Introduction to Mixed Models for Multivariate Regression

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #15

- Multivariate regression via mixed models
- Comparing and contrasting path analysis with mixed models
 - Differences in model fit measures
 - > Differences in software estimation methods
 - Model comparisons via multivariate Wald tests (instead of LRTs)
 - > How to compute R²

Data are simulated based on the results reported in:
 Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: a path analysis. *Journal of Educational Psychology, 86*, 193-203.

• Sample of 350 undergraduates (229 women, 121 men)

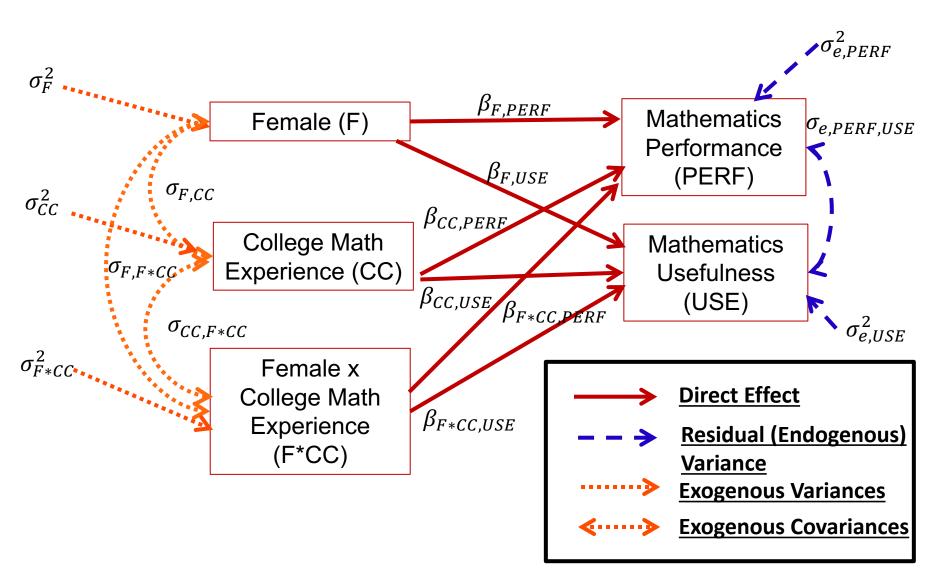
 In simulation, 10% of variables were missing (using missing completely at random mechanism)

- Note: simulated data characteristics differ from actual data (some variables extend beyond their official range)
 - > Simulated using Multivariate Normal Distribution
 - Some variables had boundaries that simulated data exceeded

Variables of Data Example

- Female (1 = male; 0 = female)
- Math Self-Efficacy (MSE)
 - Reported reliability of .91
 - > Assesses math confidence of college students
- Perceived Usefulness of Mathematics (USE)
 - Reported reliability of .93
- Math Anxiety (MAS)
 - Reported reliability ranging from .86 to .90
- Math Self-Concept (MSC)
 - Reported reliability of .93 to .95
- Prior Experience at High School Level (HSL)
 - Self report of number of years of high school during which students took mathematics courses
- Prior Experience at College Level (CC)
 - Self report of courses taken at college level
- Math Performance (PERF)
 - Reported reliability of .788
 - > 18-item multiple choice instrument (total of correct responses)

Multivariate Linear Regression Path Diagram



The Big Picture

- Mixed models are used for many types of analyses:
 - > Analogous to MANOVA and M-Regression (so repeated measures analyses)
 - Multilevel models for clustered, longitudinal, and crossed-effects data
- The biggest difference between mixed models and path analysis software is in the assumed distribution of the exogenous variables
 - > Mixed models: no distribution assumed
 - Path analysis: most software assumes multivariate normal
 - Mplus does not by default
 - This affects how missing data are managed mixed models cannot have any missing IVs
- Mixed models also do not allow endogenous variables to predict other endogenous variables
 - No indirect effects are possible from a single analysis (multiple analyses needed)
- Mixed models software also often needs variables to be stored in so-called "stacked" or long-format data (one row per DV)

> We used wide-format data for lavaan (one row per person)

