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Today’s Class
• Repeated measures versions of linear models

Ø How RM ANOVA models are mixed models with varying assumptions

• Multivariate ANOVA

Ø How MANOVA models are mixed models with varying assumptions

• An introduction to multilevel models

• For all today: Models assume data is complete

Ø Every observation is recorded :: no missing data
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Example Data
• A health researcher is interested in examining the impact 

of dietary habits and exercise on pulse rate
• A sample of 18 participants is collected

Ø Diet factor (BETWEEN SUBJECTS):  
w Nine are vegetarians
w Nine are omnivores 

Ø Exercise factor (BETWEEN SUBJECTS) with random assignment:
w Aerobic stair climbing
w Racquetball
w Weight training

Ø Three pulse rates (WITHIN SUBJECTS):
w After warm-up
w After jogging
w After running

EPSY 905: RM ANOVA, MANOVA, and Mixed Models 3



REPEATED MEASURES ANOVA
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Repeated Measures
• Instead of focusing on a single dependent variable, we can 

focus on all three
Ø Repeated measures analysis

• In repeated measures GLM, the effects of interest are:
Ø Between subjects effects

w Differences between Diet and Exercise Type
Ø Within subjects effects

w Differences between when pulse rate was taken
w Not usually a consideration in Multivariate GLM (MANOVA)

Ø Interactions between within and between subjects effects

• As we will see, repeated measures GLM uses multivariate 
data and multivariate distributions
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Repeated Measures Distributional Setup
• Because we have repeated observations, we now have a 

set of variables to predict instead of just one
Ø Our example data set had three response variables per person
Ø More generally, we will have ! response variables per person

"# = %#& %#' ⋯ %#)

• The GLM is extended to model multivariate outcomes
* "# +# ∼ -) +#., 0

• Now, . is size (1 + 4) 6 !

• LS Estimates: 7. = +8+ 9&+8:
Ø Where : is size - 6 !
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Unpacking the Repeated Measures Design
• The distributional assumptions are very similar

! "# $# ∼ &' $#(, *

• MODEL FOR THE MEANS:
Ø The model for the means is the same (only has more terms)
Ø IVs $# and linear model weights ( provide predicted values for each 

observation

• MODEL FOR THE VARIANCES:
Ø Because we have repeated observations, the model for the variances is now a 

covariance matrix of size p x p 
w Diagonal elements: variance of error for each outcome
w Off-diagonal elements: covariance of errors for pairs of outcomes
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More on Variances
• The key to repeated measures and multivariate ANOVA is 

the covariance matrix ! structure
Ø Type of model dictates types of options for covariance matrix
Ø The classical statistics discussed today are one of the three

w More modern approaches make this more flexible
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Three Structures of Classical GLM
• Three structures:
1. Independence: ! = #$%&'

Ø Models if all observations as if they came from separate people
Ø No more statistical parameters than original GLM approach
Ø Don’t use: shown for baseline purposes

2. Repeated Measures: Assumes sphericity of observations
Ø Sphericity is a condition that is more strictly enforced by compound symmetry 

of ! having two parameters:
Ø Sphericity is compound symmetry of pairwise differences

w Diagonal elements: same variance
w Off-diagonal elements: same covariance

Ø No sphericity? Adjustments to F tests

3. Multivariate ANOVA/GLM: Assumes nothing – estimates 
everything
Ø Every unique element in ! is modeled
Ø Need more power (i.e., sample size) to make work well
Ø Most general procedure
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Working Example
• We return to our example, only this time to build the 

repeated measures and multivariate versions

• We will begin with the unconditional model (“empty 
model”)

Ø Provided as a baseline to show how repeated measures works, conceptually –
you likely would never run this model

• To run this model, I converted our data from wide format 
(all data for one observation per row) to long format (only 
one observation per column)
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Example Syntax: Data Transformation
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Unconditional Model: Independence Assumption Syntax
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Unconditional Model: Independence Assumption

• Parsing through the output of the previous page, we can 
determine the following for our data:

! "# $# ∼ &' $#(, *
• Where

+(, = 87.5 46.6 102.1
• And

* = 789:; =
507.7 0 0
0 507.7 0
0 0 507.7
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Repeated Measures Model
• The repeated measures version of the unconditional 

model changes the structure of the ! matrix:

! =
#$% + ' ' '
' #$% + ' '
' ' #$% + '

