Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #16

Today's Class

- Repeated measures versions of linear models
 - > How RM ANOVA models are mixed models with varying assumptions
- Multivariate ANOVA
 - How MANOVA models are mixed models with varying assumptions
- An introduction to multilevel models
- For all today: Models assume data is complete
 - Every observation is recorded :: no missing data

Example Data

- A health researcher is interested in examining the impact of dietary habits and exercise on pulse rate
- A sample of 18 participants is collected
 - > Diet factor (BETWEEN SUBJECTS):
 - Nine are vegetarians
 - Nine are omnivores
 - > Exercise factor (BETWEEN SUBJECTS) with random assignment:
 - Aerobic stair climbing
 - Racquetball
 - Weight training
 - > Three pulse rates (WITHIN SUBJECTS):
 - After warm-up
 - After jogging
 - After running

REPEATED MEASURES ANOVA

Repeated Measures

- Instead of focusing on a single dependent variable, we can focus on all three
 - Repeated measures analysis
- In repeated measures GLM, the effects of interest are:
 - > Between subjects effects
 - Differences between Diet and Exercise Type
 - > Within subjects effects
 - Differences between when pulse rate was taken
 - Not usually a consideration in Multivariate GLM (MANOVA)
 - Interactions between within and between subjects effects
- As we will see, repeated measures GLM uses multivariate data and multivariate distributions

Repeated Measures Distributional Setup

- Because we have repeated observations, we now have a set of variables to predict instead of just one
 - > Our example data set had three response variables per person
 - \succ More generally, we will have p response variables per person

$$\mathbf{y}_i = \begin{bmatrix} y_{i1} & y_{i2} & \cdots & y_{ip} \end{bmatrix}$$

- The GLM is extended to model **multivariate** outcomes $f(\mathbf{y}_i | \mathbf{X}_i) \sim N_p(\mathbf{X}_i \boldsymbol{\beta}, \mathbf{V})$
- Now, $\boldsymbol{\beta}$ is size (1 + k) x p
- LS Estimates: $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$
 - > Where **Y** is size $N \times p$

Unpacking the Repeated Measures Design

• The distributional assumptions are very similar $f(\mathbf{y}_i | \mathbf{X}_i) \sim N_p(\mathbf{X}_i \boldsymbol{\beta}, \mathbf{V})$

• MODEL FOR THE MEANS:

- > The model for the means is the same (only has more terms)
- > IVs X_i and linear model weights β provide predicted values for each observation

• MODEL FOR THE VARIANCES:

- Because we have repeated observations, the model for the variances is now a covariance matrix of size p x p
 - <u>Diagonal elements:</u> variance of error for each outcome
 - <u>Off-diagonal elements:</u> covariance of errors for pairs of outcomes

More on Variances

- The key to repeated measures and multivariate ANOVA is the covariance matrix V structure
 - > Type of model dictates types of options for covariance matrix
 - > The classical statistics discussed today are one of the three
 - More modern approaches make this more flexible

Three Structures of Classical GLM

- Three structures:
- 1. Independence: $\mathbf{V} = \sigma_e^2 \mathbf{I}_p$
 - > Models if all observations as if they came from separate people
 - > No more statistical parameters than original GLM approach
 - > Don't use: shown for baseline purposes
- 2. Repeated Measures: Assumes sphericity of observations
 - Sphericity is a condition that is more strictly enforced by compound symmetry of V having two parameters:
 - > Sphericity is compound symmetry of pairwise differences
 - Diagonal elements: same variance
 - Off-diagonal elements: same covariance
 - No sphericity? Adjustments to F tests
- 3. Multivariate ANOVA/GLM: Assumes nothing estimates everything
 - Every unique element in V is modeled
 - > Need more power (i.e., sample size) to make work well
 - Most general procedure

Working Example

- We return to our example, only this time to build the repeated measures and multivariate versions
- We will begin with the unconditional model ("empty model")
 - Provided as a baseline to show how repeated measures works, conceptually you likely would never run this model
- To run this model, I converted our data from wide format (all data for one observation per row) to long format (only one observation per column)

Example Syntax: Data Transformation

] mv16	5epsy905_lect	ure12.R ×	long_data × data01 ×					
⊃ c> [2] 🖓 Filter								
	exertype 🔅	pulse1 $^{\circ}$	pulse2 🍦	pulse3 🔅	diet $\hat{}$	id	÷	
1	1	112	166	215	1	1	L	
2	1	111	166	225	1	2	2	
3	1	89	132	189	1	3	3	
4	1	95	134	186	2	4	4	
							_	

	exertype 🌻	diet 🌼	id 🌼	time 🍦	pulse 🊊
time1.	1	1	1	time1	112
time1	1	1	2	time1	111
time1	1	1	3	time1	89
time1	1	2	4	time1	95
time1	1	2	5	time1	66
time1	1	2	6	time1	69
time1	2	1	7	time1	125
time1	2	1	8	time1	85

