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Today’s Class

• An introduction to the course
Ø Bayesian Overview
Ø MCMC Overview
Ø Psychometric Model Overview
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AN INTRODUCTION TO 
BAYESIAN STATISTICS
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Bayesian Statistics: The Basics
• Bayesian statistical analysis refers to the use of models 

where some or all of the parameters are treated as 
random components

Ø Each parameter comes from some type of distribution

• The likelihood function of the data is then augmented with 
an additional term that represents the likelihood of the 
prior distribution for each parameter

Ø Think of this as saying each parameter has a certain likelihood – the height of 
the prior distribution

• The final estimates are then considered summaries of the 
posterior distribution of the parameter, conditional 
on the data

Ø We use these estimates to make inferences, just like we do when using the 
non-Bayesian approaches (e.g., maximum likelihood/least squares)
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Bayesian Statistics: Why It Is Used
• Bayesian methods get used because the relative accessibility of one 

method of estimation (MCMC – to be discussed shortly)

• There are at least four main reasons why people use MCMC:

1. Missing data
Ø Multiple imputation: MCMC is used to estimate model parameters then “impute” data

Ø More complicated models for certain types of missing data

2. Lack of software capable of handling large sized analyses
Ø Have a zero-inflated negative binomial with 21 multivariate outcomes per 

18 time points? 

3. New models/generalizations of models not available in software
Ø Have a new model?

Ø Need a certain link function not in software?

4. Membership in the “cult” of Bayes
Ø Cult members believe philosophical differences exist between numbers from Bayesian 

analysis and other types of estimators
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Bayesian Statistics: Perceptions and Issues
• The use of Bayesian statistics has been controversial 

Ø The use of certain prior distributions can produce results that are biased or reflect 
subjective judgment rather than objective science

• Most MCMC estimation methods are computationally 
intensive with long compute times relative to other estimators

Ø Until very recently, very few methods available for those who aren’t into 
programming in Fortran, C, or C++

• Understanding of what Bayesian methods are and how they 
work is limited outside the field of mathematical statistics

Ø Especially the case in the educational and social sciences

• Over the past 20 years, Bayesian methods have become 
widespread – making new models estimable and becoming 
standard in some social science fields (quantitative psychology 
and educational measurement)
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As an Example…
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A PRIMER ON HOW BAYESIAN METHODS WORK
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How Bayesian Statistics Work
• The term Bayesian refers to Thomas Bayes (1701-1761)

Ø Formulated Bayes’ Theorem

• Bayesian methods rely on Bayes’ Theorem:

! " # = ! # " ! "
! #

Ø !(") is the prior distribution (pdf) of A à WHY THINGS ARE BAYESIAN
Ø !(#) is the marginal distribution (pdf) of B
Ø !(#|") is the conditional distribution (pdf) of B, given A
Ø !("|#) is the posterior distribution (pdf) of A, given B

• Bayes’ Theorem Example…

Imagine a patient takes a test for a rare disease (present 1% of 

the population) that has a 95% accuracy rate…what is the 

probability the patient actually has the disease?
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Bayes’ Theorem Example
Imagine a patient takes a test for a rare disease (present 1% of 
the population) that has a 95% accuracy rate…what is the 
probability the patient actually has the disease?
• D = the case where the person actually has the disease
• ND = the case where the person does not have the disease
• + = the test for the disease is positive

The question is asking for: P(D|+)
From Bayes’ Theorem:

! " + = ! + " ! "
!(+)

What we know: 
! " = .01
! + " = .95
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Back to Distributions
• We don’t know ! + directly from the problem, but we can 

figure it out if we recall how distributions work:

• ! + is a marginal distribution
• ! + # is a conditional distribution

• We can get to the marginal by summing across the conditional:
! + = ! + # ! # + ! + %# ! %#

= .95 ∗ .01 + .05 ∗ .99 = .059
• So, to figure out the answer, if a person tests positive for the 

disease, the posterior probability they actually have the 
disease is:

! # + = ! + # ! #
!(+) = .01 ∗ .99

.059 = .17
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A (Perhaps) More Relevant Example
• The old-fashioned Bayes’ Theorem example I’ve found to be 

difficult to generalize to your actual data, so…

• Imagine you administer an IQ test to a sample of 50 people 
Ø !" = person p’s IQ test score

• To put this into a linear-models context, the empty model for Y:
!" = $% + '"

where '" ∼ ) 0, ,-.

