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Today’s Class

- Repeated measures versions of linear models
> How RM ANOVA models are mixed models with varying assumptions

- Multivariate ANOVA

> How MANOVA models are mixed models with varying assumptions

- An introduction to multilevel models

. For all today: Models assume data is complete
> Every observation is recorded :: no missing data

THE UNIVERSITY OF
EPSY 905: RM ANOVA, MANOVA, and Mixed Models 2 w KANSAS




Example Data

- A health researcher is interested in examining the impact
of dietary habits and exercise on pulse rate

- A sample of 18 participants is collected

> Diet factor (BETWEEN SUBJECTS):
+ Nine are vegetarians
+ Nine are omnivores

> Exercise factor (BETWEEN SUBJECTS) with random assignment:
+ Aerobic stair climbing
+ Racquetball
+ Weight training

> Three pulse rates (WITHIN SUBJECTS):
+ After warm-up
+ After jogging
+ After running
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REPEATED MEASURES ANOVA
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Repeated Measures

- Instead of focusing on a single dependent variable, we can

focus on all three
> Repeated measures analysis

- In repeated measures GLM, the effects of interest are:
> Between subjects effects
+ Differences between Diet and Exercise Type

> Within subjects effects
+ Differences between when pulse rate was taken
+ Not usually a consideration in Multivariate GLM (MANOVA)

> Interactions between within and between subjects effects

- As we will see, repeated measures GLM uses multivariate
data and multivariate distributions
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Repeated Measures Distributional Setup

- Because we have repeated observations, we now have a

set of variables to predict instead of just one

» Our example data set had three response variables per person

> More generally, we will have p response variables per person
y; = [Vin Yiz2 = Yip]

- The GLM is extended to model multivariate outcomes
f(yilX;) ~ Ny(X;B,V)

- Now, Bissize(1+k)xp

. LS Estimates: B = (X"X)"1XTY
> Where Yissize Nxp
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Unpacking the Repeated Measures Design

- The distributional assumptions are very similar
f(yilX;) ~ Ny(X;B,V)

- MODEL FOR THE MEANS:

> The model for the means is the same (only has more terms)

> IVs X; and linear model weights 8 provide predicted values for each
observation

- MODEL FOR THE VARIANCES:

> Because we have repeated observations, the model for the variances is now a
covariance matrix of size px p
+ Diagonal elements: variance of error for each outcome
+ Off-diagonal elements: covariance of errors for pairs of outcomes
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More on Variances

- The key to repeated measures and multivariate ANOVA is

the covariance matrix V structure

> Type of model dictates types of options for covariance matrix

> The classical statistics discussed today are one of the three
+ More modern approaches make this more flexible
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Three Structures of Classical GLM

- Three structures:

1. Independence: V = o£1,

> Models if all observations as if they came from separate people
> No more statistical parameters than original GLM approach
> Don’t use: shown for baseline purposes

2. Repeated Measures: Assumes sphericity of observations

>  Sphericity is a condition that is more strictly enforced by compound symmetry
of V having two parameters:

>  Sphericity is compound symmetry of pairwise differences
. Diagonal elements: same variance
. Off-diagonal elements: same covariance

> No sphericity? Adjustments to F tests

3. Multivariate ANOVA/GLM: Assumes nothing — estimates
everything
> Every unique element in V is modeled

> Need more power (i.e., sample size) to make work well
> Most general procedure
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Working Example

- We return to our example, only this time to build the
repeated measures and multivariate versions

- We will begin with the unconditional model (“empty

model”)

> Provided as a baseline to show how repeated measures works, conceptually —
you likely would never run this model

- To run this model, | converted our data from wide format
(all data for one observation per row) to long format (only
one observation per column)
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Example Syntax: Data Transformation

| mv16epsy905_lecturel2.R » _] long_data » JdataOl ®
o &1 | °F Filter

exertype pulsel pulse2 pulse3 diet id
1 1 112 166 215 1 1
2 1 111 166 225 1 2
3 1 89 132 189 1 3
B 1 95 134 186 2 “

#first, reshape data from wide to long

long_data = reshape(data = data@l, varying = c("pulsel”, "pulse2”, "pulse3"), v.names = "pulse”,
timevar = "time"”, times = c("timel”, "time2", "time3"), direction = "long")
exertype diet id time pulse
timel 1 1 1 timel 112
timel 1 1 pa timel 111
timel 1 1 3 timel 89
timel 1 P B timel 95
timel 1 2 5 timel 66
timel 1 2 6 timel 69
timel 2 1 7 timel 125
timel 2 1 8 timel 85
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Unconditional Model: Independence Assumption Syntax