Unconditional Model: Independence Assumption Syntax

```
#empty model
anova_emtpy = lm(pulse \sim 1 + time, data = long_data)
summary(anova_emtpy)
                              > summary(anova_emtpy)
#estimated variance:
                              Call:
summary(anova_emtpy)$sigma^2
                              lm(formula = pulse \sim 1 + time, data = long_data)
                              Residuals:
                                  Min
                                           10 Median
                                                           30
                                                                  Max
                              -58.556 -12.444 -2.306 13.958 51.444
                              Coefficients:
                                          Estimate Std. Error t value Pr(>|t|)
                              (Intercept) 87.500
                                                        5.311 16.476 < 2e-16 ***
                              timetime2 46.611 7.510 6.206 9.74e-08 ***
                              timetime3 102.056 7.510 13.588 < 2e-16 ***
                               ___
                              Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                              Residual standard error: 22.53 on 51 degrees of freedom
                              Multiple R-squared: 0.784, Adjusted R-squared: 0.7755
                              F-statistic: 92.55 on 2 and 51 DF, p-value: < 2.2e-16
                              >
                              > #estimated variance:
                              > summary(anova_emtpy)$sigma^2
                               [1] 507.6612
EPSY 905: RM ANOVA, MANOVA, and Mixed Models
```

Unconditional Model: Independence Assumption

- Parsing through the output of the previous page, we can determine the following for our data:
 f(y_i|X_i) ~ N_p(X_iβ, V)
- Where

$$\widehat{\boldsymbol{\beta}}^{T} = [87.5 \quad 46.6 \quad 102.1]$$

And

$$\mathbf{V} = \sigma_e^2 \mathbf{I}_3 = \begin{bmatrix} 507.7 & 0 & 0\\ 0 & 507.7 & 0\\ 0 & 0 & 507.7 \end{bmatrix}$$

Repeated Measures Model

 The repeated measures version of the unconditional model changes the structure of the V matrix:

$$\mathbf{V} = \begin{bmatrix} \sigma_e^2 + \tau & \tau & \tau \\ \tau & \sigma_e^2 + \tau & \tau \\ \tau & \tau & \sigma_e^2 + \tau \end{bmatrix}$$

- The design above is called compound symmetry
 - Diagonal elements: variance of outcomes has error variance and compound symmetry parameter
 - <u>Off-diagonal elements</u>: compound symmetry parameter gives covariance of observations
- Because observations come from the same person observations are likely to be correlated
 - <u>Repeated measures incorporates this correlation through sphericity (a weaker form of compound symmetry)</u>

Unconditional Model: Repeated Measures CS Assumption

```
#empty model:
RManova\_empty = aov(pulse ~ time + Error(id/time), data=long_data)
summary(RManova_empty)
coef(RManova_empty)
                           > summary(RManova_empty)
                           Error: id
                                     Df Sum Sq Mean Sq F value Pr(>F)
Impossible to see
                           Residuals 17 23369
                                                 1375
covariance
                           Error: id:time
                                     Df Sum Sq Mean Sq F value Pr(>F)
structure from R
                                     2 93972
                                                46986
                                                       633.5 <2e-16 ***
                           time
                           Residuals 34
                                         2522
                                                   74
output
                           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                           > coef(RManova_empty)
                           (Intercept) :
                           (Intercept)
                              137.0556
                           id :
                           numeric(0)
                           id:time :
                           timetime2 timetime3
                            46.61111 102.05556
```


Comparing Independence vs CS Output

> anova(anova_emtpy) Analysis of Variance Table Response: pulse Df Sum Sq Mean Sq F value Pr(>F)2 93972 46986 92.554 < 2.2e-16 *** time Residuals 51 25891 508 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > summary(anova_emtpy) Call: $lm(formula = pulse \sim 1 + time, data = long_data)$ Residuals: Min 10 Median 30 Max -58.556 -12.444 -2.306 13.958 51.444 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 87.500 5.311 16.476 < 2e-16 *** timetime2 46.611 7.510 6.206 9.74e-08 *** timetime3 102.056 7.510 13.588 < 2e-16 *** ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 22.53 on 51 degrees of freedom Multiple R-squared: 0.784, Adjusted R-squared: 0.7755 F-statistic: 92.55 on 2 and 51 DF, p-value: < 2.2e-16