• From this empty model, we know that:
Ø $% is the mean of the Y (the mean IQ)
Ø ,-. is the sample variance of Y
Ø The conditional distribution of Y is: 

/ !" $%, ,-. ∼ ) $%, ,-.
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Non-Bayesian Analysis
• Often, least squares (which is equivalent to REML) is used to 

estimate this model

Ø We could also use ML…

• For ML, we maximized the joint likelihood of the sample with 

respect to the two unknown parameters !" and #$%

& !", #$% =)
*+,

-
. /* !", #$% =)

*+,

- 1
22#$%

exp − /* − !"
%

2#$%

• Here, using gls(), I found:

!" = 102.769
#$% = 239.490

• Also, I found:

&>?& = −207.91
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Setting up a Bayesian Model
• The (fully) Bayesian model would treat each parameter as a random 

instance from some prior distribution

• Let’s say you know that this version of the IQ test is supposed to have a 

mean of 100 and a standard deviation of 15
Ø So !" should be 100 and #$% should be 225

• Going a step further, let’s say you have seen results for administrations of 

this test that led you to believe that the mean came from a normal 

distribution with a SD of 2.13
Ø This indicates the prior distribution for the mean…or 

& !" ∼ ((100,2.13%)

• Let’s also say that you don’t really have an idea as for the distribution of 

the variance, but you have seen it range from 200 to 400, so we can come 

up with a prior distribution for the variance of:

& #$% ∼ 1 200,400

• Here the prior is a uniform distribution meaning all values from 200 to 400 

are equally likely
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More on the Bayesian Approach
• The Bayesian approach is now to seek to find the posterior 

distribution of the parameters given the data:
! "#, %&' ()

• We can again use Bayes’ Theorem (but for continuous parameters):

! "#, %&' () = ! () "#, %&' ! "#, %&'
! ()

= ! () "#, %&' ! "#)!(%&'
! ()

• Because ! () essentially is a constant (which involves integrating 
across "# and %&' to find its value), this term is often referred to as:

! "#, %&' () ∝ ! () "#, %&' ! "#)!(%&'

• The symbol ∝ is read as “is proportional to” – meaning it is the same 
as when multiplied by a constant

Ø So it is the same for all values of "# and %&'
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Unpacking the Posterior Distribution
• ! "# $%, '() is the conditional distribution of the data given the 

parameters – which comes from our linear model distribution

! "# $%, '() =+
#,-

.
! /# $%, '() =+

#,-

. 1
22'()

exp − /# − $%
)

2'()

• ! $% is the prior distribution of $%, which we decided would be 
7 100,2.13) , giving the height of any $%:

! $% = 1
22';<)

exp − $% − =;<
)

2';<)

= 1
22 ∗ 2.13) exp − $% − 100 )

2 ∗ 2.13)
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Unpacking the Posterior Distribution

• ! "#$ is the prior distribution of "#$, which we decided
would be U 200,400 , giving the density function result of 
any value of "#$ as:

! "#$ = 1
,-./ − 1-./

= 1
400 − 200 =

1
200 = .005

• Some useful terminology:
Ø The parameters of the model (for the data) get prior distributions
Ø The prior distributions each have parameters – these parameters are called 

hyper-parameters
Ø The hyper-parameters are not estimated in our example, but could be – giving 

us a case where we would call our priors empirical priors
w AKA random intercept variance
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Up Next: Estimation
• Although MCMC is commonly thought of as the only method for 

Bayesian estimation, there are several other forms

• The form analogous to ML (where the value of the parameters that 
maximize the likelihood or log-likelihood) is called Maximum (or 
Modal) a Posteriori estimation (MAP)

Ø The term modal comes from the maximum point coming at the peak (the mode) of the 
posterior distribution

• In practice, this functions similar to ML, instead of maximizing the 
joint likelihood of the data, we now have to worry about the prior:

! "#, %&' () = ! () "#, %&' ! "#)!(%&'
! ()

∝ ! () "#, %&' ! "#)!(%&'

• Because it is often more easy to work with, the log is often used:
log ! "#, %&' () ∝ log ! () "#, %&' + log ! "# + log ! %&'
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Grid Searching for the MAP Estimate of !"
• To demonstrate, let’s imagine we know #$% = 239.490

Ø Later we won’t know this…when we use MCMC

• We will use Excel to search over a grid of possible values 
for -.

