Psychometric Models: The Loglinear Cognitive Diagnosis Model

Section #3
NCME 2016 Training Session

Lecture Objectives

 Discuss relevant mathematical prerequisites for understanding diagnostic measurement models

 Introduce the loglinear cognitive diagnosis model – a general measurement model for DCMs

Show some models the LCDM subsumes

Development of Psychometric Models

- Over the past several years, numerous DCMs have been developed
 - > We will focus on DCMs that use latent variables for attributes
 - > This lecture focus on the only one you should pay attention to: the Loglinear Cognitive Diagnosis Model
- Each DCM makes assumptions about how mastered attributes combine/interact to produce an item response
 - > Compensatory/disjunctive/additive models
 - Non-compensatory/conjunctive/non-additive models
- With so many models, analysts have been unsure which model would best fit their purpose

> Difficult to imagine all items following same assumptions

General Models for Diagnosis

- Recent developments have produced very general diagnostic models
 - General Diagnostic Model (GDM; von Davier, 2005)
 - > Loglinear Cognitive Diagnosis Model (LCDM; Henson, Templin, & Willse, 2009)
 - Focus of this session
 - > Generalized DINA Model (G-DINA; de la Torre, 2011)
 - Is equivalent to the LCDM
- The LCDM provides great modeling flexibility
 - > Subsume all other latent variable DCMs
 - > Allow both additive and non-additive relationships between attributes/items
 - Sync with other psychometric models allowing for greater understanding of modeling process

Lecture Overview

- Background information
 - ANOVA models and the LCDM
- Logits explained
- The LCDM
 - Parameter structure
 - One-item demonstration
- LCDM general form
- Linking the LCDM to other earlier-developed DCMs

Notation Used Throughout Session

- Attributes: a = 1, ..., A
- Respondents: r = 1, ..., R
- Attribute Profiles: $\alpha_r = [\alpha_{r1}, \alpha_{r2}, ..., \alpha_{rA}]$
 - \succ Each attribute α_{ra} today is defined as being 0 or 1: $\alpha_{ra} \in \{0,1\}$
- Latent Classes: c = 1, ..., C
 - > We have $C = 2^A$ latent classes one for each possible attribute profile
 - > An attribute profile is a specific permutation of all A attributes
- Items: i = 1, ..., I
 - > Restricted to dichotomous item responses (either 0 or 1): $Y_{ri} \in \{0,1\}$
- **Q-matrix**: Elements q_{ia} are indicators an item i measures attribute a
 - > q_{ia} is either 0 (does not measure a) or 1 (measures a): $q_{ia} \in \{0,1\}$

Background Information – ANOVA

 The LCDM models the probability of a correct response to an item as a function of the latent attributes of a respondent

 $\begin{array}{c} \alpha = 0 \\ \alpha = 1 \end{array} \longrightarrow P(X=1)$

- The latent attributes are categorical, meaning a respondent can have one of countably many possible statuses
 - > Each status corresponds to a predicted probability of a correct response
- As such, the LCDM is very similar to an ANOVA model
 - > Predicting the a dependent variable as a function of the experimental group of a respondent

ANOVA Refresher

- As a refresher on ANOVA, lets imagine that we are interested in the factors that have an effect on <u>work</u> <u>output</u> (denoted by Y)
- We design a two-factor study where <u>work output</u> may be affected by:
 - Lighting of the workplace
 - High or Low
 - > Temperature
 - Cold or Warm
- This experimental design is known as a 2-Way ANOVA

ANOVA Model

Here is the 2 x 2 Factorial design:

	Low High Lighting Lighting	
Cold Temperature	$ar{Y}_{Cold,Low}$	$ar{Y}_{Cold,High}$
Warm Temperature	$ar{Y}_{Warm,Low}$	$ar{Y}_{Warm,High}$