> #estimated variance: > summary(anova_emtpy)\$sigma^2 [1] 507.6612

> summary(RManova_empty)

Error: id Df Sum Sq Mean Sq F value Pr(>F)Residuals 17 23369 1375 Error: id:time Df Sum Sq Mean Sq F value Pr(>F) time 2 93972 46986 633.5 <2e-16 *** Residuals 34 2522 74 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > coef(RManova_empty) (Intercept) : (Intercept) 137,0556 id : numeric(0)

id:time :
timetime2 timetime3
46.61111 102.05556

The Mixed Model Version of RM ANOVA (Part 1)

• We can get the same results from the gls() function:

#empty model using mixed model via GLS function: $Mixed_RManova_empty = gls(model = pulse \sim time, method = "REML", data = long_data, correlation=corCompSymm(form=~1|id))$ summary(Mixed_RManova_empty) anova(Mixed_RManova_empty) getVarCov(Mixed_RManova_empty) > summary(Mixed_RManova_empty) Generalized least squares fit by REML Model: pulse ~ time Data: long_data AIC BIC logLik 432,6616 442,3207 -211,3308 Correlation Structure: Compound symmetry Formula: ~1 | id Parameter estimate(s): Rho 0.8538923 Coefficients: Value Std.Error t-value p-value (Intercept) 87.50000 5.310687 16.47621 > anova(Mixed_RManova_empty) 0 timetime2 46.61111 2.870796 16.23630 0 Denom. DF: 51 timetime3 102.05556 2.870796 35.54957 0 numDF F-value p-value Correlation: (Intercept) 1 737.9024 <.0001 (Intr) timtm2 time 2 633.4640 <.0001 timetime2 -0.27 timetime3 -0.27 0.50 Standardized residuals: Min 01 Med Q3 Max -2.5988494 -0.5523171 -0.1023266 0.6195075 2.2832396

Residual standard error: 22.53134 Degrees of freedom: 54 total; 51 residual

```
KU KANSAS
```

Comparing RM ANOVA with the LME Model Version

> summary(RManova_empty)

> anova(Mixed_RManova_empty) Error: id Df Sum Sq Mean Sq F value Pr(>F)Denom. DF: 51 Residuals 17 23369 1375 numDF F-value p-value 1 737.9024 <.0001 (Intercept) Error: id:time 2 633.4640 <.0001 Df Sum Sq Mean Sq F value Pr(>F)time 46986 633.5 <2e-16 *** . time 2 93972 2522 74 Residuals 34 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > coef(RManova_empty) (Intercept) : (Intercept) 137.0556 Coefficients: Value Std.Error t-value p-value id : (Intercept) 87.50000 5.310687 16.47621 numeric(0) 0 timetime2 46.61111 2.870796 16.23630 0 id:time : timetime3 102.05556 2.870796 35.54957 0 timetime2 timetime3 46.61111 102.05556

Investigating the V Matrix from the LME Model

 Using the GetVarCov() function for the LME model, we can see the form of the (residual) covariance matrix:

> getVarCov(Mixed_RManova_empty)
Marginal variance covariance matrix
 [,1] [,2] [,3]
[1,] 507.66 433.49 433.49
[2,] 433.49 507.66 433.49
[3,] 433.49 433.49 507.66
 Standard Deviations: 22.531 22.531 22.531

Unconditional Model: Independence Assumption

- Parsing through the output of the previous page, we can determine the following for our data:
 f(y_i|X_i) ~ N_p(X_iβ, V)
- Where

$$\widehat{\boldsymbol{\beta}}^{T} = [87.5 \quad 46.6 \quad 102.1]$$

And

$$\mathbf{V} = \begin{bmatrix} \sigma_e^2 + \tau & \tau & \tau \\ \tau & \sigma_e^2 + \tau & \tau \\ \tau & \tau & \sigma_e^2 + \tau \end{bmatrix}$$
$$= \begin{bmatrix} 74.2 + 433.5 & 433.5 & 433.5 \\ 433.5 & 507.7 & 433.5 \\ 433.5 & 433.5 & 507.7 \end{bmatrix}$$

(RE)ML Allows for Testing Covariance Structures

 With the LME model we can see if the CS covariance structure improved model fit from the independence model:

```
#emtpy independence model with REML
Mixed_anova_empty = gls(model = pulse ~ time, method = "REML", data = long_data]
#comparing independence vs CS
anova(Mixed_anova_empty, Mixed_RManova_empty)
```

- The null hypothesis is that au = 0
 - > anova(Mixed_anova_empty, Mixed_RManova_empty) Model df AIC BIC logLik Test L.Ratio p-value Mixed_anova_empty 1 4 479.1234 486.8507 -235.5617 Mixed_RManova_empty 2 5 432.6616 442.3207 -211.3308 1 vs 2 48.46176 <.0001</pre>
- We reject the null hypothesis