• In each, we will use log 2 34 -. + log 2 -.

• As a comparison, we will also search over the ML log 
likelihood function log 2 34 -.
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ML v. Prior for !" of N(100, 2.132)

• Maximum for ML: 102.8
• Maximum for Bayes: 101.4 

(estimate is closer to mean of prior)
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ML vs. Prior for !" of N(100, 10002)

• Maximum for ML: 102.8
• Maximum for Bayes: 102.8
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ML vs. Prior for !" of N(100, 0.152)

• Maximum for ML: 102.8
• Maximum for Bayes: 100
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ML vs. Prior for !" of U(-1000,1000)

• Maximum for ML: 102.8
• Maximum for Bayes: 102.8
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Summarizing Bayesian So Far

• Bayesian à parameters have prior distributions

• Estimation in Bayesian à MAP estimation is much like 
estimation in ML, only instead of likelihood of data, now have 
to add in likelihood for prior of all parameters

Ø But…MAP estimation may be difficult as figuring out derivatives for gradient 
function (for Newton-Raphson) are not always easy

Ø Where they are easy: Conjugate priors à prior distributions that are the same as 
the posterior distribution (think multilevel with normal outcomes)

• Priors can be informative (highly peaked) or uninformative 
(not peaked) 

Ø Some uninformative priors will give MAP estimates that are equal to ML

• Up next: estimation by brute force: Markov Chain Monte Carlo
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MARKOV CHAIN MONTE CARLO ESTIMATION: 
THE BASICS
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How Estimation Works (More or Less)
• Most estimation routines do one of three things:

1. Minimize Something: Typically found with names that have “least” 
in the title. Forms of least squares include “Generalized”, 
“Ordinary”, “Weighted”, “Diagonally Weighted”, “WLSMV”, and 
“Iteratively Reweighted.” Typically the estimator of last resort…

2. Maximize Something: Typically found with names that have 
“maximum” in the title. Forms include “Maximum likelihood”, 
“ML”, “Residual Maximum Likelihood” (REML), “Robust ML”. 
Historically the gold standard of estimators.

3. Use Simulation to Sample from Something: more recent advances 
in simulation use resampling techniques. Names include “Bayesian 
Markov Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis 
Hastings”, “Metropolis Algorithm”, and “Monte Carlo”. Used for 
complex models where ML is not available or for methods where 
prior values are needed.
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How MCMC Estimation Works
• MCMC estimation works by taking samples from the posterior distribution of the 

data given the parameters:

! "#, %&' () = ! () "#, %&' ! "# ! %&'
! ()

Ø How is that possible? We don’t know !(())…but…we’ll see…

• After enough values are drawn, a rough shape of the distribution can be formed
Ø From that shape we can take summaries and make them our parameters (i.e., mean)

• How the sampling mechanism happens comes from several different algorithms 
that you will hear about, the most popular being:

Ø Gibbs Sampling: used when ! "#, %&' () is known
w Parameter values are drawn and kept throughout the chain

Ø Metropolis-Hastings (within Gibbs): used when ! "#, %&' () is unknown 
w Parameter values are proposed, then either kept or rejected
w SAS PROC MCMC uses the latter
w TRIVIA NOTE: The Metropolis algorithm comes from Chemistry (in 1950)

Ø Hybrid MC: Newer versions (1980s; implemented in Stan)

• In some fields (Physics in particular), MCMC estimation is referred to as 
Monte Carlo estimation
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MCMC Estimation with MHG
• The Metropolis-Hastings algorithm works a bit differently 

than Gibbs sampling:

1. Each parameter (here !" and #$%) is given an initial value

2. In order, a new value is proposed for each model parameter from 
some distribution:

!"∗ ∼ ( !"∗ !" ; #$%
∗ ∼ ( #$%∗ #$%

3. The proposed value is then accepted as the current value with 
probability max( ./01, 1):

./01 =
6 78 !"∗, #$%

∗ 6 !"∗ 6 #$%∗ ( !" !"∗ ( #$% #$%∗

6 78 !", #$% 6 !")6(#$% ( !"∗ !" ( #$%∗ #$%

4. The process continues for a pre-specified number of iterations 
(more is better)
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Notes About MHG

• The constant in the denominator of the posterior distribution:

! "#, %&' () = ! () "#, %&' ! "#)!(%&'
! ()

