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Today’s Class

• An introduction to Bayesian statistics:
Ø What it is
Ø What it does
Ø Why people use it

• An introduction to Markov Chain Monte Carlo 
(MCMC estimation)

Ø How it works
Ø Features to look for when using MCMC
Ø Why people use it
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AN INTRODUCTION TO 
BAYESIAN STATISTICS
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Bayesian Statistics: The Basics
• Bayesian statistical analysis refers to the use of models where 

some or all of the parameters are treated as 
random components

Ø Each parameter comes from some type of distribution

• The likelihood function of the data is then augmented with an 
additional term that represents the likelihood of the prior 
distribution for each parameter

Ø Think of this as saying each parameter has a certain likelihood – the height of the 
prior distribution

• The final estimates are then considered summaries of the 
posterior distribution of the parameter, conditional 
on the data

Ø In practice, we use these estimates to make inferences, just as we have when 
using the non-Bayesian approaches we have used throughout this class (e.g., 
maximum likelihood/least squares)
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Bayesian Statistics: Why It Is Used
• Bayesian methods get used because the relative accessibility of one 

method of estimation (MCMC – to be discussed shortly)

• There are four main reasons why people use MCMC:

1. Missing data
Ø Multiple imputation: MCMC is used to estimate model parameters then “impute” data

Ø More complicated models for certain types of missing data

2. Lack of software capable of handling large sized analyses
Ø Have a zero-inflated negative binomial with 21 multivariate outcomes per 18 time 

points? 

3. New models/generalizations of models not available 

in software
Ø Have a new model?

Ø Need a certain link function not in software?

4. Membership in the cult of Bayesians
Ø They believe philosophical differences exist between numbers from Bayesian analysis 

and other types of estimators
EPSY 905: Intro to Bayesian and MCMC 5



Bayesian Statistics: Perceptions and Issues
• The use of Bayesian statistics has been controversial 

Ø The use of certain prior distributions can produce results that are biased or reflect 
subjective judgment rather than objective science

• Most MCMC estimation methods are 
computationally intensive

Ø Until recently, very few methods available for those who aren’t into programming 
in Fortran, C, or C++

• Understanding of what Bayesian methods are and how they 
work is limited outside the field of mathematical statistics

Ø Especially the case in the educational and social sciences

• Over the past 20 years, Bayesian methods have become 
widespread – making new models estimable and becoming 
standard in some social science fields (quantitative psychology 
and educational measurement)
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HOW BAYESIAN METHODS WORK
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How Bayesian Statistics Work
• The term Bayesian refers to Thomas Bayes (1701-1761)

Ø Formulated Bayes’ Theorem

• Bayesian methods rely on Bayes’ Theorem:

! " # = ! # " ! "
! #

Ø !(") is the prior distribution (pdf) of A à WHY THINGS ARE BAYESIAN
Ø !(#) is the marginal distribution (pdf) of B
Ø !(#|") is the conditional distribution (pdf) of B, given A
Ø !("|#) is the posterior distribution (pdf) of A, given B

• Bayes’ Theorem Example…
Imagine a patient takes a test for a rare disease (present 1% of 
the population) that has a 95% accuracy rate…what is the 
probability the patient actually has the disease?
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Bayes’ Theorem Example
Imagine a patient takes a test for a rare disease (present 1% of 
the population) that has a 95% accuracy rate…what is the 
probability the patient actually has the disease?
• D = the case where the person actually has the disease
• ND = the case where the person does not have the disease
• + = the test for the disease is positive

The question is asking for: P(D|+)
From Bayes’ Theorem:

! " + = ! + " ! "
!(+)

What we know: 
! " = .01
! + " = .95
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Back to Distributions
• We don’t know ! + directly from the problem, but we can 

figure it out if we recall how distributions work:

• ! + is a marginal distribution
• ! + # is a conditional distribution

• We can get to the marginal by summing across the conditional:
! + = ! + # ! # + ! + %# ! %#

= .95 ∗ .01 + .05 ∗ .99 = .059
• So, to figure out the answer, if a person tests positive for the 

disease, the posterior probability they actually have the 
disease is:

! # + = ! + # ! #
!(+) = .01 ∗ .99

.059 = .17
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A (Perhaps) More Relevant Example

• The old-fashioned Bayes’ Theorem example I’ve found to be 
difficult to generalize to your actual data, so…

• Imagine you administer an IQ test to a sample of 50 people 
Ø !" = person p’s IQ test score

• To put this into a linear-models context, the empty model for Y:
!" = $% + '"

Where '" ∼ ) 0, ,-.