EPSY 905: Mixed Models

Multivariate Linear Models Software Scorecard

Feature	Need	Classical MANOVA/ M-Regression	Path Analysis (lavaan unless stated)	Mixed Models (nlme/lme4 unless stated)
Dependent variables can predict other dependent variables simultaneously	Path analysis definition	NO	YES	NO
Variable-specific modeling options	Precise model development	NO	YES (directly)	YES (with dummy codes)
"Robust" Maximum Likelihood Estimation	Provides lepto/platykurtic data protection	NO	YES	YES (most without LRT)
Residual Maximum Likelihood Estimation	Provides unbiased variances, covariance, and (some) path estimates	YES (analogously)	NO	YES
Ability to Incorporate Random Effects	Additional levels of dependency	NO	YES (two-level nested; Mplus does more)	YES
Multiple Covariance Structures (beyond Compound Symmetry and Unstructured)	Model parsimony ("Curse" of multidimensionality)	NO	YES (some)	YES (many in R; many more in SAS)
Approximate Model Fit Indices	Determining How Bad a Model May Be	NO	YES	NO
Different denominator df methods EPSY 905: Mixed Models		NO	NO	YES

MULTIVARIATE REGRESSION/ANOVA/ANCOVA VIA PATH ANALYSIS

EPSY 905: Mixed Models

Multivariate Regression

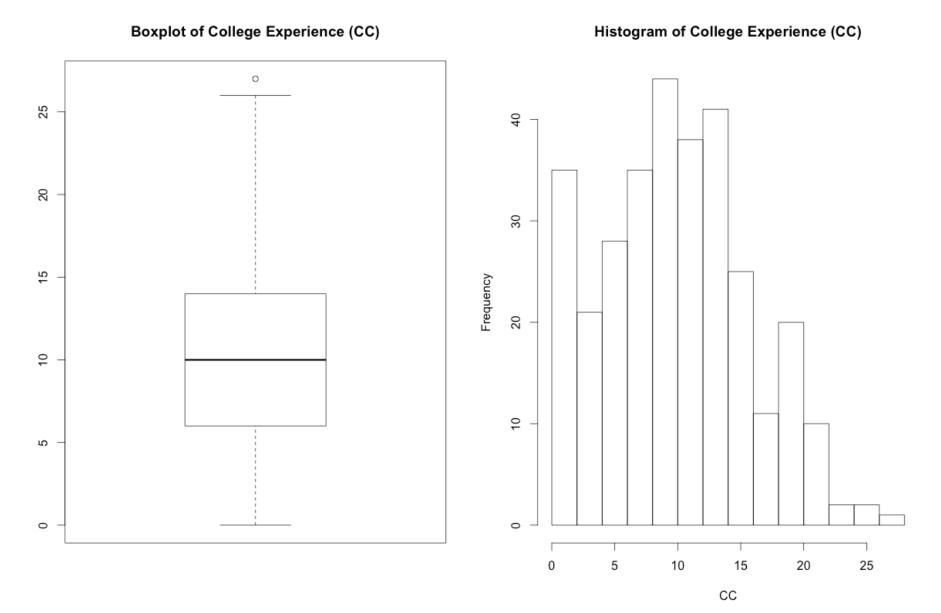
- Before we dive into mixed models, we will begin with a multivariate regression model:
 - Predicting mathematics performance (PERF) with female (F), college math experience (CC), and the interaction between female and college math experience (FxCC)
 - Predicting perceived usefulness (USE) with female (F), college math experience (CC), and the interaction between female and college math experience (FxCC)

$$PERF_{i} = \beta_{0,PERF} + \beta_{F,PERF}F_{i} + \beta_{CC,PERF}CC_{i} + \beta_{F*CC,PERF}F_{i} * CC_{i} + e_{i,PERF}$$
$$USE_{i} = \beta_{0,USE} + \beta_{F,USE}F_{i} + \beta_{CC,USE}CC_{i} + \beta_{F*CC,USE}F_{i} * CC_{i} + e_{i,USE}$$