…cancels when the ratio is formed

• The proposal distributions - "#∗ "# and - %&'∗ %&' can 

literally be any statistical distribution

Ø The trick is picking ones that make the chain “converge” quickly

Ø Want to find values that lead to moderate number of accepted parameters

Ø SAS PROC MCMC/JAGS don’t make you pick these

• Given a long enough chain, the final values of the chain will 

come from the posterior distribution

Ø From that you can get your parameter estimates
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Introducing JAGS…
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Examining the Chain and Posteriors
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Practical Specifics in MCMC Estimation
• A burn-in period is used where a chain is run for a set number 

of iterations before the sampled parameter values are used in 
the posterior distribution

• Because of the rejection/acceptance process, any two 
iterations are likely to have a high correlation (called 
autocorrelation) à posterior chains use a thinning interval to 
take every Xth sample to reduce the autocorrelation

Ø A high autocorrelation may indicate the standard error of the posterior 
distribution will be smaller than it should be

• The chain length (and sometimes number of chains) must also 
be long enough so the rejection/acceptance process can 
reasonably approximate the posterior distribution

• How does one what values to pick for these? Output 
diagnostics

Ø Trial. And. Error.
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Best Output Diagnostics: the Eye Ball Test
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Not 
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Perfect:

Not 
Perfect:

33



Output Statistics and Diagnostics
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Changing the Prior

• To demonstrate different priors affect the analysis, we will 
now try a few prior distributions for our parameters

• Prior: !" ∼ $ −10000,10000 ; *+, ∼ $(0,5000)
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Chain Plots
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Changing the Prior

• Prior: !" ∼ $ 0,100,000 ;
• )*+, ∼ -.//.(1 = .01, 4 = .01)
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Chain Plots
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What About an Informative Prior?

• Prior: !" ∼ $ 102,103 ; +,- ∼ $ 238,242
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Chain Plots

PSQF 7375.6: Introduction to Bayesian Psychometric Modeling 40



MCMC in R
• R itself does not have an MCMC engine native to the 

language – but there are many free versions available 
outside of R

• For instance, if you wanted to estimate a path model with 
MCMC you can:

Ø Install the blavaan package (Bayesian lavaan)
Ø Run the path analysis with MCMC
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PSYCHOMETRIC MODELS OVERVIEW
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• Measurement models can be divided into two families of 
models based on response format alone:

Ø Continuous responses - Confirmatory Factor Models
Ø Categorical responses - Item Response Models

• Both of these families fall under a larger framework: 
Generalized Linear Latent and Mixed Models 

Ø Provide measurement models for other types of responses

• Other relevant families:
Ø Structural Equation Models - provides estimates of correlations amongst 

latent variables in measurement models
Ø Path Analysis - simultaneous regression amongst multiple 

observed variables

Measurement Models

PSQF 7375.6: Introduction to Bayesian Psychometric Modeling 43



• Main idea of CFA: Build a measurement model for response variables that 
measure the same trait

Ø CFA = Linear regression model predicting each continuous observed outcome variable 
(item, subscale) from a latent trait predictor variable(s)

!"# = %# + '#()"( + *"#
• i - item; s - subject; %# is the item intercept; '#( is the item slope (factor loading for factor 

1); *#" is the error for the item and subject; !#" is the item response (assumed continuous)

• Differs from exploratory factor analysis:
Ø Number and content of factors is decided a priori
Ø Alternative models are comparable and testable

• Uses of confirmatory factor analysis models:
Ø Analyze relationships among subscales that have normal, continuous distributions
Ø Provide comparability across persons, items, and occasions

Confirmatory Factor Analysis Models
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CFA Model WITH 
Factor Means and Item Intercepts

F1

y1 y2 y3 y4

e1 e2 e3 e4

λ11 λ21 λ31 λ41

F2

y5 y6 y7 y8

e5 e6 e7 e8

λ52 λ62 λ72 λ82

covF1F2

1
μ1

μ2
μ3

μ4 μ5 μ6
μ7

μ8

κ1 κ2

Structural Model:
F’s = factor variances
Cov = factor covariances
K’s = factor means

Measurement Model:
λ’s = factor loadings
e’s = error variances
μ’s = item intercepts

(But some of these 
values will have to be 
restricted for the model 
to be identified.)



