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Today’s	Lecture

• Classification	methods:	Useful	for	when	you	already	know	
which	groups	exist	but	you	don’t	know	which	group	to	
assign	a	new	observations

• Clustering	methods:	Useful	for	when	you	don’t	know	how	
many	groups	exist

• As	both	methods	rely	upon	distances	(more	or	less)	we	will	
start	with	a	definition	of	distances

Ø We’ll	also	get	a	bonus	slide	or	two	about	multidimensional	 scaling—another	
method	 that	uses	distances	 (but	doesn’t	 cluster	or	classify	directly)



Today’s	Data

• We	will	make	use	of	the	classic	Fisher’s	Iris	Data	to	
demonstrate	clustering	and	classification	methods

• 150	flowers;	50	from	three	species	(Setosa,	Versicolor,	
Virginica)

• Four	measurements	from	each	flower:
Ø Sepal	width
Ø Sepal	length
Ø Petal	width
Ø Petal	length

• These	data	are	built	into	R	already!



DISTANCE	METRICS



Measures	of	Distance

• Care	must	be	taken	with	choosing	the	metric	by	which	
similarity	is	quantified

• Important	considerations	include:
Ø The	nature	of	the	variables	 (e.g.,	 discrete,	 continuous,	 binary)
Ø Scales	of	measurement	 (nominal,	ordinal,	 interval,	 or	ratio)
Ø The	nature	of	the	matter	under	study



Euclidean	Distance
• Euclidean	distance	is	a	frequent	choice	of	a	distance	
metric:

𝑑 𝒙, 𝒚 = 𝑥' − 𝑦' * + 𝑥* − 𝑦* * + ⋯+ 𝑥- − 𝑦-
*

= 𝒙 − 𝒚 . 𝒙− 𝒚

• Distances	can	be	between	anything	you	wish	to	cluster:
Ø Observations	 (distance	across	all	variables)
Ø Variables	 (distance	 across	all	observations)

• The	Euclidean	distance	is	a	frequent	choice	because	it	
represents	an	understandable	metric

Ø It	may	not	be	the	best	choice	always



Euclidean	Distance?

• Imagine	I	wanted	to	know	
how	many	miles	it	was	
from	my	old	house	in	
Sacramento	to	Lombard	
Street	in	San	Francisco…		

• Knowing	how	far	it	was	
on	a	straight	line	would	
not	do	me	too	much	
good,	particularly	with	
the	number	of	one-way	
streets	that	exist	in	San	
Francisco



• Other	popular	distance	metrics	include	the	
Minkowski metric:

• The	key	to	this	metric	is	the	choice	of	m:
– If	m =	2,	this	provides	the	Euclidean	distance
– If	m	=	1,	this	provides	the	“city-block”	distance

Other	Distance	Metrics
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Preferred	Distance	Properties

• It	is	often	desirable	to	use	a	distance	metric	that	meets	the	
following	properties:

Ø d(P,Q) = d(Q,P)
Ø d(P,Q) > 0 if P ≠ Q
Ø d(P,Q) = 0 if P = Q
Ø d(P,Q) ≤ d(P,R) + d(R,Q)

• The	Euclidean	and	Minkowskimetrics	satisfy	these	
properties



Triangle	Inequality
• The	fourth	property	 is	called	 the	triangle	inequality,	 which	often	gets	
violated	by	non-routine	measures	 of	distance

• This	inequality	 can	be	shown	by	the	following	 triangle	(with	lines	
representing	 Euclidean	 distances):

Q
P

R

d(P,Q)

d(P,R)
d(R,Q)

d(P,R) d(R,Q)

d(P,Q)



Binary	Variables
• In	the	case	of	binary-valued	variables	(variables	that	have	a	
0/1	coding),	many	other	distance	metrics	may	be	defined

• The	Euclidean	distance	provides	a	count	of	the	number	of	
mismatched	observations:

• Here,	d(i,k)	=	2

• This	is	sometimes	called	the	Hamming	Distance



Other	Binary	Distance	Measures

• There	are	a	number	of	other	ways	to	define	the	distance	
between	a	set	of	binary	variables

• Most	of	these	measures	reflect	the	varied	importance	
placed	on	differing	cells	in	a	2	x	2	table



General	Distance	Measure	Properties

• Use	of	measures	of	distance	that	are	monotonic	in	their	
ordering	of	object	distances	will	provide	identical	results	
from	clustering	heuristics

• Many	times	this	will	only	be	an	issue	if	the	distance	
measure	is	for	binary	variables	or the	distance	measure	
does	not	satisfy	the	triangle	inequality



Distances	in	R



CLASSICAL	CLUSTERING	METHODS	
(USING	DISTANCES)



Clustering	Definitions
• Clustering	objects	(or	observations)	can	provide	detail	
regarding	the	nature	and	structure	of	data

• Clustering	is	distinct	from	classification	in	terminology
Ø Classification	 pertains	to	a	known number	of	groups,	with	the	objective	
being	to	assign	new	observations	 to	these	groups

• Classical	methods	of	cluster	analysis	is	a	technique	where	
no	assumptions	are	made	concerning	the	number	of	
groups	or	the	group	structure

Ø Mixture	models	do	make	assumptions	 about	the	data



• Clustering	algorithms	make	use	of	measures	of	similarity	(or	
alternatively,	dissimilarity)	to	define	and	group	variables	or	
observations

• Clustering	presents	a	host	of	technical	problems

• For	a	reasonable	sized	data	set	with	n objects	(either	variables	
or	individuals),	the	number	of	ways	of	grouping	n objects	into	k
groups	is:

• For	example,	there	are	over	four	trillionways	that	25	objects	
can	be	clustered	into	4	groups	– which	solution	is	best?
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Numerical	Problems
• In	theory,	one	way	to	find	the	best	solution	is	to	try	each	
possible	grouping	of	all	of	the	objects	– an	optimization	process	
called	integer	programming

• It	is	difficult,	if	not	impossible,	to	do	such	a	method	given	the	
state	of	today’s	computers	(although	computers	are	catching	
up	with	such	problems)

• Rather	than	using	such	brute-force	type	methods,	a	set	of	
heuristics	have	been	developed	to	allow	for	fast	clustering	of	
objects	in	to	groups

• Such	methods	are	called	heuristics	because	they	do	not	
guarantee	that	the	solution	will	be	optimal	(best),	only	that	the	
solution	will	be	better	than	most



Clustering	Heuristic	Inputs

• The	inputs	into	clustering	heuristics	are	in	the	form	of	
measures	of	similarities	or	dissimilarities

• The	result	of	the	heuristic	depends	in	large	part	on	the	
measure	of	similarity/dissimilarity	used	by	the	procedure



Clustering	Variables	vs.	Clustering	Observations

• When	variables	are	to	be	clustered,	oft	used		measures	of	
similarity	include	correlation	coefficients	(or	similar	
measures	for	non-continuous	variables)

• When	observations	are	to	be	clustered,	distance	metrics	
are	often	used



Hierarchical	Clustering	Methods
• Because	of	the	large	size	of	possible	clustering	solutions,	
searching	through	all	combinations	is	not	feasible

• Hierarchical	clustering	techniques	proceed	by	taking	a	set	of	
objects	and	grouping	a	set	at	a	time

• Two	types	of	hierarchical	clustering	methods	exist:	
Ø Agglomerative	 hierarchical	methods
Ø Divisive	 hierarchical	methods



Agglomerative	Clustering	Methods
• Agglomerative	clustering	methods	start	first	with	the	
individual	objects

• Initially,	each	object	is	it’s	own	cluster

• The	most	similar objects	are	then	grouped	together	into	a	
single	cluster	(with	two	objects)