- We denote the residual for PERF as $e_{i,PERF}$ and the residual for USE as $e_{i,USE}$
 - > We also assume the residuals are Multivariate Normal:

$$\begin{bmatrix} e_{i,PERF} \\ e_{i,USE} \end{bmatrix} \sim N_2 \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{e,PERF}^2 & \sigma_{e,PERF,USE} \\ \sigma_{e,PERF,USE} & \sigma_{e,USE}^2 \end{bmatrix} \right)$$

Before Continuing: We will Center CC at 10



EPSY 905: Mixed Models

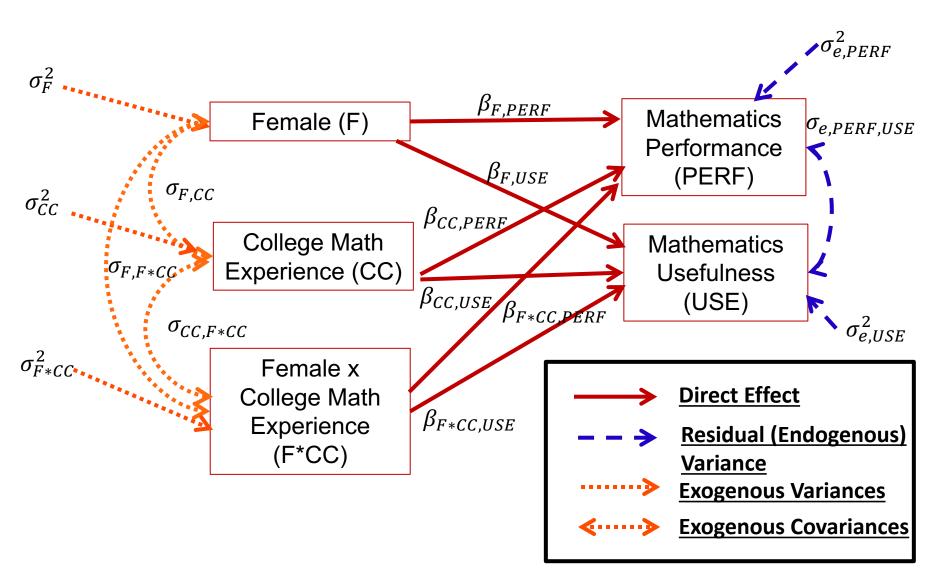
• v~ ____

10

Types of Variables in the Analysis

- An important distinction in path analysis is between endogenous and exogenous variables
- <u>Endogenous variable(s)</u>: variables whose variability *is explained* by one or more variables in a model
 - In linear regression, the **dependent variable** is the only endogenous variable in an analysis
 - Mathematics Performance (PERF) and Mathematics Usefulness (USE)
- <u>Exogenous variable(s)</u>: variables whose variability *is not explained* by any variables in a model
 - In linear regression, the independent variable(s) are the exogenous variables in the analysis
 - Female (F), college experience (CC), and the interaction (FxCC)
- These distinctions are not commonly used in mixed models:
 - > Endogenous variables are called dependent variables or outcomes
 - > Exogenous variables are called independent variables or predictors

Multivariate Linear Regression Path Diagram



CONVERTING DATA FROM WIDE- TO LONG-FORMAT USING THE RESHAPE FUNCTION

First Step: Convert Data from Wide to Long

Original wide-format data (all DVs for a person on one row)

$\langle \neg \neg \rangle$		Filter			
*	id 🗘	perf 🍦	use 🌐	female 🍦	cc10 [‡]
1	1	14	44	1	-1
2	2	12	77	0	-8
3	3	NA	64	1	2
4	4	19	71	0	10
5	5	12	48	0	5

• Reshape commands:

#omit all variables but those in the analysis: data02 = data01[c("id", "perf", "use", "female", "cc10")]

• Resulting data:

9					
*	id 🌻	female 🍦	cc10 [‡]	DV =	score 🗘
1.perf	1	1	-1	perf	14
1.use	1	1	-1	use	44
2.perf	2	0	-8	perf	12
2.use	2	0	-8	use	77
3.perf	3	1	2	perf	NA
3.use	3	1	2	use	64
4.perf	4	0	10	perf	19
4.use	4	0	10	use	71
5 nerf	5	٥	5	nerf	12