Factor Analysis (Y Observed; F latent)
• The prediction of Y is done using a linear regression:

!"# = %# + '#()"( + *"#

y = - 0.2954+1.0276F 
R² = 0.7329

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Y

XF

Y

% is the intercept (where the 
line crosses the Y axis)

' is the slope (the 
increase in Y for a one unit 
increase in F)

* is the error (or residual), 
with estimated error variance 
+#,



Item Response Models 
• Main idea of IRT: Build a measurement model for response variables that measure 

the same trait…but the responses are discrete 
Ø Binary Item IRT = Logistic regression model predicting each discrete observed 

outcome variable (item, subscale) from a latent trait predictor variable(s)

!"#$% &'( = 1 = +( + -(./'.
= 0((2' − 4()

• i - item; s - subject; +( is the item intercept; -(. is the item slope (factor loading for factor 
1); 6(' is the error for the item and subject; &(' is the item response (assumed continuous)

• Differs from confirmatory factor analysis:
Ø Items are discrete (although CFA has item factor analysis)
Ø Traits are normal



Latent Class Models
• Main idea of LCA models: Build a measurement model for response variables that 

measure the same trait…but the responses are discrete and people belong to a 
finite set of groups that were not observed (latent classes)

Ø Binary Item LCA = Logistic ANOVA model predicting each discrete observed outcome 
variable (item, subscale) from a latent trait predictor variable(s)

!"#$% &'( = 1 = +(, = +( + .(,/,

• i - item; s - subject; +( is the item intercept; .(0 is the item slope (factor loading for factor 
1); 1(' is the error for the item and subject; &(' is the item response (assumed continuous)

• Differs from confirmatory factor analysis and IRT:
Ø Traits are discrete-–representing a “nominal” level of measurement
Ø Model identification is very different (enables connections to AI)
Ø Often used in exploratory analyses

• Note: many parameterizations exist (very flexible models)
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DCMs are Confirmatory LCA Models
• DCMs are confirmatory LCA models

Ø Most defined for a set of A dichotomous attributes (α)
w Attributes are either possessed (α = 1) or not (α = 0)
w DCM attributes can have more than two levels

Ø DCMs are LCA models with 2A latent classes
w Each possible combination of attribute possession
w i.e., a test measuring 3 dichotomous attributes has 8 latent classes

• LCA measurement model parameters 
Ø Items measure only some attributes (so-called Q-matrix indicator)
Ø Equated for classes with equivalent status of measured attributes
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Building the LCDM
• To demonstrate the LCDM, consider the item 2+3-1=?

Ø Measures addition (attribute 1: !"#) and subtraction (attribute 2: !"$)

• Only attributes defined by the Q-matrix are modeled for an item

• The LCDM provides the logit of a correct response as a function of 
the latent attributes mastered by a respondent:

%&'() *"+ = 1 ." = /+,1 + /+,#, # !"# + /+,#, $ !"$ + /+,$, #,$ !"#!"$



Bayesian Inference Networks (BayesNets)

• Introduce a new vocabulary for psychometric things

• Nodes: categorical latent variables 
Ø Analogs to latent factors in factor analysis or item response theory

• Nodes can be Parents or Children
Ø Parents: Not predicted by anything (we would call this an Exogenous variable)
Ø Children: Predicted by parents (we would call this an Endogenous variable)

• Edges: conditional dependencies between:
Ø Nodes
Ø Nodes and items

• Often represented with a Directed Acyclic Graph or DAG
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Woefully Short Primer 
on Bayesian Networks
• BINs describe

multivariate
data using
conditional
probabilities

• In the image, 
three variables observed:

Ø Did it rain?
Ø Were the sprinklers on?
Ø Was the grass wet?

• The BIN includes the set of parameters leading to the 
probabilities in the tables

Image source: Wikipedia (yeah, that Wikipedia)

PSQF 7375.6: Introduction to Bayesian Psychometric Modeling 52



Woefully Short Primer 
on Bayesian Networks

Joint distribution of Rain, Sprinkler, and Grass Wet given by:
= " #$%&&, ()$*+,-.$, /%*+

" #$%&&0.1 = 2 /%*+, ()$*+,-.$ " ()$*+,-.$ /%*+ "(/%*+)
• Conditional/Marginal distribution of each variable: Bernoulli
• This example has all observed variables, but latent variables 

can also be defined 
Ø Hidden/unobserved nodes
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Worlds Colliding….
Psychometric Models are BINs
• Here are some BINs that may be more familiar in the 

social sciences…

Conditional/Marginal distribution of each variable: Normal

Nodes: Observed variables (or more specifically, X, Y, and M)

