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Today’s Class

- Methods for exploratory factor analysis (EFA)

> Principal Components-based (TERRIBLE)
> Maximum Likelihood-based Exploratory Factor Analysis (BAD)
> Exploratory Structural Equation Modeling (ALSO BAD)

- Comparisons of CFA and EFA

- How to do exploratory analyses with CFA

> Structure of no items known
> Structure of some items known
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The Logic of Exploratory Analyses

- Exploratory analyses attempt to discover hidden structure in data with little to no

user input
> Aside from the selection of analysis and estimation

- The results from exploratory analyses can be misleading
> If data do not meet assumptions of model or method selected
> If data have quirks that are idiosyncratic to the sample selected
> If some cases are extreme relative to others
> If constraints made by analysis are implausible

- Sometimes, exploratory analyses are needed
> Must construct an analysis that capitalizes on the known features of data
> There are better ways to conduct such analyses

- Often, exploratory analyses are not needed

> But are conducted anyway —see a lot of reports of scale development that start with the idea that
a construct has a certain number of dimensions

THE UNIVERSITY OF
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ADVANCED MATRIX OPERATIONS
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A Guiding Example

- To demonstrate some advanced matrix algebra, we will
make use of data

. | collected data SAT test scores for both the Math (SATM)
and Verbal (SATV) sections of 1,000 students

- The descriptive statistics of this data set are given below:

Statistic | SATV | SATM
Mean | 499.3 | 498.3
SD 49.8 81.2
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- For a square matrix X with p rows/columns, the trace is the

sum of the diagonal elements:
D

trx = z Aii
i=1
- For our data, the trace of the correlation matrix is 2

> For all correlation matrices, the trace is equal to the number of variables
because all diagonal elements are 1

- The trace will be considered the total variance in principal
components analysis

» Used as a target to recover when applying statistical models

THE UNIVERSITY OF
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Matrix Determinants

- A square matrix can be characterized by a scalar value called a
determinant:

detX = |X]

Calculation of the determinant by hand is tedious

» Our determinant was 0.3916
> Computers can have difficulties with this calculation (unstable in cases)

The determinantis useful in statistics:

» Shows up in multivariate statistical distributions
> |s a measure of “generalized” variance of multiple variables

If the determinantis positive, the matrix is called positive definite
> Isinvertable

If the determinantis not positive, the matrix is called
non-positive definite

> Not invertable THE UNIVERSITY OF
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Matrix Orthogonality

. A square matrix A is said to be orthogonal if:
AAT = ATA =1

- Orthogonal matrices are characterized by two properties:

1. The dot product of all row vector multiples is the zero vector
+ Meaning vectors are orthogonal (or uncorrelated)

2.  For each row vector, the sum of all elements is one
+  Meaning vectors are “normalized”

- The matrix above is also called orthonormal
> The diagonal is equal to 1 (each vector has a unit length)

- Orthonormal matrices are used in principal components
and exploratory factor analysis

THE UNIVERSITY OF
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Eigenvalues and Eigenvectors

- A square matrix X can be decomposed into a set of
eigenvalues A and a set of eigenvectors e
e = e

- Each eigenvalue has a corresponding eigenvector

> The number equal to the number of rows/columns of X
» The eigenvectors are all orthogonal

- Principal components analysis uses eigenvalues and
eigenvectors to reconfigure data

THE UNIVERSITY OF
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Eigenvalues and Eigenvectors Example

- In our SAT example, the two eigenvalues obtained were:
;l]_ —_ ]..7723
Ay =0.22

- The two eigenvectors obtained were:
0.7171. 0.71
0.711° —0.71

- These terms will have much greater meaning principal
components analysis

> sat_eigen$values

#correlation matrix of SAT data [1]1 1.7752238 0.2247762
sat_corrmat = cor(data@l) > sat_eigen$vectors
[,1] [,2]
#eigenvalues and eigenvectors of correlation matrix: [1,] 0.7071068 -0.7071068
sat_eigen = eigen(x = sat_corrmat, symmetric = TRUE) [2,] 0.7071068 ©0.7071068 Tmumwmnym
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Spectral Decomposition

- Using the eigenvalues and eigenvectors, we can
reconstruct the original matrix using a spectral

decomposition:

p
Y = z AieieiT
=1

- For our example, we can get back to our original matrix:
_ T 717 _ [.89 .89
R, = Aeie] = 1787|171 71] = [_89 P