Second Step: Remove any Missing Values

- Because all variables are not put into the likelihood function, any missing values (on any DV or IV) are not permitted
 - For IVs, omitting variables has serious implications for the analysis (assumes data are missing completely at random)
 - For DVs, because the DVs are part of the likelihood, they can be missing without problem (well without problems that aren't easy to handle)
- So, we must remove all missing values from all variables:

Third Step: Create Dummy Code for DV

- In stacked data, the dependent variable values are all put into one column (variable) of the data set
- As mixed model software has one spot for a single outcome, we trick the software into modeling more than one by using a dummy coded variable that is part of our analysis, making each effect conditional on the correct DV

#create dummy coded variable for indicating which DV is in use: data03_long\$dPerf = 0 data03_long[which(data03_long\$DV == "perf"),]\$dPerf = 1

We've decided to put USE as the reference variable
 > Like reference group, but now for DV

BUILDING THE "EMPTY" MULTIVARIATE MODEL IN MIXED MODELS SOFTWARE

Multivariate Regression from the Path Analysis Method

 If we were to put our empty model into a path analysis framework, we would end up with the following:

$$PERF_{i} = \beta_{0,PERF} + e_{i,PERF}$$
$$USE_{i} = \beta_{0,USE} + e_{i,USE}$$

- We denote the residual for PERF as $e_{i,PERF}$ and the residual for USE as $e_{i,USE}$
 - > We also assume the residuals are Multivariate Normal:

$$\begin{bmatrix} e_{i,PERF} \\ e_{i,USE} \end{bmatrix} \sim N_2 \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{e,PERF}^2 & \sigma_{e,PERF,USE} \\ \sigma_{e,PERF,USE} & \sigma_{e,USE}^2 \end{bmatrix} \right)$$

Building the Empty Model: Not So Empty

- A multivariate model using mixed model software uses the dummy code for DV to make all effects conditional on the specific DV in the model
 - \succ Here I use the symbol δ to represent each fixed effect in the multivariate model from the mixed model perspective
 - > I will compare/contrast these with the symbols β from the fixed effects in path analysis
- For instance, our empty model is thus:

$$Y_{i,DV} = \delta_0 + \delta_1 dPerf_i + e_{i,DV}$$

- The prediction is conditional on the value of dPerf:
 - > When dPerf = 0 \rightarrow DV = "Use" \rightarrow USE_i = $\delta_0 + e_{i,USE}$
 - > When dPerf = 1 → DV = "Perf" → $PERF_i = \delta_0 + \delta_1 * 1 + e_{i,Perf}$

Estimating the Empty Model

• From the nlme library, we use the gls() function

> Be sure the library is installed and loaded before trying this!

- model = score ~ 1 + dPerf:
 - \succ DV ~ \rightarrow put the name of the DV on the left of the ~
 - ightarrow 1 ightarrow Unnecessary but indicates the intercept is estimated
 - ightarrow dPerf ightarrow The rest of the IVs go between plus signs after the \sim
- method = "REML" → Don't change (more details next)
- correlation = corSymm(form = ~1|id)
 - > Provides estimates of all unique correlations
 - Needs id variable name after | for program to know which data comes from which person
- weights = varIdent(form = ~1|DV)
 - Estimates a different (residual) variance for each DV
 - > With correlation line ensures an unstructured model is estimated

Empty Model Results: Fixed Effects and "Model Fit"

> summary(model01_mixed) Generalized least squares fit by REML Model: score $\sim 1 + dPerf$ Data: data03_long AIC BIC logLik 3774.313 3795.871 -1882.156 Correlation Structure: General Formula: ~1 | id Parameter estimate(s): Correlation: 1 2 0.136 Variance function: Structure: Different standard deviations per stratum Formula: ~1 | DV Parameter estimates: perf use 1.000000 5.337397 Coefficients: Value Std.Error t-value p-value (Intercept) 52.40986 0.9437950 55.53098 0 dPerf -38.46901 0.9399708 -40.92575 0 Correlation: (Intr) dPerf -0.98 Standardized residuals: Min 01 Med 03 Max -3.24789265 -0.64196261 0.01956532 0.68109325 2.99644101 Residual standard error: 3.023304

Degrees of freedom: 553 total; 551 residual

21

Empty Model Results: Residual Covariance Matrix

The residual covariance matrix comes from the getVarCov() function:

> getVarCov(model01_mixed)
Marginal variance covariance matrix
 [,1] [,2]
[1,] 9.1404 6.6311
[2,] 6.6311 260.3900
Standard Deviations: 3.0233 16.137

Mapping Multivariate Mixed Models onto Path Models

- To compare this result with the path analyses we conducted previously, we'll have to use this data set
 - > Omit the same observations
- So, we'll need to take our long-format data and reshape it into wide-format:

#create DVs with original names: data03_wide\$perf = data03_wide\$score.perf data03_wide\$use = data03_wide\$score.use

#creating interation between male and cc:----data03_wide\$femaleXcc10 = data03_wide\$female*data03_wide\$cc10

Lavaan Model Syntax

model01_mirror.syntax = "

Comparing and Contrasting Results: Model Fit

	> summary(model01_path_noNA.fit, fit.me lavaan (0.5-20) converged normally afte			= TRUE
	Number of observations	311		
	Number of missing patterns	3		
	Estimator	ML	Robust	
	Minimum Function Test Statistic	0.000	0.000	
	Degrees of freedom	0	0	
	Scaling correction factor		NA	
	for the Yuan-Bentler correction (Mp	lus variant)		
	Model test baseline model:			
	Minimum Function Test Statistic	4.798	4.574	
	Degrees of freedom	1	1	
	P-value	0.028	0.032	
	User model versus baseline model:			
	Comparative Fit Index (CFI)	1.000	1.000	
by REML	Tucker-Lewis Index (TLI)	1.000	1.000	
-	Loglikelihood and Information Criteria:			
	Loglikelihood user model (H0)	-1882.250	-1882.250	
	Loglikelihood unrestricted model (H1)	-1882.250	-1882.250	
	Number of free parameters	5	5	
	Akaike (AIC)	3774.500	3774.500	
	Bayesian (BIC)	3793.199	3793.199	
	Sample-size adjusted Bayesian (BIC)	3777.341	3777.341	
	Root Mean Square Error of Approximation	:		
	RMSEA	0.000	0.000	
	90 Percent Confidence Interval	0.000 0.000	0.000	0.000
	P-value RMSEA <= 0.05	1.000	1.000	
	Standardized Root Mean Square Residual:			
	SRMR	0.000	0.000	
		25		

25

- commonly (memorear_merceary Generalized least squares fit Model: score ~ 1 + dPerf Data: data03_long AIC BIC logLik 3774.313 3795.871 -1882.156

Comparing and Contrasting Results: Parameter Estimates

-								-
Correlation Structure: General	Covariances:							
Formula: ~1 id		Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all	
Parameter estimate(s):	perf ~~							
Correlation:	use	6.610	3.049	2.168	0.030	6.610	0.136	
1								
2 0.136	Intercepts:							
Variance function:				Z-value			Std.all	
	perf	13.941	0.187	74.660	0.000	13.941	4.620	
Structure: Different standard deviations per stratum	use	52.410	0.940	55.750	0.000	52.410	3.253	
Formula: ~1 DV	Vanianaaa							
Parameter estimates:	Variances:	Estimato	C+d Enn	Z-value	P(z z)	S+d 1v	Std.all	
perf use	perf	9.105	0.827	11.006	0.000	9.105	1.000	
1.000000 5.337397	use	259.498	20.968	12.376		259.498	1.000	
	use	2551150	20.500	12.510	0.000	233.150	1.000	
Coefficients:								
Value Std.Error t-value p-value				-	do]01 m	i vod		
(Intercept) 52.40986 0.9437950 55.53098 0			-	rCov(mo		-		
dPerf -38.46901 0.9399708 -40.92575 0						ariance	matrix	
				[,1]	[,2]			
#create mean for Usefulness (sum of intercept plus main eff	fect of dPerf)		[1,] 9.	1404	6.6311			
estimate01 = matrix(c(1,1), nrow = 1); rownames(estimate01)) = "Mean Useful	lness"	Γ2.7 6.	6311 26	0.3900			
estimate02 = matrix(c(1,0), nrow = 1); rownames(estimate02)			- /-			. 3 023	3 16.137	,
estimates = matrix(c(1, s), mow = 1), nownames(estimates)		munce	Junu		Lucions	. 5.025	5 10.157	
estimates = rbind(estimate01, estimate02)								
<pre>effects = glht(model = model01_mixed, linfct = estimates)</pre>								
summary(effects)								
Simultaneous Tests for General Linear Hypotheses								
<pre>Fit: gls(model = score ~ 1 + dPerf, data = data03_long, correlation = corSymm(f id), weights = varIdent(form = ~1 DV), method = "REML")</pre>	form = ~1							
Linear Hypotheses:								
Estimate Std. Error z value Pr(> z) Mean Usefulness == 0 13.9408 0.1869 74.61 <1e-10 ***								
Mean Derformance == 0 52.4099 0.9438 55.53 <1e-10 ***								
0 52.4055 0.5456 55.55 (16-10								
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1								
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported single-step method)					V			
				2	. K	U THE U	NIVERSITY OF	