Conditional/Marginal distribution of each variable: Normal

Nodes:  5 Observed variables (X1 – X5)

1 unobserved variable (G)
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More BIN Terminology
• Network Learning/Training = 

Estimation of model parameters
Ø Often done with Bayesian/MCMC where priors are placed on 

nearly all parameters

• Estimation typically done using cross-validation
Ø Estimation on one/several samples of data
Ø Prediction done with left-out samples of data

• From Psychometrics: Model fit…not evaluated in same way
Ø BIN model fit based on: 

w Prediction of left-out samples
w Posterior predictive checks
w Entropy (for categorical hidden nodes)

– This is like saying your CFA model fits because your Omega reliability coefficient is high
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COMMONALITIES ACROSS MODELS

PSQF 7375.6: Introduction to Bayesian Psychometric Modeling 56



Where (Modern) Test Scores Come From

• Factor scores (by other names) are used in many domains
Ø Item response theory (CFA w/categorical items): GRE scores are factor scores

• A factor score is the estimate of a subject’s unobserved latent trait

• Because this latent variable is not measured directly, it acts like it is 
missing data: you really cannot know with certainty its true value

• It is difficult to pin down what the missing data value (factor score 
value) should be precisely

Ø Each factor score has a posterior distribution of possible values
Ø Often, the mean of the posterior distribution is the “factor score” 

w In CFA, the mean is the most likely value
Ø Depending on the test, there may be a lot of error (variability) in the distribution

• Therefore, the use of factor scores must reflect that the score is not 
known and is represented by a distribution
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Draw Templin, Draw!
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Example factor scores and their distributions

A different version of factor model identification would change the numbers on the X-

axis, but the shapes and order of the distributions would not change

Factor scores provide a weak ordering of people (weak because of error)
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How Distributions get Summarized into Scores

• There are two ways of providing a score from the factor 
score posterior distribution:

Ø Expected a posteriori (EAP): the mean of the distribution
Ø Maximum a posteriori (MAP): the most likely score from the distribution

• In CFA factor score distributions are normal (so EAP=MAP)
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MAP
MAP

EAP

EAP
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Additional Information on Factor Scores
• For EAP factor scores:

Ø !"# = % & "# '

Ø (% !"# = )*+ & "# '

• For MAP factor scores:
Ø !"# = arg max12

& "# '

Ø (% !"# = 345
4125

& "# '
!12

675
(square root of Fisher’s information)

• For CFA (Normal Data/Normal Factor) measurement models:
Ø MAP = EAP
Ø Variance is identical across all people, regardless of score

• For non-CFA measurement models:
Ø MAP ≠ EAP (but does with infinite items)
Ø Standard error is a function of the factor score
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Scores Are Empirical Bayes Estimates
• For most (if not all) latent variable techniques, the factor scores 

come from Empirical Bayes estimation—meaning there is a prior 
distribution present 

Ø Empirical = some or all of the parameters of the distribution of the latent variable are 
estimated (i.e., factor mean and variance)

Ø Bayes = comes from the use of Bayes’ Theorem

• Prior == Assumed factor distribution with mean/variance

• This is true for all CFA, IRT, mixed/multilevel/hierarchical models
Ø And is true for models that don’t have a label (e.g., Poisson Factor Analysis?)
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Bayes’ Theorem
• Bayes’ Theorem states the conditional distribution of a 

variable A (soon to be our factor score) given values of a 

variable B (soon to be our data) is:

! " # = ! # " !(")
!(#) = ! # " !(")

∫(∈* ! # " = + ! " = + ,+
• ! " # is the distribution of A, conditional on B

Ø We will come to know this as the posterior distribution of the factor score, 

conditional on the data observed or ! - .
• ! # " is the distribution of B, conditional on A

Ø We will come to know this as our measurement model or ! . -
• ! " is the marginal distribution of A

Ø We will come to know this as the prior distribution of the factor or !(-)
PSQF 7375.6: Introduction to Bayesian Psychometric Modeling

For Categorical A, replace integral with sum
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Putting Together the Pieces of Empirical Bayes 
Factor Scores

! " # = ! # " !(")
!(#) = ! ' ( = ! ( ' !(')

!(()

• For ! ( ' , consider the measurement model (here CFA) for one item:
)*+ = ,+ + .+/* + 0*+