Rz = R1 + /12323’5

= a0 “ao)+022] 77 |l71 —711=|

1.00 0.78
0.78 1.00
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Spectral Decomposition in R

> #demonstration of spectral decomposition
> corr_rankl = sat_eigen$values[1] * sat_eigen$vectors[,1] %*% t(sat_eigen$vectors[,1])
> corr_rankl
[,1] [,2]
[1,] 0.8876119 0.8876119
[2,] 0.8876119 0.8876119
>
> corr_rank2 = corr_rankl + sat_eigen$values[2] * sat_eigen$vectors[,2] %*% t(sat_eigen$vectors[,2])
> corr_rank2
[,1] [,2]
[1,] 1.0000000 0.7752238
[2,] 0.7752238 1.0000000
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Additional Eigenvalue Properties

- The matrix trace is the sum of the eigenvalues:

- The matrix determinant can be found by the product of
the eigenvalues

» In our example |R| = 1.78 x .22 = .3916
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AN INTRODUCTION TO PRINCIPAL
COMPONENTS ANALYSIS
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PCA Overview

. Principal Components Analysis (PCA) is a method for re-expressing

the covariance (or often correlation) between a set of variables
> The re-expression comes from creating a set of new variables (linear combinations) of
the original variables

- PCA has two objectives:

1, Data reduction
+ Moving from many original variables down to a few “components”

2. Interpretation
+ Determining which original variables contribute most to the

new “components”

THE UNIVERSITY OF
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Goals of PCA

- The goal of PCA is to find a set of k principal components (composite

variables) that:

> |Is much smaller in number than the original set of V variables

> Accounts for nearly all of the total variance
+ Total variance = trace of covariance/correlation matrix

. If these two goals can be accomplished, then the set of k principal
components contains almost as much information as the

original V variables

> Meaning — the components can now replace the original variables in any subsequent
analyses

THE UNIVERSITY OF
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Questions when using PCA

- PCA analyses proceed by seeking the answers to two
guestions:

1. How many components (new variables) are needed to

“adequately” represent the original data?
>  The term adequately is fuzzy (and will be in the analysis)

2. (once #1 has been answered): What does each

component represent?
>  The term “represent” is also fuzzy

THE UNIVERSITY OF
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PCA Features

- PCA often reveals relationships between variables that

were not previously suspected
> New interpretations of data and variables often stem from PCA

- PCA usually serves as more of a means to an end rather
than an end it itself

» Components (the new variables) are often used in other
statistical techniques

+ Multiple regression/ANOVA
+ Cluster analysis

- Unfortunately, PCA is often intermixed with Exploratory

Factor Analysis
» Don’t. Please don’t. Please make it stop.

THE UNIVERSITY OF
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PCA Details

- Notation: Z are our new componentsand Y is our original

data matrix (with N observations and V variables)
> We will let p be our index for a subject

- The new components are linear combinations:
_ TV —
Zpr1 =€ Y =e1Vp teyVp+ - +epVyy
_ TV —
Zpr = €Y = eV + eyl + - t+eplyy

ZpV — ng — elvypl + ezvypz + e+ eV[/YpV

- The weights of the components (e, ) come from the

eigenvectors of the covariance or correlation matrix for
component k and variable j

THE UNIVERSITY OF
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Details About the Components

- The components (Z) are formed by the weights of the
eigenvectors of the covariance or correlation matrix of the

original data

> The variance of a component is given by the eigenvalue associated with the
eigenvector for the component

- Using the eigenvalue and eigenvectors means:

» Each successive component has lower variance
+ Var(Z,) > Var(Z,) > ... >Var(Z,)
> All components are uncorrelated

» The sum of the variances of the principal components is equal to the

total variance:
1% 74
z Var(Z,) = trE = Z A,
v=1 v=1

THE UNIVERSITY OF
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PCA on our Example

- We will now conduct a PCA on the correlation matrix of

our sample data

> This example is given for demonstration purposes — typically we will not do
PCA on small numbers of variables
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PCAiInR

- The R function that does principal componentsis called
prcomp()

#PCA oF'Correlbtion matrix—(scale. = TRUE)
sat_pca_corr = prcomp(x = data@l, scale. = TRUE)