RESIDUAL MAXIMUM LIKELIHOOD ESTIMATION (UNBIASED VARIANCE COMPONENTS)

Residual Maximum Likelihood Estimation

- The ML estimator is nice, but the variance estimate is downward biased (too small)
 - > Remember it divides by N for the residual covariance matrix
- In small samples, this is likely to lead to biased estimates and incorrect p-values
 - The variance goes into the SE, which goes into the Wald test, which dictates the p-value for the beta
- Instead, another maximum likelihood technique has been developed: Residual Maximum Likelihood (REML)
 - > Maximizes the likelihood of the residuals rather than the data
 - > Has unbiased estimates of the residual covariance matrix
 - > Is the default method of estimation for most mixed model estimation packages
- There is one catch to REML: you cannot use a LRT to compare nested models with differing fixed effects
 - > Because the algorithm uses residuals, if the residuals change, the likelihood changes
 - ➤ Residuals come from the fixed effects → if fixed effects are different, then residuals change, causing the likelihood to change
 - > Can use multivariate Wald test for fixed effects
- Don't mix ML and REML for the same analysis

ADDING PREDICTORS TO THE MODEL

EPSY 905: Mixed Models

Adding Predictors To The Model

- Adding predictors to the model is similar to adding predictors in regular regression models
 - > No 0* terms in syntax to remove

- By using REML we cannot compare models using likelihood ratio tests
 - REML LRTs must have same fixed effects
 - > Adding predictors adds new fixed effects to the empty model
- We are predicting each DV with female, cc10, and female*cc10

Model with Predictors: Syntax

Interpret the Parameters:

```
 \begin{array}{l} \beta_{0}: \\ \beta_{dPerf}(dPerf_{i}): \\ \beta_{Female}(Female_{i}): \\ \beta_{dPerf*Female}(dPerf_{i}Female_{i}): \\ \beta_{CC10}(CC10_{i}): \\ \beta_{dPerf*CC10}(dPerf_{i}CC10_{i}): \\ \beta_{Female*CC10}(CC10_{i}Female_{i}): \\ \beta_{dPerf*Female*CC10}(dPerf_{i}CC10_{i}Female_{i}): \\ \end{array}
```


First Question: Which Model "Fits" Better?

- After adding the predictors (estimating their betas) to the model, we must first ask which model fits better
- A likelihood ratio test (LRT) cannot be performed as we are using REML

> anova(model01_mixed, model02_mixed) Model df AIC BIC logLik Test L.Ratio p-value model01_mixed 1 5 3774.313 3795.871 -1882.156 model02_mixed 2 11 3771.308 3818.617 -1874.654 1 vs 2 15.00473 0.0202 Warning message: In nlme::anova.lme(object = model01_mixed, model02_mixed) : fitted objects with different fixed effects. REML comparisons are not meaningful.

Which model is the null model?

> Model01

Which model is the alternative model?

> Model02

What is the null hypothesis?

≻ H₀:

What is the alterative hypothesis?