#empty model
anova_emtpy = lm(pulse ~ 1 + time, data = long_data)

summary(anova_emtpy) > summary(anova_emtpy)

#estimated variance: Call:
summary(anova_emtpy)$sigma’Z  1m(formula = pulse ~ 1 + time, data = long_data)

Residuals:

Min 1Q Median 3Q Max
-58.556 -12.444 -2.306 13.958 51.444
Coefficients:

Estimate Std. Error t value Pr(>1tl)

(Intercept) 87.500 5.311 16.476 < 2e-16 ***
timetime2 46.611 7.510 6.206 9.74e-08 ***
timetime3 102.056 7.510 13.588 < 2e-16 ***

Signif. codes: @ “***’ 9.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 22.53 on 51 degrees of freedom
Multiple R-squared: 0.784, Adjusted R-squared: 0.7755
F-statistic: 92.55 on 2 and 51 DF, p-value: < 2.2e-16

>

> #estimated variance:

> summary(anova_emtpy)$sigmar2
EPSY 905: RM ANOVA, MANOVA, and Mixed Models [1] 507 . 6612



Unconditional Model: Independence Assumption

. Parsing through the output of the previous page, we can

determine the following for our data:
f(yilX;) ~ Ny(X;B,V)

- Where
BT =[875 46.6 102.1]
- And
507.7 O 0
V=c¢?l;=| 0 507.7 0
0 0 507.7.

llllllllllllll
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Repeated Measures Model

- The repeated measures version of the unconditional
model changes the structure of the V matrix:

ol + T T T
V=] = o+ 1 T
T T o2 + 1.

- The design above is called compound symmetry

> Diagonal elements: variance of outcomes has error variance and compound
symmetry parameter

> Off-diagonal elements: compound symmetry parameter gives covariance of
observations

- Because observations come from the same person

observations are likely to be correlated

> Repeated measures incorporates this correlation through sphericity (a
weaker form of compound symmetry)
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Unconditional Model: Repeated Measures CS Assumption

#empty model:
RManova_empty = aov(pulse ~ time + Error(id/time), data=long_data)
summary(RManova_empty)

coef(RManova_empty) > summary(RManova_empty)
_ Error: id
Df Sum Sq Mean Sq F value Pr(>F)

Impossible to see  Residuals 17 23369 1375

covariance Error: id:time

Df Sum Sq Mean Sq F value Pr(>F)
structure from R time 2 93972 46986 633.5 <2e-16 ***

output Residuals 34 2522 74
Signif. codes: @ ‘***’ 0.001 ‘**’ .01 ‘*’ 0.05 ‘.’ 0.1  * 1
> coef(RManova_empty)
(Intercept) :
(Intercept)
137.0556

id :
numeric(@)

id:time :
timetime2 timetime3
46.61111 102.05556 v or

1
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Comparing Independence vs CS Output

> anova(anova_emtpy)
Analysis of Variance Table

Response: pulse

Df Sum Sq Mean Sq F value Pr(>F)
time 2 93972 46986 92.554 < 2.2e-16 ***
Residuals 51 25891 508

Signif. codes: @ ‘***’ 9,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 “ ’ 1

> summary(ahbva_emtby)

Call:
Im(formula = pulse ~ 1 + time, data = long_data)

Residuals:
Min 1Q Median 3Q Max
-58.556 -12.444 -2.306 13.958 51.444

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 87.500 5.311 16.476 < 2e-16 ***
timetime2 46.611 7.510 6.206 9.74e-08 ***
timetime3 102.056 7.510 13.588 < 2e-16 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 90.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 22.53 on 51 degrees of freedom
Multiple R-squared: @.784, Adjusted R-squared: 0.7755
F-statistic: 92.55 on 2 and 51 DF, p-value: < 2.2e-16

>

> #estimated variance:

> summary(anova_emtpy)$sigmar2
[1] 507.6612

EPSY 905: RM ANOVA, MANOVA, and Mixed Models

> summary(RManova_empty)

Error: id
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 17 23369 1375

Error: id:time
Df Sum Sq Mean Sq F value Pr(>F)

time 2 93972 46986 633.5 <2e-16 ***
Residuals 34 2522 74
Signif. codes: @ ‘***’ @9.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ° 1
> coef(RManova_empty)
(Intercept) :
(Intercept)