#show the results (compare to eigenvalues/eigenvectors)

sat_pca_corr
> sat_pca_corr

#show the summary statistics Standard deviations:
summary(sat_pca_corr) [1] 1.3323753 0.4741057
Rotation:
PC1 PC2

SATV -0.7071068 ©0.7071068
SATM -0.7071068 -0.7071068
>
> #show the summary statistics
> summary(sat_pca_corr)
Importance of components:

PC1 PC2
Standard deviation 1.3324 0.4741
Proportion of Variance 0.8876 0.1124
Cumulative Proportion ©0.8876 1.0000
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Graphical Representation

- Plotting the components and the original data side by side

reveals the nature of PCA:
> Shown from PCA of covariance matrix
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The Growth of Gambling Access

. In past 25 years:
> An exponential increase in the
accessibility of gambling

> An increased rate of with problem
or pathological gambling
(Volberg, 2002, Welte et al., 2009)

- Hence, there is a need to better:

» Understand the underlying causes of the disorder
> Reliably identify potential pathological gamblers
> Provide effective treatment interventions

THE UNIVERSITY OF
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Pathological Gambling: DSM Definition

- To be diaghosed as a pathological gambler, an individual
must meet 5 of 10 defined criteria:

1. |Is preoccupied with gambling 7.

2.  Needs to gamble with increasing
amounts of money in order to
achieve the desired excitement 8.

3.  Has repeated unsuccessful efforts to
control, cut back, or stop gambling

4. Is restless or irritable when 9.
attempting to cut down or stop
gambling

5.  Gambles as a way of escaping from

problems or relieving a dysphoric 10.

mood

6. After losing money gambling, often
returns another day to get even

EPSY 905: PCA, EFA, and CFA

Lies to family members, therapist, or
others to conceal the extent of
involvement with gambling

Has committed illegal acts such as
forgery, fraud, theft, or
embezzlement to finance gambling

Has jeopardized or lost a significant
relationship, job, educational, or
career opportunity because of
gambling

Relies on others to provide money
to relieve a desperate financial
situation caused by gambling

THE UNIVERSITY OF
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Research on Pathological Gambling

- In order to study the etiology of pathological gambling, more
variability in responses was needed

- The Gambling Research Instrument (Feasel, Henson, & Jones,
2002) was created with 41 Likert-type items

> Items were developed to measure each criterion

- Example items (ratings: Strongly Disagree to Strongly Agree):
> | worry thatl am spendingtoo much money on gambling (C3)
> There are few things | would rather do than gamble (C1)

- The instrument was used on a sample of experienced gamblers

from a riverboat casino in a Flat Midwestern State
> Casino patrons were solicited after playing roulette

THE UNIVERSITY OF
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The GRI Iltems

- The GRI used a 6-point Likert scale
» 1: Strongly Disagree

» 2: Disagree

> 3:Slightly Disagree
> 4:Slightly Agree

> 5: Agree

> 6: Strongly Agree

- To meet the assumptions of factor analysis, we will treat

these responses as being continuous

> This is tenuous at best, but often is the case in factor analysis

> Categorical items would be better....but you’d need another course for how to
do that
+ Hint: Iltem Response Models

THE UNIVERSITY OF
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The Sample

. Data were collected from two sources:

> 112 “experienced” gamblers
+ Many from an actual casino

> 1192 college students from a “rectangular” midwestern state
+ Many never gambled before

- Today, we will combine both samples and treat them as
homogenous—one sample of 1304 subjects

THE UNIVERSITY OF
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Final 10 Items on the Scale

jtem |criterion| ______________Question

GRI1

GRI3

GRI5

GRI9

GRI10
GRI13

GRI14

GRI18
GRI21

GRI23

EPSY 905: PCA, EFA, and CFA
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| would like to cut back on my gambling.

If | lost a lot of money gambling one day, | would be more likely to want to play
again the following day.

| find it necessary to gamble with larger amounts of money (than when | first
gambled) for gambling to be exciting.

| feel restless when | try to cut down or stop gambling.

It bothers me when | have no money to gamble.
| find it difficult to stop gambling.

| am drawn more by the thrill of gambling than by the money | could win.

My family, coworkers, or others who are close to me disapprove of my gambling.
It is hard to get my mind off gambling.

| gamble to improve my mood.