#create a specific vector for each beta weight: will use later to create specific parameters for each DV prediction intercept = matrix(c(1, 0, 0, 0, 0, 0, 0, 0), nrow = 1)rownames(intercept) = "Intercept" dPerf = matrix(c(0, 1, 0, 0, 0, 0, 0, 0), nrow = 1)rownames(dPerf) = "dPerf" female = matrix(c(0, 0, 1, 0, 0, 0, 0, 0), nrow = 1)rownames(female) = "female" **cc10** = matrix(c(0, 0, 0, 1, 0, 0, 0, 0), nrow = 1)rownames(cc10) = "cc10"dPerf_female = matrix(c(0, 0, 0, 0, 1, 0, 0, 0), nrow = 1)rownames(dPerf_female) = "dPerf:female" matrix(c(0, 0, 0, 0, 0, 1, 0, 0), nrow = 1) $dPerf_cc10 =$ rownames(dPerf_cc10) = "dPerf:cc10" female_cc10 = matrix(c(0, 0, 0, 0, 0, 0, 1, 0), nrow = 1)rownames(female_cc10) = "female:cc10" $dPerf_female_cc10 = matrix(c(0, 0, 0, 0, 0, 0, 0, 1), nrow = 1)$ rownames(dPerf_female_cc10) = "dPerf:female:cc10"

```
#analog to LRT: test all parameters simultaneously (a multi-DF contrast)
overall_sig = rbind(female, cc10, dPerf_female, dPerf_cc10, female_cc10, dPerf_female_cc10)
effects = glht(model = model02_mixed, linfct = overall_sig)
```

```
#note: R's package do not give you an F-test [BAD R, BAD!]
summary(effects, test=Ftest())
```


Results for Model Fit

- Note: R's nlme function doesn't do a good job with df.residual and provides a Chi-square test
 - SAS is way more advanced on this as there are multiple options

General Linear Hypotheses

Linear Hypotheses:

```
Estimate
Intercept for Use == 0
                                                    51.79933
Simple main effect for Female predicting Use == 0
                                                     1.83570
Simple main effect for CC10 predicting Use == 0
                                                     0.19525
Interaction of Female and CC10 predicting Use == 0
                                                     0.26018
Intercept for Perf == 0
                                                    13.68949
Simple main effect for Female predicting Perf == 0
                                                     0.65832
Simple main effect for CC10 predicting Perf == 0
                                                     0.09871
Interaction of Female and CC10 predicting Perf == 0
                                                     0.09377
```

```
Global Test:
  Chisq DF Pr(>Chisq)
1 8328 8 0
Warning message:
In test(object) :
  'df.residual' is not available for 'model' a Chisq test is performed instead of the requested F test.
> |
```

 Also note there are 6 degrees of freedom (one for each additional beta weight in the model)

Up Next: Inspect Parameters and Make Interpretations

Using the summary() function for the model:

Coefficients:

	Value	Std.Error	t-value	p-value
(Intercept)	51.79933	1.1750554	44.08246	0.0000
dPerf	-38.10983	1.1751688	-32.42924	0.0000
female	1.83570	2.0060709	0.91507	0.3606
cc10	0.19525	0.1981999	0.98510	0.3250
dPerf:female	-1.17738	2.0068176	-0.58669	0.5577
dPerf:cc10	-0.09653	0.1979034	-0.48778	0.6259
female:cc10	0.26018	0.3527298	0.73761	0.4611
dPerf:female:cc10	-0.16641	0.3529074	-0.47155	0.6374

^ יי י

 But, there is a way to directly code these beta weights into path model analogs using the glht() function

Direct Betas using Linear Combinations and glht()

```
#creating direct betas vectors for prediction of usefuleness (dPerf = 0)
beta_use_0 = intercept; rownames(beta_use_0) = "Intercept for Use"
beta_use_female = female; rownames(beta_use_female) = "Simple main effect for Female predicting Use"
beta_use_cc10 = cc10; rownames(beta_use_cc10) = "Simple main effect for CC10 predicting Use"
beta_use_femaleXcc10 = female_cc10; rownames(beta_use_femaleXcc10) = "Interaction of Female and CC10 predicting Use"
```

```
beta_perf_0 = intercept + dPerf; rownames(beta_perf_0) = "Intercept for Perf"
beta_perf_female = female + dPerf_male; rownames(beta_perf_female) = "Simple main effect for Female predicting Perf"
beta_perf_cc10 = cc10 + dPerf_cc10; rownames(beta_perf_cc10) = "Simple main effect for CC10 predicting Perf"
beta_perf_femaleXcc10 = female_cc10 + dPerf_female_cc10; rownames(beta_perf_femaleXcc10) = "Interaction of Female and CC10 predicting Perf"
```