137.0556

id :
numeric(@)

id:time :

timetime2 timetime3
46.61111 102.05556
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The Mixed Model Version of RM ANOVA (Part 1)

- We can get the same results from the gls() function:

#empty model using mixed model via GLS function:

Mixed_RManova_empty = gls(model = pulse ~ time, method = "REML", data = long_data, correlation=corCompSymm(form=~1|id))
summary(Mixed_RManova_empty)

anova(Mixed_RManova_empty)

getVarCov(Mixed_RManova_empty)

> summary(Mixed_RManova_empty)
Generalized least squares fit by REML
Model: pulse ~ time
Data: long_data
AIC BIC loglLik
432.6616 442.3207 -211.3308

Correlation Structure: Compound symmetry
Formula: ~1 | id
Parameter estimate(s):

Rho
0.8538923
Coefficients:

Value Std.Error t-value p-value
(Intercept) 87.50000 5.310687 16.47621 (7] > anova(Mixed_RManova_empty)
timetime2 46.61111 2.870796 16.23630 0 .
timetime3  102.05556 2.870796 35.54957 0 Denom. DF: 51
numDF F-value p-value

Correlation:

(Intr) timtm2 (Intercept) 1 737.9024 <.0001

timetime2 -0.27 time 2 633.4640 <.0001
timetime3 -0.27 0.50 !

Standardized residuals:

Min Q1 Med Q3 Max
-2.5988494 -0.5523171 -0.1023266 0.6195075 2.2832396
THE UNIVERSITY OF
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Comparing RM ANOVA with the LME Model Version

> summary(RManova_empty)

Error: id > anova(Mixed_RManova_empty)
Df Sum Sq Mean Sq F value Pr(>F) Denom. DF: 51

Residuals 17 23369 1375 numDF F-value p-value

Error: id:time (Intercept) 1 737.9024 <.0001
Df Sum Sq Mean Sq F value Pr(>F) time 2 633.4640 <.0001

time 2 93972 46986 633.5 <2e-1lb *** !

Residuals 34 2522 74

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
> coef(RManova_empty)

(Intercept) :
(Intercept)

137.0556

Coefficients:

id : Value Std.Error t-value p-value
numeric(@) (Intercept) 87.50000 5.310687 16.47621 (]
S timetime2 46.61111 2.870796 16.23630 (]
id:time : timetime3  102.05556 2.870796 35.54957 (/]

timetime2 timetime3
46.61111 102.05556
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Investigating the V Matrix from the LME Model

. Using the GetVarCov() function for the LME model, we can
see the form of the (residual) covariance matrix:

> getVarCov(Mixed_RManova_empty)
Marginal variance covariance matrix
11  [,21 [,3]
[1,] 507.66 433.49 433.49
[2,] 433.49 507.66 433.49
[3,] 433.49 433.49 507.66
Standard Deviations: 22.531 22.531 22.531
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Unconditional Model: Independence Assumption

. Parsing through the output of the previous page, we can

determine the following for our data:
f(yilX;) ~ Ny(X;B,V)

- Where
BT =[875 46.6 102.1]
- And
ol + T T T
V=| =1 o+ 1 T
T T ol + 1

74.2 + 433.5 433.5 433.5]
433.5 507.7 433.5
433.5 433.5 507.7.

lllllllllllllll
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(RE)ML Allows for Testing Covariance Structures

- With the LME model we can see if the CS covariance
structure improved model fit from the independence
model:

#emtpy independence model with REML
Mixed_anova_empty = gls(model = pulse ~ time, method = "REML", data = long_data’

#comparing independence vs CS
anova(Mixed_anova_empty, Mixed_RManova_empty)

- The null hypothesisisthatt =0

> anova(Mixed_anova_empty, Mixed_RManova_empty)

Model df AIC BIC logLik Test L.Ratio p-value
Mixed_anova_empty 1 4 479.1234 486.8507 -235.5617
Mixed_RManova_empty 2 5 432.6616 442.3207 -211.3308 1 vs 2 48.46176 <.0001

- We reject the null hypothesis
EPSY 905: RM ANOVA, MANOVA, and Mixed Models 21 w W§K§




Repeated Measures: Full Analysis

- The full repeated measures analysis of our data gives:

> Between subjects effects
+ Differences between Diet and Exercise Type

> Within subjects effects
+ Differences between when pulse rate was taken
+ Not a consideration in Multivariate GLM (MANOVA)