• The design above is called compound symmetry
Ø Diagonal elements: variance of outcomes has error variance and compound 

symmetry parameter
Ø Off-diagonal elements: compound symmetry parameter gives covariance of 

observations

• Because observations come from the same person 
observations are likely to be correlated

Ø Repeated measures incorporates this correlation through sphericity (a 
weaker form of compound symmetry)
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Unconditional Model: Repeated Measures CS Assumption

EPSY 905: RM ANOVA, MANOVA, and Mixed Models 15

Impossible to see 
covariance 
structure from R 
output



Comparing Independence vs CS Output
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The Mixed Model Version of RM ANOVA (Part 1)
• We can get the same results from the gls() function:
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Comparing RM ANOVA with the LME Model Version
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Investigating the V Matrix from the LME Model
• Using the GetVarCov() function for the LME model, we can 

see the form of the (residual) covariance matrix:
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Unconditional Model: Independence Assumption

• Parsing through the output of the previous page, we can 
determine the following for our data:

! "# $# ∼ &' $#(, *
• Where

+(, = 87.5 46.6 102.1
• And

* =
789 + ; ; ;
; 789 + ; ;
; ; 789 + ;

=
74.2 + 433.5 433.5 433.5

433.5 507.7 433.5
433.5 433.5 507.7
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(RE)ML Allows for Testing Covariance Structures
• With the LME model we can see if the CS covariance 

structure improved model fit from the independence 

model:

• The null hypothesis is that ! = 0

• We reject the null hypothesis
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Repeated Measures: Full Analysis
• The full repeated measures analysis of our data gives:

Ø Between subjects effects
w Differences between Diet and Exercise Type

Ø Within subjects effects
w Differences between when pulse rate was taken
w Not a consideration in Multivariate GLM (MANOVA)

Ø Interactions between within and between subjects effects

• Within subjects effects can have adjustments to p-values
Ø Just in case data do not meet assumption of sphericity
Ø SAS and SPSS have adjustments built-in…R does not

• With LME models, we don’t need adjustments
Ø We have the ability to fit (and test the fit of) the right model!
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Full Repeated Measures ANOVA Model
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Same Analysis with LME Model 
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The ANOVA Table: Same Results (for F-values)

• The p-values differ due to LME having multiple methods 
for determining the denominator DF
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The LME Residual Covariance Matrix
• From the Empty model:

• From the Full model:

• Note: with CS assumption R2 is the same for all DVs:

Ø = 507.66-386.15/507.66 = .239

• Multivariate version: 
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CLASSICAL MANOVA VS LME MODELS
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Multivariate Approaches
• Like repeated measures, multivariate approaches focus on 

all  dependent variables, simultaneously
Ø Repeated measures analysis

• In multivariate GLM, the effects of interest are:
Ø Between subjects effects – Implies differences in mean vectors

w Differences between Diet and Exercise Type

• Within subjects effects are less commonly inspected
Ø But certainly can be

• Key difference between multivariate approach and 
repeated measures approach comes from assumptions 
about ! matrix
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Multivariate Approach Assumptions
• MANOVA estimates all elements of the V matrix:

! =
#$%& #$%$' #$%$(
#$%$' #$'& #$'$(
#$%$( #$'$( #$(&

• Contrast that with the repeated measures version of 
compound symmetry structure for the ! matrix:

! =
#$& + * * *
* #$& + * *
* * #$& + *

EPSY 905: RM ANOVA, MANOVA, and Mixed Models 29



Multivariate Versus Repeated Measures
• Multivariate:

Ø More model parameters; less parsimony
Ø Fewer assumptions
Ø Better if assumptions of RM are violated (LME models don’t need this)

• Repeated measures:
Ø Fewer model parameters; more parsimony
Ø Strict assumptions
Ø More power that multivariate if assumptions are met
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Multivariate Test Statistic(s)
• The multivariate approach has a new class of statistics 

used for testing multivariate hypotheses
Ø Rely on summaries of key matrix products

• More than one test statistic is available
Ø None are uniformly most powerful (across all sample sizes and types of 

independent variables)

• Test statistics:
Ø Wilks’ lambda
Ø Pillai’s trace
Ø Hotelling-Lawley trace
Ø Roy’s largest root 
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Forming Multivariate Test Statistics
• As with univariate linear models, multivariate linear 

models decompose variability into various sources
Ø But now decomposition is multivariate

• Univariate decomposition:
Ø Sums of squares treatment: ∑"#$% &" '()" − '())

+

Ø Sums of squares error: ∑,#$
-. ∑"#$% (," − '()"