• From this empty model, we know that:
Ø $% is the mean of the Y (the mean IQ)
Ø ,-. is the sample variance of Y
Ø The conditional distribution of Y is then: / !" $%, ,-. ∼ ) $%, ,-.
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Non-Bayesian Analysis
• Up to this point in the class, we have analyzed these data 

using ML and REML

• For ML, we maximized the joint likelihood of the sample with 
respect to the two unknown parameters !" and #$%

& !", #$% =)
*+,

-
. /* !", #$% =)

*+,

- 1
22#$%

exp − /* − !"
%

2#$%

• Here, using gls(), I found:
!" = 102.769
#$% = 239.490

• Also, I found:
&>?& = −207.91
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Setting up a Bayesian Approach
• The (fully) Bayesian approach would treat each parameter as a random 

instance from some prior distribution

• Let’s say you know that this version of the IQ test is supposed to have a 

mean of 100 and a standard deviation of 15
Ø So !" should be 100 and #$% should be 225

• Going a step further, let’s say you have seen results for administrations of 

this test that led you to believe that the mean came from a normal 

distribution with a SD of 2.13
Ø This indicates the prior distribution for the mean…or 

& !" ∼ ((100,2.13%)

• Let’s also say that you don’t really have an idea as for the distribution of 

the variance, but you have seen it range from 200 to 400, so we can come 

up with a prior distribution for the variance of:

& #$% ∼ 1 200,400

• Here the prior is a uniform distribution meaning all values from 200 to 400 

are equally likely
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More on the Bayesian Approach
• The Bayesian approach is now to seek to find the posterior 

distribution of the parameters given the data:
! "#, %&' ()

• We can again use Bayes’ Theorem (but for continuous parameters):

! "#, %&' () = ! () "#, %&' ! "#, %&'
! ()

= ! () "#, %&' ! "#)!(%&'
! ()

• Because ! () essentially is a constant (which involves integrating 
across "# and %&' to find its value), this term is often referred to as:

! "#, %&' () ∝ ! () "#, %&' ! "#)!(%&'

• The symbol ∝ is read as “is proportional to” – meaning it is the same 
as when multiplied by a constant

Ø So it is the same for all values of "# and %&'
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Unpacking the Posterior Distribution
• ! "# $%, '() is the conditional distribution of the data given the 

parameters – we know this already from our linear model (slide 12)

! "# $%, '() =+
#,-

.
! /# $%, '() =+

#,-

. 1
22'()

exp − /# − $%
)

2'()

• ! $% is the prior distribution of $%, which we decided would be 
7 100,2.13) , giving the height of any $%:

! $% = 1
22';<)

exp − $% − =;<
)

2';<)

= 1
22 ∗ 2.13)

exp − $% − 100 )

2 ∗ 2.13)
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Unpacking the Posterior Distribution

• ! "#$ is the prior distribution of "#$, which we decided 
would be U 200,400 , giving the height of any value of "#$
as:

! "#$ = 1
,-./ − 1-./

= 1
400 − 200 =

1
200 = .005

• Some useful terminology:
Ø The parameters of the model (for the data) get prior distributions
Ø The prior distributions each have parameters – these parameters are called 

hyper-parameters
Ø The hyper-parameters are not estimated in our example, but could be – giving 

us a case where we would call our priors empirical priors
w AKA random intercept variance
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Up Next: Estimation (first using non-MCMC)
• Although MCMC is commonly thought of as the only method for 

Bayesian estimation, there are several other forms

• The form analogous to ML (where the value of the parameters that 
maximize the likelihood or log-likelihood) is called Maximum (or 
Modal) a Posteriori estimation (MAP)

Ø The term modal comes from the maximum point coming at the peak (the mode) of the 
posterior distribution

• In practice, this functions similar to ML, only instead of maximizing 
the joint likelihood of the data, we now have to worry about the 
prior:

! "#, %&' () = ! () "#, %&' ! "#)!(%&'
! ()

∝ ! () "#, %&' ! "#)!(%&'

• Because it is often more easy to work with, the log of this is often 
used:
log ! "#, %&' () ∝ log ! () "#, %&' + log ! "# + log ! %&'
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Grid Searching for the MAP Estimate of !"
• To demonstrate, let’s imagine we know #$% = 239.490

Ø Later we won’t know this…when we use MCMC

• We will use Excel to search over a grid of possible values 
for -.