> Interactions between within and between subjects effects

- Within subjects effects can have adjustments to p-values

> Just in case data do not meet assumption of sphericity
> SAS and SPSS have adjustments built-in...R does not

- With LME models, we don’t need adjustments
> We have the ability to fit (and test the fit of) the right model!
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Full Repeated Measures ANOVA Model

#full model:
RManova_full = aov(pulse ~ exertype + diet + exertype*diet + Error(id/time) + (time + time*diet + time*exertype + time*diet*exertype), data=long_data)
summary(RManova_full)

> summary(RManova_full)

Error: id

Df Sum Sq Mean Sq F value Pr(>F)
exertype 2 1560 780 0.761 0.4884
diet 1 8791 8791 8.577 0.0126 *

exertype:diet 2 718 359 0.351 0.7113
Residuals 12 12299 1025

Signif. codes: @ ‘***’ 9,001 ‘**’ 9.01 ‘*’> 0.05 ‘.’ 0.1 ¢ ’ 1

Error: id:time
Df Sum Sq Mean Sq F value Pr(>F)

time 2 93972 46986 703.716 <2e-16 ***
diet:time 2 345 172 2.583 0.0964 .
exertype:time 4 81 20 0.302 0.8740
exertype:diet:time 4 494 123 1.850 0.1523
Residuals 24 1602 67

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
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Same Analysis with LME Model

#RManova using Mixed Model via GLS function:|
Mixed_RManova_full = gls(model = pulse ~ exertype + diet + exertype*diet +
time + time*diet + time*exertype + time*diet*exertype,
method = "REML", data = long_data, correlation=corCompSymm(form=~1lid))
summary(Mixed_RManova_full)
anova(Mixed_RManova_full)
getVarCov(Mixed_RManova_full)

> anova(Mixed_RManova_full)

Denom. DF: 36
numDF F-value p-value
(Intercept) 1 989.6974 <.0001
exertype 2 0.7612 0.4745
diet 1 8.5775 0.0059
time 2 703.7157 <.0001
exertype:diet 2 0.3505 0.7067
diet:time 2 2.5830 0.0895
exertype:time 4 0.3016 0.8749
4 1.8495 0.1407

exertype:diet:time
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The ANOVA Table: Same Results (for F-values)

> anova(Mixed_RManova_full)
> summary(RManova_full)

Denom. DF: 36
Error: id numDF F-value p-value
Df Sum Sq Mean Sq F value Pr(>F) (Intercept) 1 989.6974 <.0001

exertype 2 1560 780 0.761 0.4884
diet 1 8791 8791 8.577 0.0126 * exertype 2 0.7612 0.4745
exertype:diet 2 718 359 ©0.351 0.7113 diet 1 8.5775 0.0059
Residuals 12 12299 1025 time 2 703.7157 <.0001
T exertype:diet 2 0.3505 0.7067
S f. des: @ ‘***’ 9,001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1 . .

rontE. codes diet:time 2 2.5830 0.0895
Error: id:time exertype:time 4 0.301c 0.8749
_ Df Sum Sq Mean Sq F value Pr(>F) exertype:diet:time 4 1.8495 0.1407
time 2 93972 46986 703.716 <2e-16 *** N
diet:time 2 345 172 2.583 0.0964 .
exertype:time 4 81 20 0.302 0.8740
exertype:diet:time 4 494 123 1.850 0.1523
Residuals 24 1602 67

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 <’ 1

- The p-values differ due to LME having multiple methods
for determining the denominator DF
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The LME Residual Covariance Matrix

. F rom t h e E m pty mo d el . > getVarCov(Mixed_RManova_empty)

Marginal variance covariance matrix
11 [,21  [,3]
[1,] 507.66 433.49 433.49
[2,] 433.49 507.66 433.49
[3,] 433.49 433.49 507.66
Standard Deviations: 22.531 22.531 22.531

> getVarCov(Mixed_RManova_full)
. From the Fu” mode|: Marginal variance covariance matrix
(11 [,21  [,3]
[1,] 386.15 319.38 319.38
[2,] 319.38 386.15 319.38
[3,] 319.38 319.38 386.15
Standard Deviations: 19.651 19.651 19.651

- Note: with CS assumption R?is the same for all DVs:
» = 507.66-386.15/507.66 = .239

- Multivariate version: > et mtivaricte v

> full = getVarCov(Mixed_RManova_full); gvar_full = det(matrix(full, nrow=3, ncol=3))