The ANOVA model for a respondent's work output is

$$Y_r = \mu + A_t + B_l + (AB)_{tl} + \varepsilon_r$$

ANOVA Model

- The ANOVA model allows us to test for the presence of
 - \triangleright A main effect associated with *Temperature* (A_t)
 - Where $A_{Cold} + A_{Warm} = 0$
 - \triangleright A main effect associated with *Lighting* (B_l)
 - Where $B_{Low} + B_{High} = 0$
 - \succ An interaction effect associated with *Temperature* and *Lighting* $(AB)_{tl}$
 - Where $(AB)_{Cold,Low} + (AB)_{Cold,High} + (AB)_{Warm,Low} + (AB)_{Warm,High} = 0$

$$Y_r = \mu + A_t + B_l + (AB)_{tl} + \varepsilon_r$$

ANOVA with Dummy Coded Variables

 The ANOVA model can also be re-written using two dummy-coded variables

$$Warm_r =$$

- > 0 for respondents in *cold temperature* condition
- > 1 for respondents in warm temperature condition

$$High_r =$$

- > 0 for respondents in *low lighting* condition
- > 1 for respondents in *high lighting* condition

NCME 2016 Training Session: Section 3

12

ANOVA with Dummy Coded Variables

The ANOVA model then becomes:

	<i>High_r = 0</i> Low Lighting	High _r = 1 High Lighting
Warm _r = 0 Cold Temperature	$\overline{Y}_{Cold,Low}$	$\overline{Y}_{Cold,High}$
<i>Warm_r = 1</i> Warm Temperature	$\overline{Y}_{Warm,Low}$	$\overline{Y}_{Warm, High}$

$$Y_r = \beta_0 + \beta_t Warm_r + \beta_l High_r + \beta_{t*l} Warm_r * High_r + \varepsilon_r$$

ANOVA Effects Explained

$$Y_r = \beta_0 + \beta_t Warm_r + \beta_l High_r + \beta_{t*l} Warm_r * High_r + \varepsilon_r$$

- $> \beta_0$ is the mean for the cold and low light condition (reference group)
 - > The intercept
- > β_t is the difference in the average response for warm temperature for a business with low lights $High_r=0$ (Conditional Main Effect)
- \Rightarrow β_l is the difference in the average response for high lights for a business with cold temperature $Warm_r = 0$ (Conditional Main Effect)
- $> \beta_{t*l}$ is additional change in average that is not explained by the shift in temperature and shift and lights, when both occur (2-Way Interaction)

> Respondents from in the same condition have the same predicted value

ANOVA and the LCDM

- The ANOVA model and the LCDM take the same modeling approach
 - > Predict a response using dummy coded variables
 - In LCDM dummy coded variables are latent attributes
 - > Using a set of main effects and interactions
 - Links attributes to item response
 - > Where possible, we may look for ways to reduce the model
 - Removing non-significant interactions and/or main effects

Differences Between LCDM and ANOVA

- The LCDM and the ANOVA model differ in two ways:
 - > Instead of a continuous outcome such as work output the LCDM models a function of the probability of a correct response
 - The logit of a correct response (defined next)
 - Instead of observed "factors" as predictors the LCDM uses discrete latent variables (the attributes being measured)
- Attributes are given dummy codes (act as latent factors)
 - $> \alpha_{ra} = 1$ if respondent r has **mastered** attribute a
 - $> \alpha_{ra} = 0$ if respondent r has **not mastered** attribute a
- The LCDM treats the attributes as crossed experimental factors: all combinations are assumed to exist
 - > This assumption can be (and will be) modified

LOGITS EXPLAINED

Model Background

- The LCDM models the log-odds of a correct response conditional on a respondent's attribute pattern $lpha_r$
 - > The log-odds is called a logit

$$Logit(Y_{ri} = 1|\boldsymbol{\alpha}_r) = \log\left(\frac{P(Y_{ri} = 1|\boldsymbol{\alpha}_r)}{1 - P(Y_{ri} = 1|\boldsymbol{\alpha}_r)}\right)$$

- \rightarrow Here $\log(\cdot)$ is the natural log
- The logit is used because the responses are binary
 - > Items are either answered correctly (1) or incorrectly (0)
- The linear model with an identity link and Gaussian error is inappropriate for categorical data
 - > Can lead to impossible predictions (i.e., probabilities greater than 1 or less than 0)

More on Logits

Probability	Logit
0.5	0.0
0.9	2.2
0.1	-2.2
0.99	4.6

From Logits to Probabilities

 Whereas logits are useful as the are unbounded continuous variables, categorical data analyses rely on estimated probabilities

- The inverse logit function coverts the unbounded logit to a probability
 - > This is also the form of an IRT model (and logistic regression)

$$P(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \frac{\exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))}{1 + \exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))}$$