We will find that what we 
mean by similar will change 
depending on the method



Agglomerative	Clustering	Methods
• The	remaining	steps	involve	merging	the	clusters	according	
the	similarity	or	dissimilarity	of	the	objects	within	the	
cluster	to	those	outside	of	the	cluster

• The	method	concludes	when	all	objects	are	part	of	a	single	
cluster



Divisive	Clustering	Methods
• Divisive	hierarchical	methods	works	in	the	opposite	direction	–
beginning	with	a	single,	n-object	sized	cluster

• The	large	cluster	is	then	divided	into	two	subgroups	where	the	
objects	in	opposing	groups	are	relatively	distant	from	each	
other

• The	process	continues	similarly	until	there	are	as	many	clusters	as	
there	are	objects



To	Summarize
• So	you	can	see	that	we	have	this	idea	of	steps

Ø At	each	step	two	clusters	 combine	 to	form	one	(Agglomerative)

OR…	

Ø At	each	step	a	cluster	is	divided	 into	two	new	clusters	(Divisive)



Methods	for	Viewing	Clusters
• As	you	could	imagine,	when	we	consider	the	methods	for	
hierarchical	clustering,	there	are	a	large	number	of	clusters	
that	are	formed	sequentially

• One	of	the	most	frequently	used	tools	to	view	the	clusters	
(and	level	at	which	they	were	formed)	is	the	dendrogram

• A	dendrogram is	a	graph	that	describes	the	differing	
hierarchical	clusters,	and	the	distance	at	which	each	is	
formed



Example	Data	Set	#1
• To	demonstrate	several	of	the	hierarchical	clustering	methods,	
an	example	data	set	is	used

• Data	come	from	a	1991	study	by	the	economic	research	
department	of	the	union	bank	of	Switzerland	representing	
economic	conditions	of	48	cities	around	the	world

• Three	variables	were	collected:
– Average	 working	hours	for	12	occupations
– Price	of	112	goods	and	services	excluding	 rent
– Index	of	net	hourly	 earnings	in	12	occupations



This is an example of an agglomerate 
cluster where cities start off in there own 
group and then are combined

For example, Here 
Amsterdam and Brussels 
were combined to form a 
group

Notice that we do not specify 
groups, but if we know how 
many we want…we simply go 
to the step where there are that 
many groups 

The 
Cities

Where the lines connect is when 
those two previous groups were 
joined



Similarity?
• So,	we	mentioned	that:

Ø The	most	similar objects	are	then	grouped	 together	into	a	single	
cluster	(with	two	objects)

• So	the	next	question	is	how	do	we	measure	similarity	between	clusters
Ø More	specifically,	how	do	we	redefine	 it	when	a	cluster	contains	a	
combination	of	old	clusters

• We	find	that	there	are	several	ways	to	define	similar	and	each	way	defines	a	
new	method	of	clustering



Agglomerative	Methods
• Next	we	discuss	several	different	way	to	complete	
Agglomerative	hierarchical	clustering:

Ø Single	Linkage
Ø Complete	 Linkage
Ø Average	 Linkage
Ø Centroid
Ø Median
Ø Ward	Method



Example	Distance	Matrix

• The	example	will	be	based	on	the	distance	matrix	below

1 2 3 4 5

1 0 9 3 6 11

2 9 0 7 5 10

3 3 7 0 9 2

4 6 5 9 0 8

5 11 10 2 8 0



Single	Linkage

• The	single	linkage	method	of	clustering	involves	
combining	clusters	by	finding	the	“nearest	neighbor”	
– the	cluster	closest	to	any	given	observation	within	
the	current	cluster

Cluster 1

1

2

Cluster 2

3
4

5

Notice that this is equal to the minimum distance of any 
observation in cluster one with any observation in cluster 3



• So	the	distance	between	any	two	clusters	is:

{ })(min),( jidBAD y,y= For all yi in A and yj in B 

1

2

3
4

5

Notice any other distance is longer

So how would we 
do this using our 
distance matrix?