> empty = getVarCov(Mixed_RManova_empty); gvar_empty = det(matrix(empty, nrow=3, ncol=3))
>

> (gvar_empty-gvar_full)/gvar_empty
[1] ©.3958484
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CLASSICAL MANOVA VS LME MODELS
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Multivariate Approaches

. Like repeated measures, multivariate approaches focus on

all dependent variables, simultaneously
> Repeated measures analysis

. In multivariate GLM, the effects of interest are:

> Between subjects effects — Implies differences in mean vectors
+ Differences between Diet and Exercise Type

- Within subjects effects are less commonly inspected
> But certainly can be

- Key difference between multivariate approach and
repeated measures approach comes from assumptions

bout V matrix
a O u THE UNIVERSITY OF
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Multivariate Approach Assumptions

- MANOVA estimates all elements of the V matrix:

[ 2
0-61 O-elez 0-6163
— 2
V= 0-9132 0-32 0-9293
2
_0-9133 0-9233 033 i

. Contrast that with the repeated measures version of
compound symmetry structure for the V matrix:

ol + T T T
V=] = o+ 1 T
T T o+ 1T

IIIIIIIIIIIIIII
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Multivariate Versus Repeated Measures

- Multivariate:

> More model parameters; less parsimony
» Fewer assumptions
> Better if assumptions of RM are violated (LME models don’t need this)

- Repeated measures:

> Fewer model parameters; more parsimony
» Strict assumptions
> More power that multivariate if assumptions are met
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Multivariate Test Statistic(s)

- The multivariate approach has a new class of statistics

used for testing multivariate hypotheses
> Rely on summaries of key matrix products

- More than one test statistic is available

> None are uniformly most powerful (across all sample sizes and types of
independent variables)

- Test statistics:

> Wilks’ lambda

> Pillai’s trace

> Hotelling-Lawley trace
> Roy’s largest root
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Forming Multivariate Test Statistics

- As with univariate linear models, multivariate linear

models decompose variability into various sources
» But now decomposition is multivariate

- Univariate decomposition:

2
> Sums of squares treatment: Z§=1 Ny ()7.g — )7..)

2
> Sums of squares error: Z?fl ZZ:l(Yig — }7.9)

- F-ratio was formed by comparing these terms (divided by
their degrees of freedom)
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Multivariate Decomposition

- Multivariate decomposition is based on mean vectors
> Each variable is represented

- Sums of squares and cross-products for treatment (the H
matrix...stands for hypothesis):

H= ny(y,-7.)F5-7.)"

- Sums of squares and cross-products for error (the E

matrix...stands for error):
ng k

E = ; ;(Yig — y’-g) (Vig — y’-g)T

THE UNIVERSITY OF
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Wilks’ Lambda

- Once both matrices are formed, Wilks” lambda can be
obtained:
|E|

Ar =
H + E|

. Equivalently (and shown to try to relate to univariate test
statistics), Wilks’ lambda can be formed from the
eigenvalues (1) of E”1H:

S
L1144
=1

. Where s=min(p,g—-1) e
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Multivariate Empty Model

- Returning the focus away from the test statistics, let’s
examine the multivariate approach using our empty
(unconditional) model

#MANOVA for an empty model:
MANOVA_empty = manova(cbind(pulsel, pulse2, pulse3) ~ 1, data=data@l)
summary .aov(MANOVA_empty)

- The results are pretty sparse (no effects tested):

> summary.aov(MANOVA_empty)
Response pulsel :

Df Sum Sgq Mean Sq F value Pr(GF)
Residuals 17 4758.5 279.91

Response pulse2 :
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 17 8041.8 473.05

Response pulse3 :
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 17 13090 770.03
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LME Model Version of MANOVA: Empty Model

#MANOVA empty model using mixed model via GLS function:
Mixed_MANOVA_empty = gls(model = pulse ~ time, method = "REML", data = long_data,
correlation=corSymm(form=~1/id), weights=varIldent(form = ~1/time))

summary(Mixed_MANOVA_empty)
anova(Mixed_MANOVA_empty)
getVarCov(Mixed_MANOVA_empty)

> summary(Mixed_MANOVA_empty)
Generalized least squares fit by REML
Model: pulse ~ time
Data: long_data
AIC BIC loglik
415.0356 432.422 -198.5178

Correlation Structure: General
Formula: ~1 | id
Parameter estimate(s):
Correlation:
1 2
2 0.917
3 0.852 0.946
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | time
Parameter estimates:
timel time2 time3
1.000000 1.299993 1.658602