- > Here, $\exp(\cdot) = 2.718282$: the inverse function of the natural log (Euler's number)
- > Sometimes this is written:

$$P(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \frac{\exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))}{1 + \exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))} = \left[1 + \exp(-Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))\right]^{-1}$$

20

THE LCDM

Building the LCDM

- To demonstrate the LCDM, consider the item 2+3-1=?
 from our basic math example
 - \triangleright Measures addition (attribute 1: α_{r1}) and subtraction (attribute 2: α_{r2})
- Only attributes defined by the Q-matrix are modeled for an item
- The LCDM provides the logit of a correct response as a function of the latent attributes mastered by a respondent:

$$Logit(Y_{ri} = 1 | \alpha_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

22

LCDM Explained

$$Logit(Y_{ri} = 1 | \alpha_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

- $Logit(Y_{ri} = 1 | \alpha_r)$ is the logit of a correct response to item i by respondent r
- $\lambda_{i,0}$ is the intercept
 - > The logit for non-masters of addition and subtraction
 - > The reference group is respondents who have not mastered *either* attribute $(\alpha_{r1}=0 \text{ and } \alpha_{r2}=0)$

LCDM Explained

$$Logit(Y_{ri} = 1 | \alpha_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

- $\lambda_{i,1,(1)}$ = conditional main effect for addition (attribute 1)
 - > The increase in the logit for mastering addition (for someone who has <u>not mastered</u> subtraction)
- $\lambda_{i,1,(2)}$ = <u>conditional</u> main effect for subtraction (attribute 2)
 - The increase in the logit for mastering subtraction (for someone who has <u>not</u> <u>mastered</u> addition)
- $\lambda_{i,2,(1,2)}$ = is the **2-way interaction** between addition and subtraction (attributes 1 and 2)

> Change in the logit for mastering **both** addition & subtraction

Understanding LCDM Notation

The LCDM item parameters have several subscripts:

$$\lambda_{i,e,(a_1,...)}$$

- Subscript #1 i: the item to which parameters belong
- Subscript #2 e: the level of the effect
 - > 0 is the intercept
 - > 1 is the main effect
 - > 2 is the two-way interaction
 - > 3 is the three-way interaction
- Subscript #3 $-(a_1, ...)$: the attributes to which the effect applies

25

> Same number of attributes listed as number in Subscript #2

LCDM: A NUMERICAL EXAMPLE

LCDM with Example Numbers

• Imagine we obtained the following estimates for the item 2 + 3 - 1 = ?:

Parameter	Estimate	Effect Name
$\lambda_{i,0}$	-2	Intercept
$\lambda_{i,1,(1)}$	2	Addition Conditional Main Effect
$\lambda_{i,1,(2)}$	1	Subtraction Conditional Main Effect
$\lambda_{i,2,(1,2)}$	0	Addition/Subtraction Interaction

LCDM Predicted Logits and Probabilities

α_{r1}	α_{r2}	LCDM Logit Function	Logit	Probability
0	0	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (0) + \lambda_{i,1,(2)} \times (0) + \lambda_{i,2,(1,2)} \times (0) \times (0)$	-2	0.12
0	1	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (0) + \lambda_{i,1,(2)} \times (1) + \lambda_{i,2,(1,2)} \times (0) \times (1)$	-1	0.27
1	0	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (1) + \lambda_{i,1,(2)} \times (0) + \lambda_{i,2,(1,2)} \times (1) \times (0)$	0	0.50
1	1	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (1) + \lambda_{i,1,(2)} \times (1) + \lambda_{i,2,(1,2)} \times (1) \times (1)$	1	0.73

Logit Response Function

Probability Response Function (Item Characteristic Bar Chart)

LCDM Interaction Plots

- The LCDM interaction term can be investigated via plots
- No interaction: parallel lines for the logit
 - Compensatory RUM (Hartz, 2002)

Logit Response Function

1.5 1 0.5 $\alpha = 0$ α

Probability Response Function (Item Characteristic Bar Chart)

Strong Positive Interactions

- Positive interaction: over-additive logit model
 - Conjunctive model (i.e., all-or-none)
 - > DINA model (Haertel, 1989; Junker & Sijtsma, 1999)

Logit Response Function

1.5 1 0.5 $\alpha = 0$ α

Probability Response Function (Item Characteristic Bar Chart)