+

• F-ratio was formed by comparing these terms (divided by 
their degrees of freedom)
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Multivariate Decomposition
• Multivariate decomposition is based on mean vectors

Ø Each variable is represented

• Sums of squares and cross-products for treatment (the H 
matrix…stands for hypothesis):

! = #
$%&

'
($ )*+$ − )*++ )*+$ − )*++

-

• Sums of squares and cross-products for error (the E 
matrix…stands for error):

. =#
/%&

01
#
$%&

'
*/$ − )*+2 */$ − )*+$

-
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Wilks’ Lambda
• Once both matrices are formed, Wilks’ lambda can be 

obtained:

!∗ = $
% + $

• Equivalently (and shown to try to relate to univariate test 
statistics), Wilks’ lambda can be formed from the 
eigenvalues (!) of $)*%:

!∗ =,
-.*

/ 1
1 + !-

• Where 1 = min(5, 7 − 1)
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Multivariate Empty Model
• Returning the focus away from the test statistics, let’s 

examine the multivariate approach using our empty 
(unconditional) model

• The results are pretty sparse (no effects tested):
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LME Model Version of MANOVA: Empty Model
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equal to the MSEs from the previous 
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Empty Model: Unstructured Covariance Matrix

• Parsing through the output of the previous page, we can 
determine the following for our data:

! "# $# ∼ &' $#(, *
• Where

+( = 87.5 46.6 102.1
• And

* = 1
& − 1 7 =

89:; 89:9< 89:9=
89:9< 89<; 89<9=
89:9= 89<9= 89=;

=
279.9 333.5 395.7
333.5 473.0 571.2
395.7 571.2 770.0
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Building the Full Model: Classical MANOVA
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Building the Full Model: LME Model
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THE BENEFITS OF MIXED MODELS OVER 
CLASSICAL RM ANOVA AND MANOVA
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So...Which V Matrix is Right?

Restrictive 
Assumptions

Few Parameters

Relaxed 
Assumptions

More 
Parameters

Regular ANOVA Repeated Measures 
ANOVA

Compound Symmetry UnstructuredIndependence

Multivariate 
ANOVA

279.9 333.5 395.7
333.5 473.0 571.2
395.7 571.2 770.0

507.7 0 0
0 507.7 0
0 0 507.7

507.7 433.5 433.5
433.5 507.7 433.5
433.5 433.5 507.7

Classical methods taught today have no good way of determining 
which is most appropriate * matrix
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LME Models Can Test for the Best Structure
• We can use Likelihood Ratio Tests to test for the best 

covariance matrix structure in LME models:

• The LRT above is not rescaled (not available in nlme
package: BAD R!)

• We could also come up with a new structure altogether 
Ø Not at all possible in classical approach

• On next slide: Heterogeneous Compound Symmetry
Ø Different covariances per DV
Ø Same correlation
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New Model: Heterogeneous Compound Symmetry

EPSY 905: RM ANOVA, MANOVA, and Mixed Models 43



LME MODEL EXTENSIONS: 
RANDOM COEFFICIENTS
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An À la carte Approach to Model Building

Choices for Model for the 
Variances

Empty 
Means

Saturated 
Means

eti only
1a 1b

BP ANOVA

U0i + eti
Compound Symmetry (CS)

2a 2b
Univ. RM ANOVA

All variances and covariances 
(Unstructured; UN)

3a 3b 
Multiv. RM ANOVA

Choices for 
Model for the Means

The labels for the models (1a – 3b) correspond to 
example 2c.

MLM generally begins with 2a, which is used as a 
baseline model. 

EPSY 905: RM ANOVA, MANOVA, and Mixed Models 45



Empty Multilevel Model (U0i + eti): New Terminology

Variance of Y à 2 sources:

Level 2 Random Intercept Variance (of 
U0i):

à Between-Person Variance (τU0
2)

à Difference from GRAND mean

à INTER-Individual Differences

Level 1 Residual Variance (of eti):
à Within-Person Variance (σe

2)

à Difference from OWN mean

à INTRA-Individual Differences

140
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80

60

40

20
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Empty Multilevel Model
Model for Means; Model for Variances

General Linear Model

yi =   β0 + ei
Multilevel Model

L1: yti =   β0i +  eti

L2: β0i =   γ00 + U0i

Sample 
Grand Mean 
Intercept

Individual 
Intercept 
Deviation

3 Model Parameters

1 Fixed Effect:
γ00 à fixed intercept

1 Random Effect (intercept): U0i à
person-specific deviation

à mean=0, variance = τU0
2

1 Residual Error:
eti à time-specific deviation

à mean=0, variance = σe
2

Combined equation:  yti =   γ00 +  U0i + eti
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Empty Multilevel Model:
Useful Descriptive Statistic à ICC