Coefficients:

Value Std.Error t-value p-value
(Intercept) 87.50000 3.943432 22.18879 0
timetime2 46.61111 2.184526 21.33694 0
timetime3  102.05556 3.789795 26.92904 0
Correlation:

(Intr) timtm2
timetime2 0.346
timetime3 0.430 0.818

Standardized residuals:
Min Q1 Med Q3 Max
-2.1101602 -0.5894138 -0.1125977 0.5650097 2.2414067

Residual standard error: 16.73056
Degrees of freedom: 54 total; 51 residual

> anova(Mixed_MANOVA_empty)
Denom. DF: 51

numDF F-value p-value
(Intercept) 1 137.5151 <.0001
time 2 363.3109 <.0001

> getVarCov(Mixed_MANOVA_empty)
Marginal variance covariance matrix

11 [,21 [,3]

[1,] 279.91 333.53 395.71

[2,] 333.53 473.05 571.23

[3,] 395.71 571.23 770.03
Standard Deviations: 16.731 21.75 27.749

Note: The diagonal elements are
equal to the MSEs from the previous
slide
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Empty Model: Unstructured Covariance Matrix

. Parsing through the output of the previous page, we can
determine the following for our data:
f(yilX;) ~ Np,(X;B,R)
- Where
B=1[875 46.6 102.1]

- And

i 2
0-31 0-9132 0-3193

1 2
R = (m) E = 0-3132 O'ez 0'6263
2

_0-9133 0-9233 0-33 i

279.9 333.5 395.7]
333.5 473.0 571.2
1395.7 571.2 770.0.

llllllllllllllll
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Building the Full Model: Classical MANOVA

#the full model:

MANOVA_full = manova(cbind(pulsel, pulse2, pulse3) ~ diet + exertype + diet*exertype, data=data@l)
summary .manova(MANOVA_full, test="Wilks")

summary .manova(MANOVA_full, test="Pillai")

summary .manova(MANOVA_full, test="Hotelling-Lawley")

summary .manova(MANOVA_full, test="Roy")

> summary.manova(MANOVA_full, test="Wilks") > ;ummary.manova(MANOVA_full, test="Hotelling-Lawley")

Df  Wilks approx F num Df den Df Pr(>F) Df Hotelling-Lawley approx F num Df den Df Pr(>F)
diet 1 @.54857 2.7430 3 10 ©.09885 . diet 1 0.82291 2.74302 3 10 0.09885 .
exertype 2 0.60547  0.9505 6 20 0.48224 exertype 2 0.59408 0.89113 6 18 0.52181
diet:exertype 2 0.54777 1.1705 6 20 0.36068 diet:exertype 2 0.77616 1.16424 6 18 0.36766

Residuals 12

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1
> summary.manova(MANOVA_full, test="Roy")

Residuals 12

Signif. codes: @ “***’ 9.001 ‘**’ @0.01 ‘*’ ©.05 ‘.’ 0.1 ¢ ’ 1

> summary.manova(MANOVA_full, test="Pillai") Df Roy approx F num Df den Df Pr(>F)
Df Pillai approx F num Df den Df Pr(>F) diet 1 0.82291 2.7430 3 10 0.09885 .

diet 1 0.45143 2.7430 3 10 9.09885 . exertype 2 0.47228 1.7317 3 11 0.21815

exertype 2 0.42936 1.0024 6 22 0.44865 diet:exertype 2 0.70619 2.5894 3 11 0.10580

diet:exertype 2 0.47929 1.1557 6 22 0.36471 Residuals 12

Residuals 12 T

Signif. codes: @ ‘***’ @.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
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Building the Full Model: LME Model

#MANOVA using Mixed Model via GLS function:

#empty model:

Mixed_MANOVA_full = gls(model = pulse ~ exertype + diet + exertype*diet +
time + time*diet + time*exertype + time*diet*exertype,
method = "REML", data = long_data, correlation=corSymm(form=~1|id),
weights=varIdent(form = ~1/time))

summary(Mixed_MANOVA_full)

anova(Mixed_MANOVA_full)

getVarCov(Mixed_MANOVA_full)

> anova(Mixed_MANOVA_full) > getVﬁrCov(Mixed_MANOVA_full)

Denom. DF: 36 Marginal variance covariance matrix
numDF  F-value p-value [,11 [,21 [,3]

(Intercept) 1 268.5689 <.0001 1 1 189’61 244.31 278.64

exertype 2 2.2173 0.1236 57 244 31 376 00 435 1

diet 6.8163 0.0131 L3 244.31376.00 435.19

[3,]1 278.64 435.19 592.83

time 416.3629  <.0001 Standard Deviations: 13.77 19.391 24.348

1
2
exertype:diet 2 1.9365 0.1589
diet:time 2 1.5293 0.2304
exertype:time 4 0.6736 0.6146
exertype:diet:time 4 1.3602 0.2670
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THE BENEFITS OF MIXED MODELS OVER
CLASSICAL RM ANOVA AND MANOVA
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So...Which V Matrix is Right?