Strong Negative Interactions

- Negative interaction: under-additive logit model
 - Disjunctive model (i.e., one-or-more)
 - > DINO model (Templin & Henson, 2006)

Logit Response Function

1.5 1 0.5 α2=0 α2=1 α1=0 α1=1 -1.5 -2 -2.5

Probability Response Function (Item Characteristic Bar Chart)

Less Extreme Interactions

- Extreme interactions are unlikely in practice
- Below: positive interaction with positive main effects

Logit Response Function

Probability Response Function (Item Characteristic Bar Chart)

GENERAL FORM OF THE LCDM

More General Versions of the LCDM

- The LCDM is based on the General Diagnostic Model by von Davier (GDM; 2005)
 - > The GDM allows for both categorical and continuous latent variables
- For items measuring more than two attributes, higher level interactions are possible
 - > Difficult to estimate in practice
- The LCDM appears in the psychometric literature in a more general form
 - > See Henson, Templin, & Willse (2009)

General Form of the LCDM

 The LCDM specifies the probability of a correct response as a function of a set of attributes and a Q-matrix:

$$P(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \frac{\exp\left(\boldsymbol{\lambda}_i^T \boldsymbol{h}(\boldsymbol{q}_i, \boldsymbol{\alpha}_r)\right)}{1 + \exp\left(\boldsymbol{\lambda}_i^T \boldsymbol{h}(\boldsymbol{q}_i, \boldsymbol{\alpha}_r)\right)}$$

35

Unpacking the General Form of the LCDM: Components α_r and q_i

 The key to understanding the general form of the LCDM is to understand that it is a general equation that makes any possible number of attributes be measured by an item

- To put this into context, we will continue with our basic mathematics example
 - > Overall four attributes measured: Addition (α_{r1}) , Subtraction (α_{r2}) , Multiplication (α_{r3}) , Division (α_{r4})
 - Attribute profile vector for respondent r: $\alpha_r = \begin{bmatrix} \alpha_{r1} & \alpha_{r2} & \alpha_{r3} & \alpha_{r4} \end{bmatrix}$ (size 1 x 4)
 - \rightarrow Item i: 2 + 3 1 = ?
 - Measures Addition (α_{r1}) and Subtraction (α_{r2})
 - Q-matrix row vector for item $i: q_i = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$

Unpacking the General Form of the LCDM: Parameter Vector λ_i

- From the general LCDM notation, λ_i is a vector of all possible item parameters for item i
 - \rightarrow All possible: if all A Q-matrix entries in q_i were equal to 1 (so size is $2^A \times 1$)
 - \rightarrow Not all parameters will be estimated if some $q_{ia}=0$
- For four-attribute example,

Unpacking the General Form of the LCDM: Helper Function $h(q_i, \alpha_r)$

- From the general LCDM notation $m{h}(m{q}_i, m{lpha}_r)$ is a vector-valued function
 - > Vector valued = result is a vector

	$h(q_i, \alpha_r)$	λ_i		
$h(q_i, \alpha_r) =$	$\begin{bmatrix} 1 \\ (q_{i1}\alpha_{r1}) \\ (q_{i2}\alpha_{r2}) \\ (q_{i3}\alpha_{r3}) \\ (q_{i4}\alpha_{r4}) \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2}) \\ (q_{i1}\alpha_{r1})(q_{i3}\alpha_{r3}) \\ (q_{i1}\alpha_{r1})(q_{i4}\alpha_{r4}) \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) \\ (q_{i2}\alpha_{r2})(q_{i4}\alpha_{r4}) \\ (q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i4}\alpha_{r4}) \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i4}\alpha_{r4}) \\ (q_{i1}\alpha_{r1})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) \end{bmatrix}_{(16\times 1)}$	$\boldsymbol{\lambda}_{i} = \begin{bmatrix} \lambda_{i,0} \\ \lambda_{i,1,(1)} \\ \lambda_{i,1,(2)} \\ \lambda_{i,1,(3)} \\ \lambda_{i,1,(4)} \\ \lambda_{i,2,(1,2)} \\ \lambda_{i,2,(1,3)} \\ \lambda_{i,2,(1,4)} \\ \lambda_{i,2,(2,3)} \\ \lambda_{i,2,(2,4)} \\ \lambda_{i,2,(3,4)} \\ \lambda_{i,3,(1,2,3)} \\ \lambda_{i,3,(1,2,4)} \\ \lambda_{i,3,(1,3,4)} \\ \lambda_{i,3,(2,3,4)} \\ \lambda_{i,4,(1,2,3,4)} \end{bmatrix}_{(16 \times 1)}$		

