation 11.25 and the power
charts if we need a value other than those in
the table.



Estimating Power

 The power of an existing experiment can be
obtained using:

( N Gum
Qafe =

V(i 1) O

and the power chart of Appendix A.7.



Final Thought

[] Today we took more concepts we
learned in the first 8 chapters
and applied them to the two-way
ANOVA.

FINAL
THOUGHTY

0 The process of using analysis of variance in multi-factor studies
follows the process of using a one-way ANOVA.

0 We will become more familiar with such concepts as we
continue through the book.



Next Class

e Midterm handed out.
e Midterm discussion.