Repeated Measures: Full Analysis

• The full repeated measures analysis of our data gives:

- > Between subjects effects
 - Differences between Diet and Exercise Type
- > Within subjects effects
 - Differences between when pulse rate was taken
 - Not a consideration in Multivariate GLM (MANOVA)
- Interactions between within and between subjects effects

• Within subjects effects can have adjustments to p-values

- Just in case data do not meet assumption of sphericity
- > SAS and SPSS have adjustments built-in...R does not
- With LME models, we don't need adjustments
 - We have the ability to fit (and test the fit of) the right model!

Full Repeated Measures ANOVA Model

#full model:

 $RManova_full = aov(pulse ~ exertype + diet + exertype*diet + Error(id/time) + (time + time*diet + time*exertype + time*diet*exertype), data=long_data) \\ summary(RManova_full)$

> summary(RManova_full)

Error: id									
	Df	Sum Sq	Mean	Sq F va	lue Pr	^(> F))		
exertype	2	1560	7	80 0.	761 0.	.4884	4		
diet	1	8791	87	91 8.	577 0.	.0126	6*		
<pre>exertype:diet</pre>	2	718	3	59 0.	351 0.	.7113	3		
Residuals	12	12299	10	25					
Signif. codes:	0	·***'	0.001	·**' 0	.01'*	*' 0	.05'.	0.1	''1
Error: id:time	9								
		Df S	um Sq I	Mean Sq	F val	Lue I	Pr(>F)		
time		2 9	93972	46986	703.7	716 •	<2e-16	***	
diet:time		2	345	172	2.5	583 (0.0964		
<pre>exertype:time</pre>		4	81	20	0.3	302 (0.8740		
exertype:diet:	tim	e 4	494	123	1.8	350 (0.1523		
Residuals		24	1602	67					
Signif. codes:	0	·***'	0.001	'* *' 0	.01'*	*' 0	.05'.	0.1	''1

Same Analysis with LME Model

```
> anova(Mixed_RManova_full)
```

Denom. DF: 36

	numDF	F-value	p-value
(Intercept)	1	989.6974	<.0001
exertype	2	0.7612	0.4745
diet	1	8.5775	0.0059
time	2	703.7157	<.0001
exertype:diet	2	0.3505	0.7067
diet:time	2	2.5830	0.0895
exertype:time	4	0.3016	0.8749
<pre>exertype:diet:time</pre>	4	1.8495	0.1407

The ANOVA Table: Same Results (for F-values)

> summary(RManova_full)

Error: id											
	Df	Sum Sq	Mean S	δqFN	/alue	Pr(>	F)				
exertype	2	1560	78	30 0	0.761	0.48	84				
diet	1	8791	879	91 8	8.577	0.01	26 *				
<pre>exertype:diet</pre>	2	718	35	59 (0.351	0.71	13				
Residuals	12	12299	102	25							
Signif. codes:	: () '***'	0.001	(**)	0.01	' *'	0.05	•.'	0.1	, ،	1
Error: id:time	9										
		Df Su	um Sq N	lean S	δqΓν	value	Pr(>	F)			
time		2 9	93972	4698	86 703	3.716	<2e-	16	***		
<pre>diet:time</pre>		2	345	17	72 7	2.583	0.09	64			
<pre>exertype:time</pre>		4	81	2	20 (0.302	0.87	'40			
exertype:diet:	tin	ne 4	494	12	23 :	1.850	0.15	23			
Residuals		24	1602	6	57						
Signif. codes:	: 0) '***'	0.001	'**'	0.01	·*'	0.05	•.'	0.1	، ،	1

> anova(Mixed_RManova_full)

Denom. DF: 36

	numur	r-value	p-value
(Intercept)	1	989.6974	<.0001
exertype	2	0.7612	0.4745
diet	1	8.5775	0.0059
time	2	703.7157	<.0001
exertype:diet	2	0.3505	0.7067
diet:time	2	2.5830	0.0895
exertype:time	4	0.3016	0.8749
<pre>exertype:diet:time</pre>	4	1.8495	0.1407

 The p-values differ due to LME having multiple methods for determining the denominator DF

The LME Residual Covariance Matrix

- > getVarCov(Mixed_RManova_empty)
 Marginal variance covariance matrix
 [,1] [,2] [,3]
 [1,] 507.66 433.49 433.49
 [2,] 433.49 507.66 433.49
 [3,] 433.49 433.49 507.66
 Standard Deviations: 22.531 22.531
 > getVarCov(Mixed RManova full)
- From the Full model:

> getVarCov(Mixed_RManova_full)
Marginal variance covariance matrix
 [,1] [,2] [,3]
[1,] 386.15 319.38 319.38
[2,] 319.38 386.15 319.38
[3,] 319.38 319.38 386.15
Standard Deviations: 19.651 19.651 19.651

- Note: with CS assumption R² is the same for all DVs:
 > = 507.66-386.15/507.66 = .239
- Multivariate version:
 - > #get multivariate R^2: > full = getVarCov(Mixed_RManova_full); gvar_full = det(matrix(full, nrow=3, ncol=3)) > empty = getVarCov(Mixed_RManova_empty); gvar_empty = det(matrix(empty, nrow=3, ncol=3)) > > (gvar_empty-gvar_full)/gvar_empty [1] 0.3958484

CLASSICAL MANOVA VS LME MODELS

- Like repeated measures, multivariate approaches focus on all dependent variables, simultaneously
 - Repeated measures analysis
- In multivariate GLM, the effects of interest are:
 - > Between subjects effects Implies differences in mean vectors
 - Differences between Diet and Exercise Type
- Within subjects effects are less commonly inspected
 But certainly can be
- Key difference between multivariate approach and repeated measures approach comes from assumptions about V matrix

Multivariate Approach Assumptions

MANOVA estimates all elements of the V matrix:

$$\mathbf{V} = \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_1e_2} & \sigma_{e_1e_3} \\ \sigma_{e_1e_2} & \sigma_{e_2}^2 & \sigma_{e_2e_3} \\ \sigma_{e_1e_3} & \sigma_{e_2e_3} & \sigma_{e_3}^2 \end{bmatrix}$$

 Contrast that with the repeated measures version of compound symmetry structure for the V matrix:

$$\mathbf{V} = \begin{bmatrix} \sigma_e^2 + \tau & \tau & \tau \\ \tau & \sigma_e^2 + \tau & \tau \\ \tau & \tau & \sigma_e^2 + \tau \end{bmatrix}$$

Multivariate Versus Repeated Measures

• Multivariate:

- More model parameters; less parsimony
- Fewer assumptions
- > Better if assumptions of RM are violated (LME models don't need this)

Repeated measures:

- Fewer model parameters; more parsimony
- Strict assumptions
- More power that multivariate if assumptions are met

Multivariate Test Statistic(s)

- The multivariate approach has a new class of statistics used for testing multivariate hypotheses
 - Rely on summaries of key matrix products
- More than one test statistic is available
 - None are uniformly most powerful (across all sample sizes and types of independent variables)
- Test statistics:
 - > Wilks' lambda
 - Pillai's trace
 - > Hotelling-Lawley trace
 - Roy's largest root

Forming Multivariate Test Statistics

- As with univariate linear models, multivariate linear models decompose variability into various sources
 - > But now decomposition is multivariate
- Univariate decomposition:
 - > Sums of squares treatment: $\sum_{g=1}^{k} n_g (\bar{y}_{.g} \bar{y}_{..})^2$
 - > Sums of squares error: $\sum_{i=1}^{n_g} \sum_{g=1}^k (y_{ig} \overline{y}_{g})^2$
- F-ratio was formed by comparing these terms (divided by their degrees of freedom)

Multivariate Decomposition

- Multivariate decomposition is based on mean vectors
 - > Each variable is represented
- Sums of squares and cross-products for treatment (the H matrix...stands for hypothesis):

$$\mathbf{H} = \sum_{g=1}^{k} n_g (\bar{\mathbf{y}}_{\cdot g} - \bar{\mathbf{y}}_{\cdot \cdot}) (\bar{\mathbf{y}}_{\cdot g} - \bar{\mathbf{y}}_{\cdot \cdot})^T$$

Sums of squares and cross-products for error (the E matrix...stands for error):

$$\mathbf{E} = \sum_{i=1}^{n_g} \sum_{g=1}^k (\mathbf{y}_{ig} - \overline{\mathbf{y}}_{\cdot g}) (\mathbf{y}_{ig} - \overline{\mathbf{y}}_{\cdot g})^T$$

Wilks' Lambda

Once both matrices are formed, Wilks' lambda can be obtained:

$$\lambda^* = \frac{|\mathbf{E}|}{|\mathbf{H} + \mathbf{E}|}$$

• Equivalently (and shown to try to relate to univariate test statistics), Wilks' lambda can be formed from the eigenvalues (λ) of $\mathbf{E}^{-1}\mathbf{H}$:

$$\lambda^* = \prod_{i=1}^{s} \frac{1}{1+\lambda_i}$$

• Where
$$s = \min(p, g - 1)$$

Multivariate Empty Model

 Returning the focus away from the test statistics, let's examine the multivariate approach using our empty (unconditional) model

```
#MANOVA for an empty model:
MANOVA_empty = manova(cbind(pulse1, pulse2, pulse3) ~ 1, data=data01)
summary.aov(MANOVA_empty)
```