Classical methods taught today have no good way of determining
which is most appropriate V matrix

Independence Compound Symmetry Unstructured
507.7 0 0 507.7 433.5 4335 279.9 333.5 395.7
0 507.7 0 ] 433.5 507.7 433.5 333.5 473.0 571.2
0 0 507.7 433.5 433.5 507.7 395.7 571.2 770.0
Regular ANOVA Repeated Measures Multivariate
ANOVA ANOVA
<€ >
Restrictive Relaxed
Assumptions Assumptions
Few Parameters More
Parameters
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LME Models Can Test for the Best Structure

We can use Likelihood Ratio Tests to test for the best
covariance matrix structure in LME models:

> anova(Mixed_RMﬁnova_Full, Mixed;MANOVA_Full)

Model df AIC BIC logLik Test L.Ratio p-value
Mixed_RManova_full 1 20 345.9564 377.6268 -152.9782
Mixed_MANOVA_full 2 24 336.0586 374.0630 -144.0293 1 vs 2 17.89789 0.0013

The LRT above is not rescaled (not available in nime
package: BAD R!)

We could also come up with a new structure altogether
> Not at all possible in classical approach

On next slide: Heterogeneous Compound Symmetry
> Different covariances per DV

»> Same correlation THE UNIVERSITY OF
. KUKANSAS
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New Model: Heterogeneous Compound Symmetry

#New Structure: Heterogeneous variances with common correlation (Called CS-H in SAS)
Mixed_CSH_full = gls(model = pulse ~ exertype + diet + exertype*diet +
time + time*diet + time*exertype + time*diet*exertype,

method = "REML", data = long_data, correlation=corCompSymm(form=~1/id),
weights=varldent(form = ~1/time))

> getVarCov(Mixed_CSH_full)
Marginal variance covariance matrix
(11 [,21  [,3]
[1,] 193.32 235.83 303.45
[2,] 235.83 363.56 416.13
[3,] 303.45 416.13 601.89
Standard Deviations: 13.904 19.067 24.533

> CSHcorrV > MANOVAcorrV

[,1] [,2] [,3] [,1] [,2] [,3]
[1,] 1.0000000 0.8895744 0.8895744 [1,] 1.0000000 0.9149714 0.8310816
[2,] 0.8895744 1.0000000 0.8895744 [2,] 0.9149714 1.0000000 ©0.9217711
[3,] 0.8895744 0.8895744 1.0000000 [3,] 0.8310816 0.9217711 1.0000000

> anova(Mixed_RManova_full, Mixed_CSH_full, Mixed_MANOVA_full)

Model df AIC BIC logLik Test L.Ratio p-value
Mixed_RManova_full 1 20 345.9564 377.6268 -152.9782
Mixed_CSH_full 2 22 336.0467 370.8841 -146.0233 1 vs 2 13.90974 0.0010
Mixed_MANOVA_full 3 24 336.0586 374.0630 -144.0293 2 vs 3 3.98815 0.1361

>
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LME MODEL EXTENSIONS:
RANDOM COEFFICIENTS
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An A la carte Approach to Model Building

Choices for

Model for the Means
Choices for Model for the Empty Saturated
Variances Means Means

1a 1b
e,; only BP ANOVA
Ug + €y 2a 2b
Compound Symmetry (CS) Univ. RM ANOVA
All variances and covariances 3a 3b
(Unstructured; UN) Multiv. RM ANOVA

The labels for the models (1a — 3b) correspond to
example 2c.