THE UNIVERSITY OF
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PCA with Gambling Items

- To show how PCA works with a larger set of items, we will

examine the 10 GRI items (the ones that fit a one-factor
CFA model)

- TO DO THIS YOU MUST IMAGINE:

» THESE WERE THE ONLY 10 ITEMS YOU HAD

> YOU WANTED TO REDUCE THE 10 ITEMS INTO 1 OR 2
COMPONENT VARIABLES

- CAPITAL LETTERS ARE USED AS YOU SHOULD NEVER DO A

PCA AFTER RUNNING A CFA—-THEY ARE FOR DIFFERENT
PURPOSES!

THE UNIVERSITY OF
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Question #1: How Many Components?

- To answer the question of how many components, two
methods are used:

> Scree plot of eigenvalues (looking for the “elbow”)
> Variance accounted for (should be > 70%)

- We will go with 4 components: (variance accounted for
VAC = 75%)

. Variance accounted for is for the total sample variance

> summary(éambling_péa_cov)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
2.0485 1.3229 1.0883 0.83608 0.75096 0.73365 0.68616 0.64836 0.58230 0.46438
Proportion of Variance 0.4043 0.1686 0.1141 0.06736 0.05434 0.05186 0.04537 0.04051 0.03267 0.02078
Cumulative Proportion 0.4043 0.5730 0.6871 0.75447 0.80881 0.86067 0.90604 0.94655 0.97922 1.00000

THE UNIVERSITY OF
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Plots to Answer How Many Components

Scree Plot of PCA Eigenvalues
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Question #2:

What Does Each Component Represent?

- To answer question #2 — we look at the weights of the
eigenvectors (here is the unrotated solution)

Rotation:

PC1 PC2 PC3 PC4
X1 -0.3126472 0.10459331 0.1662869 -0.843735151
X3 -0.2262923 0.07828499 0.1775587 -0.133596441
X5 -0.3199396 0.09403404 0.2294114 ©0.025555994
X9 -0.2433589 0.08687880 0.1596160 ©0.030715826
X10 -0.2798829 0.08714575 0.2352173 ©.084941435
X13 -0.3293561 0.15569572 0.1863762 0.220349288
X14 -0.4493615 -0.86166945 -0.2311989 0.005504759
X18 -0.3471876 0.40458523 -0.8343757 -0.028338155
X21 -0.2720582 ©0.13735301 0.0617232 ©.198445605

7] 7]

X23 -0.3258344 0.09836941 0.1385856 ©0.415552100

-

THE UNIVERSITY OF
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Final Result: Four Principal Components

- Using the weights of the eigenvectors, we can create four
new variables — the four principal components

s | % Filter
PC1 PC2 PC3 PC4 PC

1 -2.54488887 1.28795898 1.58233323 -1.82303154 -1.
2 2.18514082 0.36461255 0.19847109 0.26427683 O.
3 -0.61790497 0.66444313 0.24031780 0.37842837 O.
4 0.14430776 1.12694087 1.53931389 -0.13114293 -O0.
5 0.14430776 1.12694087 1.53931389 -0.13114293 -0.
6 2.18514082 0.36461255 0.19847109 0.26427683 0.
7 2.18514082 0.36461255 0.19847109 0.26427683 0.
8 2.18514082 0.36461255 0.19847109 0.26427683 O.
9 1.87249362 0.46920586 0.36475803 -0.57945832 0.
10 1.87249362 0.46920586 0.36475803 -0.57945832 0.
11  2.18514082 0.36461255 0.19847109 0.26427683 0.
12 2.18514082 0.36461255 0.19847109 0.26427683 0.
13 2.18514082 0.36461255 0.19847109 0.26427683 0.
14 2.18514082 0.36461255 0.19847109 0.26427683 0.