• In each, we will use log 2 34 -. + log 2 -.

• As a comparison, we will also search over the ML log 
likelihood function log 2 34 -.
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ML v. Prior for !" of N(100, 2.132)

• Maximum for ML: 102.8
• Maximum for Bayes: 101.4 

(estimate is closer to mean of prior)
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ML vs. Prior for !" of N(100, 10002)

• Maximum for ML: 102.8

• Maximum for Bayes: 102.8
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ML vs. Prior for !" of N(100, 0.152)

• Maximum for ML: 102.8

• Maximum for Bayes: 100

EPSY 905: Intro to Bayesian and MCMC 21

-300

-290

-280

-270

-260

-250

-240

-230

-220

-210

-200

99
.8

10
0.

1
10

0.
4

10
0.

7
10

1
10

1.
3

10
1.

6
10

1.
9

10
2.

2
10

2.
5

10
2.

8
10

3.
1

10
3.

4
10

3.
7

10
4

10
4.

3

ML Version (no prior)

N(100,.15) Prior



ML vs. Prior for !" of U(-1000,1000)

• Maximum for ML: 102.8

• Maximum for Bayes: 102.8
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Summarizing Bayesian So Far

• Bayesian à parameters have prior distributions

• Estimation in Bayesian à MAP estimation is much like 
estimation in ML, only instead of likelihood of data, now have 
to add in likelihood for prior of all parameters

Ø But…MAP estimation may be difficult as figuring out derivatives for gradient 
function (for Newton-Raphson) are not always easy

Ø Where they are easy: Conjugate priors à prior distributions that are the same as 
the posterior distribution (think multilevel with normal outcomes)

• Priors can be informative (highly peaked) or uninformative 
(not peaked) 

Ø Some uninformative priors will give MAP estimates that are equal to ML

• Up next: estimation by brute force: Markov Chain Monte Carlo
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MARKOV CHAIN MONTE CARLO ESTIMATION: 
THE BASICS
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How Estimation Works (More or Less)
• Most estimation routines do one of three things:

1. Minimize Something: Typically found with names that have “least” 
in the title. Forms of least squares include “Generalized”, 
“Ordinary”, “Weighted”, “Diagonally Weighted”, “WLSMV”, and 
“Iteratively Reweighted.” Typically the estimator of last resort…

2. Maximize Something: Typically found with names that have 
“maximum” in the title. Forms include “Maximum likelihood”, 
“ML”, “Residual Maximum Likelihood” (REML), “Robust ML”. 
Typically the gold standard of estimators (and we now know why).

3. Use Simulation to Sample from Something: more recent advances 
in simulation use resampling techniques. Names include “Bayesian 
Markov Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis 
Hastings”, “Metropolis Algorithm”, and “Monte Carlo”. Used for 
complex models where ML is not available or for methods where 
prior values are needed.
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How MCMC Estimation Works
• MCMC estimation works by taking samples from the posterior distribution of the 

data given the parameters:

! "#, %&' () = ! () "#, %&' ! "# ! %&'
! ()

Ø How is that possible? We don’t know !(())…but…we’ll see…

• After enough values are drawn, a rough shape of the distribution 
can be formed

Ø From that shape we can take summaries and make them our parameters (i.e., mean)

• How the sampling mechanism happens comes from several different algorithms 
that you will hear about, the most popular being:

Ø Gibbs Sampling: used when ! "#, %&' () is known
w Parameter values are drawn and kept throughout the chain

Ø Metropolis-Hastings (within Gibbs): used when ! "#, %&' () is unknown 
w Parameter values are proposed, then either kept or rejected
w SAS PROC MCMC uses the latter
w TRIVIA NOTE: The Metropolis algorithm comes from Chemistry (in 1950)