More on the Helper Function $h(q_i, \alpha_r)$

• For a specific item i with a specific Q-matrix row vector q_i , the role of the helper function $h(q_i, \alpha_r)$ becomes more transparent

	$h(q_i, \alpha_r)$	λ_i		
$h(q_i, \alpha_r) =$	$\begin{bmatrix} 1 & 1 \\ (q_{i1}\alpha_{r1}) = \alpha_{r1} \\ (q_{i2}\alpha_{r2}) = \alpha_{r2} \\ (q_{i3}\alpha_{r3}) = 0 \\ (q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2}) = \alpha_{r1}\alpha_{r2} \\ (q_{i1}\alpha_{r1})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \end{bmatrix}_{(16 \times 1)}$	$\boldsymbol{\lambda}_{i} = \begin{bmatrix} \lambda_{i,0} \\ \lambda_{i,1,(1)} \\ \lambda_{i,1,(2)} \\ \lambda_{i,1,(3)} \\ \lambda_{i,1,(4)} \\ \lambda_{i,2,(1,2)} \\ \lambda_{i,2,(1,3)} \\ \lambda_{i,2,(1,4)} \\ \lambda_{i,2,(2,3)} \\ \lambda_{i,2,(2,4)} \\ \lambda_{i,3,(1,2,3)} \\ \lambda_{i,3,(1,2,4)} \\ \lambda_{i,3,(1,3,4)} \\ \lambda_{i,3,(2,3,4)} \\ \lambda_{i,3,(2,3,4)} \\ \lambda_{i,4,(1,2,3,4)} \end{bmatrix}_{(16 \times 1)}$		

Putting It All Together: The Matrix Product $\lambda_i^T h(q_i, \alpha_r)$

The term in the exponent is the logit we have been using all along:

For our example item:

$$(\lambda_i^T)_{(1\times 16)} h(q_i, \alpha_r)_{(16\times 1)} = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

• Result is a scalar (1×1)

SUBSUMED MODELS

NCME 2016 Training Session: Section 3

41

Previously Popular DCMs

- Because the advent of the GDM and LCDM has been fairly recent, other earlier DCMs are still in use
- Such DCMs are much more restrictive than the LCDM
 - > Not discussed at length here
 - > It is anticipated that field will adapt to more general forms
- Each of these models can be fit using the LCDM
 - > Fixing certain model parameters
- Shown for reference purposes
 - > See Henson, Templin, & Willse (2009) for more detail

Other DCMs with the LCDM

- The Big 6 DCMs with latent variables:
 - > **DINA** (Deterministic Inputs, Noisy 'AND' Gate)
 - Haertel (1989); Junker and Sijtsma (1999)
 - NIDA (Noisy Inputs, Deterministic 'AND' Gate)
 - Maris (1995)
 - RUM (Reparameterized Unified Model)
 - Hartz (2002)
 - > **DINO** (Deterministic Inputs, Noisy 'OR' Gate)
 - Templin & Henson (2006)
 - > NIDO (Noisy Inputs, Deterministic 'OR' Gate)
 - Templin (2006)
 - > C-RUM (Compensatory Reparameterized Unified Model)
 - Hartz (2002)

Other DCMs with the LCDM

LCDM	Non-compensatory Models		Compensatory Models			
Parameters	DINA	NIDA	NC-RUM	DINO	NIDO	C-RUM
Main Effects	Zero	Positive	Positive	Positive	Positive	Positive
Interactions	Positive	Positive	Positive	Negative	Zero	Zero
Parameter Restrictions	Across Attributes	Across Items		Across Attributes	Across Items	

Adapted from: Rupp, Templin, and Henson (2010)

Compensatory RUM (Hartz, 2002)

- No interactions in model
- No interaction: parallel lines for the logit

$$Logit(Y_{ri} = 1 | \alpha_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2}$$

Logit Response Function

$\frac{1.5}{1}$ 0.5 $\alpha = 0$ $\alpha = 0$

Item Characteristic Bar Chart

DINA Model (Haertel, 1989; Junker & Sijstma, 1999)

- Positive interaction: over-additive logit model
 - > Highest interaction parameter is non-zero
 - > All main effects (and lower interactions) zero

$$Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \lambda_{i,0} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