Where: 0*+ ∼ 2 0, 5+6

• Using expected values, we can show the distribution for this one item is:
! )*+|/* ∼ 2 ,+ + .+/*, 5+6

• Therefore, for all 8 items, our conditional distribution is:
! ( /* ∼ 29 : + ;/*,<

• With multiple factors, this becomes: 
! ( ' ∼ 29 : + ;',<
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Putting Together the Pieces of Empirical Bayes 
Factor Scores

! " # = ! # " !(")
!(#) = ! ' ( = ! ( ' !(')

!(()

• For ! ' , consider the distribution assumed by the factor:
Ø For one factor

! )* ∼ , -., 0.1

Ø For multiple factors K

! ' ∼ ,2 3.,4

• We must pick an identification method which determines if 
certain parameters of 3. and 4 are fixed or are estimated

Ø Any method identification works, so we keep 3. and 4 throughout
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Putting Together the Pieces of Empirical Bayes 
Factor Scores

! " # = ! # " !(")
!(#) = ! ' ( = ! ( ' !(')

!(()

• For ! ( , we return to the model-implied mean vector and 
covariance matrix:

! ( ∼ *+ , + ./,0, .2./ +3
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A Quick Reminder About Types of Distributions

• For two random variables ! and ", a conditional 
distribution is written as: # " !

• The conditional distribution is also equal to the joint 
distribution divided by the marginal distribution of the 
conditioning random variable

# " ! = #(", !)
#(!)

• Therefore, the joint distribution can be found by the 
product of the conditional and marginal distributions:

# ", ! = # " ! # !

• We can use this result in our analysis:
# ( ) # ) = #((, ))
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A Quick Reminder about Multivariate 
Normal Distributions
• If ! is distributed multivariate normally: 
Conditional distributions of ! are multivariate normal

• We can show that " #, % , the joint distribution of the 
data and the factors, is multivariate normal

• We can then use the result above (shown on the next 
slides) to show that our posterior distribution of the 
factor scores is also multivariate normal

Ø This result only applies for measurement models assuming normally 
distributed data and normally distributed factors: CFA

Ø For IRT (and other measurement models), this result will not hold—but this 
distribution is asymptotically normal as the number of items gets large
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Conditional Distributions of MVN Variables are 
Multivariate Normal 
• The conditional distribution of sets of variables from a 

MVN is also MVN

• If we were interested in the distribution of the first q
variables, we partition three matrices:
ØThe data: !":(% & ') !):(% & *+')

ØThe mean vector: 
,":(' & ")
,):(*+' & ")

ØThe covariance matrix: 
-"":(' & ') -"):(' & *+')
-)":(*+' & ') -)):(*+' & *+')
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Conditional Distributions of MVN 
Variables
• The, ! "# "$ , conditional distribution of "# given the 

values of "$ = '$ is then:
"#|"$~*+ ,∗, .∗

Where (using our partitioned matrices):

,∗ = ,# + .#$.$$0# '$1 − ,3

And:
.∗ = .## − .#$.$$0#.$#
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Derive, Templin, Derive!
• The joint distribution of all ! items and " factor scores is

# $, & = # $
&

= ()*+ , + ./,0
,0 , .1./ +2 .1

1./ 1

• Using the conditional distributions of MVNs result:
# &3 $3 is MVN:

With mean: ,0 +1./ .1./ +2 45 $3/ − ,
And Covariance: 1−1./ .1./ +2 45 .1

#WTFTemplin
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What All That Math Means for Factor Scores

• When using measurement models assuming normally 
distributed data and normally distributed factors (CFA):

Ø The posterior distribution of the factor scores is MVN

Ø Therefore, the most likely factor score (MAP) and the expected factor score 
(EAP) is given by the mean from the previous slides

Ø The factor score is a function of the model parameter estimates and the data
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• Place holder for R script…

Factor Scores via Metropolis Hastings
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WRAPPING UP
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Wrapping Up

• Today was an introduction to Bayesian statistics
Ø Bayes = use of prior distributions on parameters

• We used two methods for estimation:
Ø MAP estimation – far less common
Ø MCMC estimation

w Commonly, people will say Bayesian and mean MCMC – but Bayesian is just the 
addition of priors. MCMC is one way of estimating Bayesian models!

• MCMC is effective for most Bayesian models:
Ø Model likelihood and prior likelihood are all that are needed

• MCMC is estimation by brute force:
Ø Can be very slow, computationally intensive, and disk-space intensive
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