0

0

2
U

2 2
U e

τ
=

τ + σ

IntraClass Correlation (ICC):

• ICC = Proportion of variance that is between-persons
• ICC = Average correlation across occasions

=
Intercept VarianceICC

Intercept Variance + Residual Variance

Between VarianceICC
Between Variance + Within Variance

=
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Matrices Used in Longitudinal Models for the Variances

• Two matrices of variance components (piles):
Ø G Matrix: Between-person U0i variance
Ø R Matrix: Within-person eti variance
Ø G and R combine to make V, the total variance of Y

• The most basic +WP model (just U0i + eti) can be estimated in two 
equivalent ways:

Ø “Random Intercept Only Model”: G and R together = V
w Random intercept only in G 
w “Identity” (SPSS) or “VC” (SAS) R (uncorrelated, homogeneous var) 

Ø “Compound Symmetry Model”: Just use R (so R = V)
w Nothing in G, R has “compound symmetry” form
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Intercept
Variance

Intercept 
Variance

Random Intercept Model (4 occasions):
yti =  γ00 + U0i + eti

0

2
Uτæ ö
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è ø

2
e

2
e

2
e

2
e

σ

0 σ

0 0 σ

0 0 0 σ
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Unstructured G Matrix
(RANDOM statement)

Identity (VC) R Matrix
(REPEATED statement)

Each person gets 
same 4 x 4 R matrix 
à equal variances  
and 0 covariances
across persons & time

2
11

2
21 22

2
31 32 33

2
41 42 43 44

σ

σ σ

σ σ σ

σ σ σ σ

é ù
ê ú
ê ú
ê ú
ê ú
ê úë û

2
e

2
e

2
e

2
e

σ

0 σ

0 0 σ

0 0 0 σ

Level 2, BP 
Variance

Level 1, WP 
Variance

Total 
Observed 
Data Matrix 
is called V 
Matrix
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Equivalent Variance Models

• “Random Intercept Only Model”:  G and R = V
– Allows quantifiable estimates of BP vs. WP variation (separate estimates) and 

constant correlation between persons over time

• “Compound Symmetry Model (CS)”: R = V
– BP and WP variance combined into one estimate instead, 

but still allows constant correlation between persons over time
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è ø

G matrix
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R matrix
0
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2 2
e u
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u u e u

2 2 2 2 2
u u u e u

σ +τ
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Total V matrix
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T

2
T
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T

2
T

σ

CS σ

CS CS σ
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R 
matrix

Get “Var(eti)” 
and “Var(U0i)”

Get “Var(eti)” 
and “CS”
à CS = 
Var(U0i)

0

0 0

0 0 0

0 0 0 0

2 2
e u

2 2 2
u e u

2 2 2 2
u u e u

2 2 2 2 2
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Total V matrix

EPSY 905: RM ANOVA, MANOVA, and Mixed Models 51



ANALYSIS ADVICE
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Advice About Picking An Analysis Method
• Use REPEATED MEASURES if:

Ø You have complete data (nothing is missing)

Ø You have a small sample size

Ø Your data meet sphericity assumption

• Use MULTIVARIATE if:

Ø You have complete data (nothing is missing)

Ø You have a large sample size

Ø Your data do not meet sphericity assumption

• Note: both methods, although classical, are still useful

Ø However: we will learn a modern approach to their estimation

w Allows for more broad analysis types and missing data

Ø Problem: cannot tell which ! matrix is appropriate
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When Not To Use Either Method
• Do NOT use this version of REPEATED MEASURES or 

MULTIVARIATE if:
Ø You have independent variables you wish to study that vary with each 

dependent variable (example: time)
w Use multilevel approach

Ø You have missing data
w We will use this to demonstrate imputation methods

Ø You have categorical data
w Use link-functions

Ø You have data that come from psychometric measures
w Use structural equation modeling

Ø You would like to determine which ! matrix to use
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CONCLUDING REMARKS
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Wrapping Up
• Many methods for repeated measures exist

Ø Univariate
Ø Repeated measures
Ø Multivariate

• What you have learned to this point in this class can
Ø Do repeated measures more generally than classical methods
Ø Be more flexible with missing data
Ø Accommodate less restrictive assumptions
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