Logit Response Function

1.5 1 0.5 α2=0 α2=1 α1=0 α1=1 -1.5 -2 -2.5

Item Characteristic Bar Chart

DINO Model (Templin & Henson, 2006)

- Negative interaction: under-additive logit model
 - > All main effects equal
 - > Interaction terms are -1 sum of corresponding lower effects

$$Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \lambda_{i,0} + \lambda_{i,1} \alpha_{r1} + \lambda_{i,1} \alpha_{r2} - \lambda_{i,1} \alpha_{r1} \alpha_{r2}$$

Logit Response Function

1.5 1 0.5 α2=0 α2=1 α1=0 α1=1 -1.5 -2 -2.5

Item Characteristic Bar Chart

EXAMPLE RESULTS: DTMR PROJECT

LCDM Example Item Response Function

- Referent unit (α_1) and partitioning and iterating (α_2) are measured
 - Q-matrix entries:

	RU	PI	APP	MC
Item 22	1	1	0	0

• LCDM item response function:

From the DTMR Paper

Table 1. DTMR Item Parameter Estimates

		$RU(\alpha_1)$	$PI(\alpha_2)$	$APP(\alpha_3)$	$MC(\alpha_4)$	RU/PI
i	$\lambda_{i,0}$	$\lambda_{i,1(1)}$	$\lambda_{i,1(2)}$	$\lambda_{i,1(3)}$	$\lambda_{i,1(4)}$	$\lambda_{i,2(1,2)}$
1	-1.12 (0.12)	2.24 (0.20)				_
2	0.59 (0.13)			1.27 (0.22)		
3	-2.07(0.22)		1.70 (0.24)			
4	-1.19(0.11)	0.65 (0.19)				
5	-1.67(0.14)	1.52 (0.20)			*	
6	-3.81(0.47)		2.08 (0.50)			
7	-0.73(0.09)	1.20 (0.22)				
8a	-0.62(0.25)			4.25 (0.64)	*	
8b	-0.09(0.17)			2.16 (0.24)		
8c	0.28 (0.13)			0.87 (0.18)		
8d	-1.03(0.17)			1.81 (0.21)		
9	-1.22(0.10)	0.76 (0.19)				
10a	-0.50(0.18)	*			4.84 (0.55)	
10b	-4.01(0.74)	1.32 (0.28)			4.26 (0.73)	
10c	-4.89(0.87)	1.30 (0.26)			4.57 (0.87)	
11	-0.88(0.01)	1.25 (0.18)			*	
12	-1.29(0.11)	1.89 (0.21)	0.45 (0.00)		0.00 (0.01)	
13	-0.74(0.14)		0.45 (0.20)		0.39 (0.21)	1 50 (0.21)
14	-2.14(0.14)					1.59 (0.21)
15a	-2.48(0.29)		2.72 (0.26)		1.05 (0.28)	
15b	-0.56(0.18)		2.94 (0.28)		*	
15c	-0.44(0.17)		3.04 (0.31)		*	
16	-0.86(0.01)	1.55 (0.23)				
17	-2.08(0.23)	1.10 (0.00)	1.22 (0.27)			1.27 (0.34)
18	-0.99(0.14)	1.13 (0.26)	1.10 (0.24)	J.		
19	1 50 (0.13)	1 (0 (0 10)		*		
21	-1.50(0.13)	1.69 (0.19)	1 42 (0.25)			
22	-1.25(0.16)	1.47 (0.28)	1.43 (0.25)			
Average	-1.38(0.21)	1.40 (0.22)	1.86 (0.29)	1.46 (0.21)	3.23 (0.55)	1.41 (0.24)
Med	-1.12(0.14)	1.55 (0.23)	1.30 (0.27)	1.54 (0.21)	1.52 (0.26)	1.41 (0.24)

Note. Standard errors for parameters are given in parenthesis. Item 20 was removed due to scoring. Asterisks (*) indicates the parameter was NCME 2016 estimated in the initially hypothesized parameterization.

CONCLUDING REMARKS

Wrapping Up – Lecture Take-Home Points

- The LCDM uses an ANOVA-like approach to map latent attributes onto item responses
 - > Uses main effects and interactions for each attribute
 - Uses a logit link function

Multiple diagnostic models are subsumed by the LCDM