MLM generally begins with 2a, which is used as a

L
baseline model.
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Empty Multilevel Model (U, + e;;): New Terminology

Variance of Y = 2 sources:
140 t
i sremmranrmemmmsreni=it1 Level 2 Random Intercept Variance (of
120 ‘/ UOi):
>  Between-Person Variance (t,%)

100 | > Difference from GRAND mean
o | | o > INTER-Individual Differences
60 / Level 1 Residual Variance (of e,):

] I > Within-Person Variance (c,2)
4Q et I : L > Difference from OWN mean

I ] > INTRA-Individual Differences

20
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Empty Multilevel Model
Model for Means; Model for Variances

General Linear Model

Yi = By + €
Multilevel Model

3 Model Parameters

1 Fixed Effect:
Yoo 2 fixed intercept

L1: = [\ + 1 Random Effect (intercept): U, >
@ @ @ person-specific deviation

12: Bpi = Voo + Uy > mean=0, variance = Ty,?
1 Residual Error:
f e; ~—> time-specific deviation
Sample Individual

- mean=0, variance = 02

Intercept  peviation

Combined equation: y,; = vy, + U, + e

THE UNIVERSITY OF
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IntraClass Correlation (ICC):

ICC = Intercept Variance
Intercept Variance + Residual Variance
ICC — Between Variance

Between Variance + Within Variance

T2 2
Tu0+ o,

ICC = Proportion of variance that is between-persons
ICC = Average correlation across occasions
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Matrices Used in Longitudinal Models for the Variances

- Two matrices of variance components (piles):
> G Matrix: Between-person U, variance
> R Matrix: Within-person e, variance
> G and R combine to make V, the total variance of Y

- The most basic +WP model (just Ug; + e,;) can be estimated in two
equivalent ways:

> “Random Intercept Only Model”: G and R together =V
+ Random intercept only in G
+ “Identity” (SPSS) or “VC” (SAS) R (uncorrelated, homogeneous var)

> “Compound Symmetry Model”: Just use R (so R =V)
+ Nothing in G, R has “compound symmetry” form
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Random Intercept Model (4 occasions):

Total Yii = Yoo ¥ Ugi + €y
Observed = -
Data Matrix v
is called V ©21 ©22
Matrix G3; Os O
Level 2, BP G41 Oy42 Oyj c5314
Variance - B

Unstructured G Matrix
(RANDOM statement)

Intercept

Variance
Intercept ’C2
Variance U,

Level 1, WP
Variance

|dentity (VC) R Matrix
(REPEATED statement)

Q
o N

Q
N

a N

o N

©O O O QO|c © ©

S O O O|° <

© O O O|°

S O O O

Each person gets
same 4 x 4 R matrix
- equal variances
and 0 covariances
across persons & time

2
€

o o o @
o o A,
S o

Q

N




Equivalent Variance Models

 “Random Intercept Only Model”: GandR=V
— Allows quantifiable estimates of BP vs. WP variation (separate estimates) and
constant correlation between persons over time

G matrix R matrix _'I2'<>2tal V matrix
11
7 yy 2 Gg Ge U,
Get “Var(eti) ” Ty, o & 2 gl
and “Var(U,,) + 1, o o2 e 2 e
) 0 0 Gg Tio lelo rﬁo cgﬂio

* “Compound Symmetry Model (CS)”:R=V
— BP and WP variance combined into one estimate instead,
but still allows constant correlation between persons over time

R Total V matrix
Get “Var(ey)”  r,.matrix o
and "CS’ cs o - ¢
- CS = CS CS o A
Var(UOi) CS CS CS o7 W, T 6, IQJ




ANALYSIS ADVICE
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Advice About Picking An Analysis Method

- Use REPEATED MEASURES if:

> You have complete data (nothing is missing)
> You have a small sample size
> Your data meet sphericity assumption

- Use MULTIVARIATE if:

> You have complete data (nothing is missing)
> You have a large sample size
> Your data do not meet sphericity assumption

- Note: both methods, although classical, are still useful

> However: we will learn a modern approach to their estimation
+ Allows for more broad analysis types and missing data

> Problem: cannot tell which R matrix is appropriate
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When Not To Use Either Method

- Do NOT use this version of REPEATED MEASURES or
MULTIVARIATE if:

> You have independent variables you wish to study that vary with each
dependent variable (example: time)
+ Use multilevel approach
> You have missing data
+ We will use this to demonstrate imputation methods
> You have categorical data
+ Use link-functions
> You have data that come from psychometric measures
+ Use structural equation modeling
> You would like to determine which R matrix to use
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CONCLUDING REMARKS
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Wrapping Up

- Many methods for repeated measures exist

> Univariate
> Repeated measures
» Multivariate

- What you have learned to this point in this class can

> Do repeated measures more generally than classical methods
> Be more flexible with missing data
> Accommodate less restrictive assumptions
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