• The results are pretty sparse (no effects tested):

LME Model Version of MANOVA: Empty Model

#MANOVA empty model using mixed model via GLS function:

summary(Mixed_MANOVA_empty)
anova(Mixed_MANOVA_empty)
getVarCov(Mixed_MANOVA_empty)

Correlation Structure: General Formula: ~1 | id Parameter estimate(s): Correlation: 1 2 2 0.917 3 0.852 0.946 Variance function: Structure: Different standard deviations per stratum Formula: ~1 | time Parameter estimates: time1 time2 time3 1.000000 1.299993 1.658602

Coefficients:

	Value	Std.Error	t-value	p-value
(Intercept)	87.50000	3.943432	22.18879	0
timetime2	46.61111	2.184526	21.33694	0
timetime3	102.05556	3.789795	26.92904	0

Correlation:

(Intr) timtm2 timetime2 0.346 timetime3 0.430 0.818

Standardized residuals:

Min Q1 Med Q3 Max -2.1101602 -0.5894138 -0.1125977 0.5650097 2.2414067

Residual standard error: 16.73056 Degrees of freedom: 54 total; 51 residual

<pre>> anova(Mixed_MANOVA_empty)</pre>								
Denom. DF: 5	51							
	numDF	F-value	p-value					
(Intercept)	1	137.5151	<.0001					
time	2	363.3109	<.0001					

> getVarCov(Mixed_MANOVA_empty)

Marginal variance covariance matrix
 [,1] [,2] [,3]
[1,] 279.91 333.53 395.71
[2,] 333.53 473.05 571.23
[3,] 395.71 571.23 770.03
 Standard Deviations: 16.731 21.75 27.749

Note: The diagonal elements are equal to the MSEs from the previous slide

Empty Model: Unstructured Covariance Matrix

- Parsing through the output of the previous page, we can determine the following for our data:
 f(y_i|X_i) ~ N_p(X_iβ, R)
- Where

$$\widehat{\boldsymbol{\beta}} = [87.5 \quad 46.6 \quad 102.1]$$

And

$$\mathbf{R} = \left(\frac{1}{N-1}\right) \mathbf{E} = \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_1e_2} & \sigma_{e_1e_3} \\ \sigma_{e_1e_2} & \sigma_{e_2}^2 & \sigma_{e_2e_3} \\ \sigma_{e_1e_3} & \sigma_{e_2e_3} & \sigma_{e_3}^2 \end{bmatrix}$$
$$= \begin{bmatrix} 279.9 & 333.5 & 395.7 \\ 333.5 & 473.0 & 571.2 \\ 395.7 & 571.2 & 770.0 \end{bmatrix}$$

Building the Full Model: Classical MANOVA

#the full model:

```
MANOVA_full = manova(cbind(pulse1, pulse2, pulse3) ~ diet + exertype + diet*exertype, data=data01)
summary.manova(MANOVA_full, test="Wilks")
summary.manova(MANOVA_full, test="Pillai")
summary.manova(MANOVA_full, test="Hotelling-Lawley")
summary.manova(MANOVA_full, test="Roy")
```

> summary.manova(MANOVA_full, test="Wilks")

-		-			-		
	Df	Wilks	approx F	num Df	den Df	Pr(>F)	
diet	1	0.54857	2.7430	3	10	0.09885 .	
exertype	2	0.60547	0.9505	6	20	0.48224	
diet:exertype	2	0.54777	1.1705	6	20	0.36068	
Residuals	12						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
> summary.man	ova	(MANOVA_1	full, test	t="Pillo	ai")		
	Df	Pillai	approx F	num Df	den Df	Pr(>F)	
diet	1	0.45143	2.7430	3	10	0.09885 .	
exertype	2	0.42936	1.0024	6	22	0.44865	
diet:exertype	2	0.47929	1.1557	6	22	0.36471	
Residuals	12						
Signif. codes	: () '*** ' (0.001 '**	° 0.01	·*' 0.0	5 '.' 0.1 ' '	1

> summary.manova(MANOVA_full, test="Hotelling-Lawley")