Simultaneous Tests for General Linear Hypotheses

```
Fit: gls(model = score ~ 1 + dPerf + female + dPerf * female + cc10 +
    dPerf * cc10 + female * cc10 + dPerf * female * cc10, data = data03_long,
    correlation = corSymm(form = ~1 | id), weights = varIdent(form = ~1 |
    DV), method = "REML")
```

Linear Hypotheses:

	Estimate S [.]	td. Error	z value	Pr(>lzl)	
Intercept for Use == 0	51.79933	1.17506	44.082	<1e-04	***
Simple main effect for Female predicting Use $=$ 0	1.83570	2.00607	0.915	0.9575	
Simple main effect for CC10 predicting Use $==$ 0	0.19525	0.19820	0.985	0.9372	
Interaction of Female and CC10 predicting Use == 0	0.26018	0.35273	0.738	0.9879	
Intercept for Perf == 0	13.68949	0.22375	61.183	<1e-04	***
Simple main effect for Female predicting Perf == 0	0.65832	0.38378	1.715	0.4733	
Simple main effect for CC10 predicting Perf == 0	0.09871	0.03543	2.786	0.0397	*
Interaction of Female and CC10 predicting Perf $== 0$	0.09377	0.06716	1.396	0.7129	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.	'0.1''1				
(Adjusted p values reported single-step method)					

Questions to Answer about this Model

- What is the effect of college experience on usefulness for males?
- What is the effect of college experience on usefulness for females?
- What is the difference between males and females ratings of usefulness when college experience = 10?
- How did the difference between males and females ratings change for each additional hour of college experience?

Questions to Answer about this Model

- What is the effect of college experience on performance for males?
- What is the effect of college experience on performance for females?
- What is the difference between males and females performance when college experience = 10?
- How did the difference between males and females performance change for each additional hour of college experience?

Model R-squared

 To determine the model R-squared, we have to compare the variance/covariance matrix from model01 and model02 and make the statistics ourselves:

```
> #R-squared for model02 vs model01 -----
> #model01 residual covariance matrix:
> Vmodel01 = getVarCov(model01_mixed)
> Vmodel01
Marginal variance covariance matrix
      [,1]
               [,2]
[1,] 9.1404 6.6311
[2,] 6.6311 260.3900
  Standard Deviations: 3.0233 16.137
>
> #model02 residual covariance matrix:
> Vmodel02 = getVarCov(model02_mixed)
> Vmodel02
Marginal variance covariance matrix
      [,1]
               [,2]
[1,] 8.5491
           5.0582
[2,] 5.0582 259.5200
  Standard Deviations: 2.9239 16.11
>
> #Rsquare for Performance:
> (Vmodel01[1,1] - Vmodel02[1,1])/Vmodel01[1,1]
[1] 0.06468645
>
> #Rsquare for Usefulness:
> (Vmodel01[2,2] - Vmodel02[2,2])/Vmodel01[2,2]
[1] 0.003341706
```


WRAPPING UP

EPSY 905: Mixed Models

Differences Between Mixed and Path Model Results

- Things we get directly from path models that we do not get directly in mixed models:
 - > Tests for approximate model fit
 - > Scaled Chi-square for some types of non-normal data
 - > Standardized parameter coefficients
 - > Tests for indirect effects
 - > R-squared statistics
- Things we get directly in mixed models that we do not get in path models:
 - » REML (unbiased estimates of variances/covariances)

Wrapping Up

- In this lecture we discussed the basics of mixed model analyses for multivariate models
 - Model specification/identification
 - Model estimation
 - > Model modification and re-estimation
 - Final model parameter interpretation
- There is a lot to the analysis but what is important to remember is the over-arching principal of multivariate analyses: covariance between variables is important
 - > Mixed models imply very specific covariance structures
 - The validity of the results still hinge upon accurately finding an approximation to the covariance matrix