Ø Hybrid MC: Newer versions (1980s; implemented in Stan)

• In some fields (Physics in particular), MCMC estimation is referred to as 
Monte Carlo estimation
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MCMC Estimation with MHG

• The Metropolis-Hastings algorithm works a bit differently than 
Gibbs sampling:

1. Each parameter (here !" and #$%) is given an initial value
2. In order, a new value is proposed for each model parameter 

from some distribution:
!"∗ ∼ ( !"∗ !" ; #$%

∗ ∼ ( #$%∗ #$%
3. The proposed value is then accepted as the current value with 

probability max( ./01, 1):

./01 =
6 78 !"∗, #$%

∗ 6 !"∗ 6 #$%∗ ( !" !"∗ ( #$% #$%∗

6 78 !", #$% 6 !")6(#$% ( !"∗ !" ( #$%∗ #$%
4. The process continues for a pre-specified number of iterations 

(more is better)
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Notes About MHG

• The constant in the denominator of the posterior distribution:

! "#, %&' () = ! () "#, %&' ! "#)!(%&'
! ()

…cancels when the ratio is formed

• The proposal distributions - "#∗ "# and - %&'∗ %&' can 
literally be any statistical distribution

Ø The trick is picking ones that make the chain “converge” quickly
Ø Want to find values that lead to moderate number of accepted parameters
Ø SAS PROC MCMC/WINBUGS don’t make you pick these

• Given a long enough chain, the final values of the chain will 
come from the posterior distribution

Ø From that you can get your parameter estimates
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Introducing Jags…
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Iteration History from JAGS
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Examining the Chain and Posteriors
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Practical Specifics in MCMC Estimation
• A burn-in period is used where a chain is run for a set number 

of iterations before the sampled parameter values are used in 
the posterior distribution

• Because of the rejection/acceptance process, any two 
iterations are likely to have a high correlation (called 
autocorrelation) à posterior chains use a thinning interval to 
take every Xth sample to reduce the autocorrelation

Ø A high autocorrelation may indicate the standard error of the posterior 
distribution will be smaller than it should be

• The chain length (and sometimes number of chains) must also 
be long enough so the rejection/acceptance process can 
reasonably approximate the posterior distribution

• How does one what values to pick for these? Output 
diagnostics

Ø Trial. And. Error.
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Best Output Diagnostics: the Eye Ball Test
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Not 
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Not 
Perfect:

Not 
Perfect:



Output Statistics and Diagnostics
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Changing Up the Prior

• To demonstrate how changing the prior affects the 
analysis, we will now try a few prior distributions for our 
parameters

• Prior: !" ∼ $ −10000,10000 ; *+, ∼ $(0,5000)
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Chain Plots
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Changing Up the Prior

• Prior: !" ∼ $ 0,100,000 ;
• )*+, ∼ -.//.(1 = .01, 4 = .01)

EPSY 905: Intro to Bayesian and MCMC 37



Chain Plots
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What About an Informative Prior?

• Prior: !" ∼ $ 102,103 ; +,- ∼ $ 238,242
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Chain Plots
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MCMC in R
• R itself does not have an MCMC engine native to the 

language – but there are many free versions available 
outside of R

• For instance, if you wanted to estimate a path model with 
MCMC you can:

Ø Install the blavaan package (Bayesian lavaan)
Ø Run the path analysis with MCMC

• I am not showing you these because I they all end up being 
really frustrating

Ø Very buggy
Ø Took me about an hour to just install all code
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WRAPPING UP

EPSY 905: Intro to Bayesian and MCMC 42



Wrapping Up

• Today was an introduction to Bayesian statistics
Ø Bayes = use of prior distributions on parameters

• We used two methods for estimation:
Ø MAP estimation – far less common
Ø MCMC estimation

w Commonly, people will say Bayesian and mean MCMC – but Bayesian is just the 
addition of priors. MCMC is one way of estimating Bayesian models!

• MCMC is effective for most Bayesian models:
Ø Model likelihood and prior likelihood are all that are needed

• MCMC is estimation by brute force:
Ø Can be very slow, computationally intensive, and disk-space intensive
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