- Each of these is uncorrelated with each other
> The variance of each is equal to the corresponding eigenvalue

- We would then use these in subsequentanalyses RIS
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PCA Summary

- PCA is a data reduction technique that relies on the

mathematical properties of eigenvalues and eigenvectors

> Used to create new variables (small number) out of the old data (lots of
variables)

> The new variables are principal components (they are not factor scores)

- PCA appeared first in the psychometric literature

» Many “factor analysis” methods used variants of PCA before likelihood-based
statistics were available

. Currently, PCA (or variants) methods are the default option
in SPSS and SAS (PROC FACTOR)

THE UNIVERSITY OF
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Potentially Solvable Statistical Issues in PCA

The typical PCA analysis also has a few statistical concerns

> Some of these can be solved if you know what you are doing
> The typical analysis (using program defaults) does not solve these

Missing data is omitted using listwise deletion — biases possible

> Could use ML to estimate covariance matrix, but then would have to assume
multivariate normality

> Could use Ml to impute data

The distributions of variables can be anything...but variables
with much larger variances will look like they contribute more

to each component
> Could standardize variables— but some can’t be standardized easily (think gender)

The lack of standard errors makes the component weights

(eigenvector elements)

hard to interpret
> Can use aresampling/bootstrap analysis to get SEs (but not easy to do)

THE UNIVERSITY OF
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My (Unsolvable) Issues with PCA

- My issues with PCA involve the two questions in need of
answers for any use of PCA:

1. The number of components needed is not based on a

statistical hypothesis test and henceis subjective
> Variance accounted for is a descriptive measure

> No statistical test for whether an additional component significantly accounts

for more variance

2. Therelative meaning of each componentis questionable

at best and henceiis subjective

> Typical packages provide no standard errors for each eigenvector weig
be obtained in bootstrap analyses)

> No definitive answer for component composition

ht (can

- Insum, | feel it is very easy to be misled (or purposefully

mislead) with PCA
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EXPLORATORY FACTOR ANALYSIS
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Primary Purpose of EFA

- EFA: “Determine nature and number of latent variables that account
for observed variation and covariation among set of observed

indicators (= items or variables)”
> In other words, what causes these observed responses?
» Summarize patterns of correlation among indicators
> Solution is an end (i.e., is of interest) in and of itself

- Compared with PCA: “Reduce multiple observed variables into fewer
components that summarize their variance”

> In other words, how can | abbreviate this set of variables?
> Solution is usually a means to an end

THE UNIVERSITY OF
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Methods for EFA

- You will see many different types of methods for “extraction” of

factorsin EFA

> Many are PCA-based
> Most were developed before computers became relevant or likelihood theory was
developed

- You can ignore all of them and focus on one:

Only Use Maximum Likelihood for EFA

- The maximum likelihood method of EFA extraction:

> Uses the same log-likelihood as confirmatory factor analyses/SEM
+ Default assumption: multivariate normal distribution of data
> Provides consistent estimates with good statistical properties (assuming you have a
large enough sample)
> Missing data using all the data that was observed (MAR)

> |s consistent with modern statistical practices

THE UNIVERSITY OF
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Questions when using EFA

- EFAs proceed by seeking the answers to two questions:
(the same questions posed in PCA; but with different terms)

1. How many latent factors are needed to “adequately”

represent the original data?
>  “Adequately” = does a given EFA model fit well?

2. (once #1 has been answered): What does each

factor represent?
>  The term “represent” is fuzzy

THE UNIVERSITY OF
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The Syntax of Factor Analysis

. Factor analysis works by hypothesizing that a set of latent factors

helpsto determine a person’s response to a set of variables

» This can be explained by a system of simultaneous linear models
> Here Y = observed data, p = person, v = variable, F = factor score (Q factors)

Ypl = “)’1 ~+ Allel ~+ /’{12Fp2 + .-+ AlQFpQ ~+ epl
sz = ‘Llyz + /121Fp1 + Azszz + -+ AZQFPQ + epz

YpV = ,LlyV + /‘I'Vlel + szsz + -+ AVQFPQ + epV
- Wy, =mean forvariable v

Ayr =factor loading for variable v onto factor f (regression slope)

> Factors are assumed distributed MVN with zero mean and (for EFA) identity covariance
matrix (uncorrelated factors — to start)

ey, = residual for person p and variable v

> Residuals are assumed distributed MVN (across items) with a zero mean and a diagonal
covariance matrix W containing the unique variances

Often, this gets shortened into matrix form:

— T : UNIVERSITY OF
Y, = uy + AF, + ¢ . KUKANSAS
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How Maximum Likelihood EFA Works

- Maximum likelihood EFA assumes the data follow a

multivariate normal distribution

> The basis for the log-likelihood function (same log-likelihood we have used in
every analysis to this point)