	Df	Hotellin	na-Lawley	approx F	num Df de	en Df P	r(>F)
diet	1		0.82291	2.74302	3	10 0.	09885
exertype	2		0.59408	0.89113	6	18 0	52181
diet:exertype	2		0.33100	1 16474	6	18 0	36766
Residuals	12		0.11010	1.10424	Ŭ	10 0.	50100
Restauts	12						
Signif. codes: > summary.man	: (ova()	0.001'** full, test	' 0.01'*' t="Roy")	0.05'.	'0.1'	'1
-	Df	Roy	approx F	num Df de	en Df Pro	(>F)	
diet	1	0.82291	2.7430	3	10 0.09	9885 .	
exertype	2	0.47228	1.7317	3	11 0.2	1815	
diet:exertype	2	0.70619	2.5894	3	11 0.10	0580	
Residuals	12						
Signif. codes:	. ()'***'(0.001 '**	' 0.01 '*'	0.05'.	'0.1 '	'1

Building the Full Model: LME Model

>	anova	Mixed	MANOVA	full

Denom. DF: 36

	numDF	F-value	p-value
(Intercept)	1	268.5689	<.0001
exertype	2	2.2173	0.1236
diet	1	6.8163	0.0131
time	2	416.3629	<.0001
<pre>exertype:diet</pre>	2	1.9365	0.1589
diet:time	2	1.5293	0.2304
<pre>exertype:time</pre>	4	0.6736	0.6146
<pre>exertype:diet:time</pre>	4	1.3602	0.2670

•••							
<pre>> getVarCov(Mixed_MANOVA_full)</pre>							
Marginal variance covariance matrix							
[,1] [,2] [,3]							
[1,] 189.61 244.31 278.64							
[2,] 244.31 376.00 435.19							
[3,] 278.64 435.19 592.83							
Standard Deviations: 13.77 19.391 24.348							
I							

THE BENEFITS OF MIXED MODELS OVER CLASSICAL RM ANOVA AND MANOVA

So...Which V Matrix is Right?

Classical methods taught today have no good way of determining which is most appropriate V matrix

Independence	Compound Symmetry	Unstructured			
$\begin{bmatrix} 507.7 & 0 & 0 \\ 0 & 507.7 & 0 \\ 0 & 0 & 507.7 \end{bmatrix}$	507.7433.5433.5433.5507.7433.5433.5433.5507.7	279.9333.5395.7333.5473.0571.2395.7571.2770.0			
Regular ANOVA	Repeated Measures ANOVA	Multivariate ANOVA			
Restrictive Assumptions		Relaxed Assumptions			
Few Parameters		More Parameters			
RM ANOVA, MANOVA, and Mixed Models		41 KANSAS			

LME Models Can Test for the Best Structure

• We can use Likelihood Ratio Tests to test for the best covariance matrix structure in LME models:

<pre>> anova(Mixed_RMan</pre>	ova_fu]	ιι,	Mixed_MAN	NOVA_full))				
	Model	df	AIC	BIC	logLik	٦	「est	L.Ratio	p-value
Mixed_RManova_full	1	20	345.9564	377.6268	-152.9782				
Mixed_MANOVA_full	2	24	336.0586	374.0630	-144.0293	1 \	/s 2	17.89789	0.0013
、									

- The LRT above is not rescaled (not available in nlme package: BAD R!)
- We could also come up with a new structure altogether
 Not at all possible in classical approach
- On next slide: Heterogeneous Compound Symmetry
 - > Different covariances per DV
 - Same correlation

New Model: Heterogeneous Compound Symmetry

```
#New Structure: Heterogeneous variances with common correlation (Called CS-H in SAS)
Mixed_CSH_full = gls(model = pulse ~ exertype + diet + exertype*diet +
                    time + time*diet + time*exertype + time*diet*exertype,
                    method = "REML", data = long_data, correlation=corCompSymm(form=~1|id),
                    weights=varIdent(form = ~1|time))
                 > getVarCov(Mixed_CSH_full)
                 Marginal variance covariance matrix
                        [,1] [,2] [,3]
                 [1,] 193.32 235.83 303.45
                 [2,] 235.83 363.56 416.13
                 [3,] 303.45 416.13 601.89
                   Standard Deviations: 13.904 19.067 24.533
                                                  > MANOVAcorrV
     > CSHcorrV
                                                            [,1]
                                                                      [,2]
                                                                                [,3]
               [,1]
                         Γ,27
                                   Γ.37
                                                  [1,] 1.0000000 0.9149714 0.8310816
     [1,] 1.0000000 0.8895744 0.8895744
                                                  [2.] 0.9149714 1.0000000 0.9217711
     [2,] 0.8895744 1.0000000 0.8895744
                                                  [3,] 0.8310816 0.9217711 1.0000000
     [3,] 0.8895744 0.8895744 1.0000000
    > anova(Mixed_RManova_full, Mixed_CSH_full, Mixed_MANOVA_full)
                       Model df
                                     AIC
                                              BIC
                                                     logLik Test L.Ratio p-value
    Mixed RManova full
                           1 20 345.9564 377.6268 -152.9782
    Mixed_CSH_full 2 22 336.0467 370.8841 -146.0233 1 vs 2 13.90974 0.0010
    Mixed_MANOVA_full 3 24 336.0586 374.0630 -144.0293 2 vs 3 3.98815
                                                                            0.1361
```