Single	Linkage	Example

• The	first	step	in	the	process	is	to	
determine	the	two	elements	
with	the	smallest	distance,	and	
combine	them	into	a	single	
cluster.

• Here,	the	two	objects	that	are	
most	similar	are	objects	3	and	
5…we	will	now	combine	these	
into	a	new	cluster,	and	compute	
the	distance	from	that	cluster	to	
the	remaining	clusters	(objects)	
via	the	single	linkage	rule.

1 2 3 4 5

1 0 9 3 6 11

2 9 0 7 5 10

3 3 7 0 9 2

4 6 5 9 0 8

5 11 10 2 8 0



Single	Linkage	Example

• The	shaded	rows/columns	 are	
the	portions	of	the	table	with	
the	distances	 from	an	object	to	
object	3	or	object	5.	

• The	distance	from	the	(35)	
cluster	to	the	remaining	
objects	is	given	below:

d(35),1 =	min{d31,d51}	=	min{3,11}	=	3
d(35),2 =	min{d32,d52}	=	min{7,10}	=	7
d(35),4 =	min{d34,d54}	=	min{9,8}	=	8

1 2 3 4 5

1 0 9 3 6 11

2 9 0 7 5 10

3 3 7 0 9 2

4 6 5 9 0 8

5 11 10 2 8 0

These are the distances of 3 and 
5 with 1.  Our rule says that the 
distance of our new cluster with 
1 is equal to the minimum of 
theses two values…3

These are the distances of 3 and 
5 with 2.  Our rule says that the 
distance of our new cluster with 
2 is equal to the minimum of 
theses two values…7

In equation form our new distances are



Single	Linkage	Example

• Using	the	distance	values,	we	
now	consolidate	our	table	so	
that	(35)	is	now	a	single	
row/column

• The	distance	from	the	(35)	
cluster	to	the	remaining	
objects	is	given	below:

d(35)1 =	min{d31,d51}	=	min{3,11}	=	3
d(35)2 =	min{d32,d52}	=	min{7,10}	=	7
d(35)4 =	min{d34,d54}	=	min{9,8}	=	8

(35) 1 2 4

(35) 0

1 3 0

2 7 9 0

4 8 6 5 0



Single	Linkage	Example

• We	now	repeat	the	process,	
by	finding	 the	smallest	
distance	between	 within	 the	
set	of	remaining	 clusters

• The	smallest	distance	is	
between	 object	1	and	cluster	
(35)

• Therefore,	 object	1	joins	
cluster	(35),	creating	cluster	
(135)

(35) 1 2 4

(35) 0 3 7 8

1 3 0 9 6

2 7 9 0 5

4 8 6 5 0

The distance from cluster (135) to the other clusters is then computed:

d(135)2 = min{d(35)2,d12} = min{7,9} = 7
d(135)4 = min{d(35)4,d14} = min{8,6} = 6



Single	Linkage	Example

• Using	the	distance	values,	we	now	
consolidate	our	table	so	that	(135)	
is	now	a	single	row/column

• The	distance	from	the	(135)	cluster	
to	the	remaining	objects	is	given	
below:

(135) 2 4

(135) 0

2 7 0

4 6 5 0

d(135)2 = min{d(35)2,d12} = min{7,9} 
= 7
d(135)4 = min{d(35)4,d14} = min{8,6} 
= 6



Single	Linkage	Example

• We	now	repeat	the	process,	by	finding	the	
smallest	distance	between	within	the	set	
of	remaining	clusters

• The	smallest	distance	is	between	object	2	
and	object	4

• These	two	objects	will	be	joined	to	from	
cluster	(24)

• The	distance	from	(24)	to	(135)	is	then	
computed

d(135)(24) =	min{d(135)2,d(135)4}	=	min{7,6}	=	6

• The	final	cluster	is	formed	(12345)	with	a	
distance	of	6

(135) 2 4

(135) 0

2 7 0

4 6 5 0



The	Dendogram

For example, here is 
where 3 and 5 joined



Complete	Linkage

• The	complete	linkage	method	of	clustering	involves	
combining	clusters	by	finding	the	“farthest	neighbor”	–
the	cluster	farthest	to	any	given	observation	within	the	
current	cluster