>

LME MODEL EXTENSIONS: RANDOM COEFFICIENTS

An À la carte Approach to Model Building

Choices for Model for the Means

Choices for Model for the Variances	Empty Means	Saturated Means
e _{ti} only	1a	1b BP ANOVA
U _{0i} + e _{ti} Compound Symmetry (CS)	2a	2b <i>Univ. RM ANOVA</i>
All variances and covariances (Unstructured; UN)	За	3b <i>Multiv. RM ANOVA</i>

The labels for the models (1a - 3b) correspond to example 2c.

MLM generally begins with 2a, which is used as a baseline model.

Empty Multilevel Model (U_{0i} + e_{ti}): New Terminology

Empty Multilevel Model Model for Means; Model for Variances

 $y_{i} = \beta_{0} + e_{i}$ <u>Multilevel Model</u>
L1: $y_{ti} = \beta_{0i} + e_{ti}$ L2: $\beta_{0i} = \gamma_{00} + U_{0i}$ Sample fundividual Grand Mean Intercept Deviation

General Linear Model

3 Model Parameters 1 Fixed Effect: $\gamma_{00} \rightarrow$ fixed intercept **1** Random Effect (intercept): $U_{0i} \rightarrow$ person-specific deviation \rightarrow mean=0, variance = τ_{10}^2 **1 Residual Error:** $e_{ti} \rightarrow$ time-specific deviation \rightarrow mean=0, variance = σ_{a}^{2}

Combined equation: $y_{ti} = \gamma_{00} + U_{0i} + e_{ti}$

Empty Multilevel Model: Useful Descriptive Statistic -> ICC

IntraClass Correlation (ICC):

 $ICC = \frac{Intercept Variance}{Intercept Variance + Residual Variance}$ $ICC = \frac{Between Variance}{Between Variance + Within Variance}$ $= \frac{\frac{1}{T_{U_0}^2 + \sigma_e^2}}{\frac{1}{T_{U_0}^2 + \sigma_e^2}}$

- ICC = Proportion of variance that is between-persons
- ICC = Average correlation across occasions

Matrices Used in Longitudinal Models for the Variances

- Two matrices of variance components (piles):
 - G Matrix: Between-person U_{0i} variance
 - R Matrix: Within-person e_{ti} variance
 - ➤ G and R combine to make V, the total variance of Y
- The most basic +WP model (just U_{0i} + e_{ti}) can be estimated in two equivalent ways:
 - "Random Intercept Only Model": G and R together = V
 - Random intercept only in G
 - "Identity" (SPSS) or "VC" (SAS) R (uncorrelated, homogeneous var)
 - > "Compound Symmetry Model": Just use R (so R = V)
 - Nothing in G, R has "compound symmetry" form

KU KANSAS

Equivalent Variance Models

ANALYSIS ADVICE

Advice About Picking An Analysis Method

Use REPEATED MEASURES if:

- > You have complete data (nothing is missing)
- You have a small sample size
- Your data meet sphericity assumption

• Use MULTIVARIATE if:

- > You have complete data (nothing is missing)
- You have a large sample size
- Your data do not meet sphericity assumption
- Note: both methods, although classical, are still useful
 - > However: we will learn a modern approach to their estimation
 - Allows for more broad analysis types and missing data
 - Problem: cannot tell which R matrix is appropriate

When Not To Use Either Method

- Do NOT use this version of REPEATED MEASURES or MULTIVARIATE if:
 - You have independent variables you wish to study that vary with each dependent variable (example: time)
 - Use multilevel approach
 - You have missing data
 - We will use this to demonstrate imputation methods
 - You have categorical data
 - Use link-functions
 - You have data that come from psychometric measures
 - Use structural equation modeling
 - > You would like to determine which **R** matrix to use

CONCLUDING REMARKS

Wrapping Up

- Many methods for repeated measures exist
 - > Univariate
 - Repeated measures
 - > Multivariate
- What you have learned to this point in this class can
 - > Do repeated measures more generally than classical methods
 - > Be more flexible with missing data
 - > Accommodate less restrictive assumptions