• This	ensures	that	all	objects	in	a	cluster	are	within	some	
maximum	distance	of	each	other

Cluster 1

1

2

Cluster 2

3 4

5



Clustering	in	R



Dendrogram of	R	Example	with	Flowers



Other	Classical	Clustering	Methods

• K-means	clustering	will	partition	data	into	more	than	one	
group…but	you	have	to	specify	how	many	groups	

• The	method	uses	the	Mahalanobis	distance	of	each	
observation	to	the	group	mean	and	iteratively	switches	
group	membership	until	no	one	switches

• R	has	a	built-in	K-means	method



FINITE	MIXTURE	MODELS



Finite	Mixture	Models:	Clustering	with	Likelihoods
• Finite	mixture	models	are	models	that	attempt	to	determine	
the	number	of	clusters	(called	classes)	in	a	set	of	data

Ø Finite:	countably	many	classes
Ø Mixture:	distribution	of	the	data	comes	from	a	mixture	of	observations	from	
different	classes

• FMMs	use	likelihoods	to	determine	class	membership
Ø A	likelihood	(pdf)	is	a	similarity	(inverse	distance)
Ø Higher	likelihood	à observation	is	more	like	class	average	àmore	likely	
observation	comes	from	class

Ø Lower	likelihood	à observation	is	less	like	class	average	à less	likely	observation	
comes	from	class

• FMMs	have	very	specific	names:
Ø Latent	class	analysis:	FMM	where	data	are	binary	and	independent	within	class
Ø Factor	mixture	model:	FMM	where	data	are	continuous	and	have	a	factor	
structure	that	yields	a	within-class	covariance	matrix



FMM	Marginal	Likelihood	 Function

• The	general	FMM	marginal	likelihood	function	is:

𝑓 𝒙0 =1𝜂3𝑓(𝒙0|𝑐)
8

39'
• 𝑓(𝒙0|𝑐) is	within	class	likelihood	function	(pdf)

Ø Each	class	has	its	own	distribution

• 𝜂3 is	the	probability	any	observation	comes	from	class	c
Ø The	“mixing”	proportion

• The	sum	is	where	the	mixture	gets	its	name:	the	marginal	
data	likelihood	is	a	blend	(mixture)	of	each	class’	likelihood



FMMs	in	R:	Gaussian	(MVN)	Mixtures	with	mclust

• R	has	several	packages	for	mixtures:	I	will	only	show	you	
one	– Mclust

• We	will	attempt	to	determine	the	number	of	classes	in	our	
flower	data	using	only	the	four	measurements

• First,	we	let	mclust run	a	number	of	models	to	determine	
the	“best	fitting”	(lowest	BIC	value)



Plot	of	BICs	from	mclust



Example	Output	from	One	Solution



Problems	with	FMMs

• Exploratory	(finding	number	of	classes)	uses	of	mixtures	
are	often	suspect	as	nearly	anything	can	bring	about	
additional	(spurrious/false)	classes

• For	instance:	if	our	data	were	not	MVN	within	class,	we	
would	likely	see	more	classes	than	we	need

• Finding	the	right	model	is	often	difficult



WRAPPING	UP



Wrapping	Up

• This	class	only	scratched	the	surface	of	what	can	be	done	
to	cluster	or	classify	data

• Clustering:	Determining	the	number	of	clusters	in	data
Ø Agglomerative/Hierarchical	 clustering
Ø K-Means
Ø Finite	mixture	models

• Classification:	Putting	observations	into	known	classes
Ø Classical	approach:	Discriminant	analysis	(not	shown	today;	lda()	R	function)
Ø Modern	approach:	FMMs

• My	class	next	semester	(Diagnostic	Testing)	describes	
confirmatory	uses	of	FMMs	