- The log-likelihood function depends on two sets of

parameters: the mean vector and the covariance matrix

> Mean vector is saturated (just uses the item means for item intercepts) — so it
is often not thought of in analysis
+ Denoted as uy = y;

» Covariance matrix is what gives “factor structure”
+ EFA models provide a structure for the covariance matrix

THE UNIVERSITY OF
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The EFA Model for the Covariance Matrix

- The covariance matrix is modeled based on how it would
look if a set of hypothetical (latent) factors had caused the

data

- For an analysis measuring F factors, each item in the EFA:

» Has 1 unique variance parameter
» Has F factor loadings

- The initial estimation of factor loadings is conducted based

on the assumption of uncorrelated factors
> Assumption is dubious at best — yet is the cornerstone of the analysis

THE UNIVERSITY OF
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Model Implied Covariance Matrix

- The factor model implied covariance matrix is Xy =
APA" + W
> Where:

+ Xy = model implied covariance matrix of the observed data (size I x 1)

+ A = matrix of factor loadings (size I x F)
— In EFA: all terms in A are estimated

+ @ = factor covariance matrix (size F x F)

— In EFA: @ = (all factors have variances of 1 and covariances of 0)
— In CFA: this is estimated

+ W = matrix of unique (residual) variances (size I x I)
— In EFA: W is diagonal by default (noresidual covariances)

- Therefore, the EFA model-implied covariance matrix is:
Yy = AAT+ @

THE UNIVERSITY OF
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EFA Model Identifiability

- Under the ML method for EFA, the same rules of
identification apply to EFA as to
Path Analysis

> T-rule: Total number of EFA model parameters must not exceed unique
elements in saturated covariance matrix of data

+ For an analysis with a number of factors F and a set number of items I there are
F*I +1 = I(F + 1) EFA model parameters

F(F-1 .
(F-1) constraints for the model to work

+ As we will see, there must be

F(F-1) < 1(1+1)
2 2

+ Therefore, I(F + 1) —

> Local-identification: each portion of the model must be locally identified

+ With all factor loadings estimated local identification fails
— No way of differentiating factors without constraints
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Constraints to Make EFA in ML Identified

- The EFA model imposes the following constraint:
ATPA=A
such that A is a diagonal matrix

F(F-1)

. This puts constraints on the model (that many fewer
parameters to estimate)

. This constraint is not well known —and how it functions is hard
to describe
> For a 1-factor model, the results of EFA and CFA will match

- Note: the other methods of EFA “extraction” avoid this

constraint by not being statistical models in the first place

> PCA-based routinesrely on matrix properties to resolve identification
THE UNIVERSITY OF
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The Nature of the Constraints in EFA

- The EFA constraints provide some detailed assumptions
about the nature of the factor model and how it pertains
to the data

- For example, take a 2-factor model (one constraint):

174 Q=2
2,¢] 2 =
v=1 f=1

- In short, some combinations of factor loadings and unique

variances (across and within items) cannot happen

» This goes against most of our statistical constraints —which must be justifiable
and understandable (therefore testable)

> This constraint is not testable in CFA
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The Log-Likelihood Function

- Given the model parameters, the EFA model is estimated

by maximizing the multivariate normal log-likelihood
» For the data

woon [ (W - m) B, )|
logL = log|= (2m) "2 |Z| Zexp z_ e “Hy) 2 e T By
p=1

NN - (Y — 1) T (¥, — )
-~ log(2m) — log(|z) — ) L2 S or
p=1

- Under EFA, this becomes:

log L
NV N
= —TIOg(Zn) — ilog(lAAT + @)
N T
z (Yp — ) (AAT lp)_l(yp — 1)
2

EEEEEEEEEEEEE
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Benefits and Consequences of EFA with ML

- The parameters of the EFA model under ML retain the

same benefits and consequences of any model (i.e., CFA)

> Asymptotically (large N) they are consistent, normal, and efficient

> Missing data are “skipped” in the likelihood, allowing for incomplete
observations to contribute (assumed MAR)

- Furthermore, the same types of model fit indices are
available in EFA as are in CFA

. As with CFA, though, an EFA model must be a close
approximation to the saturated model covariance matrix if

the parameters are to be believed
> This is @ marked difference between EFA in ML and EFA with other methods —

quality of fit is statistically rigorous |
. KUKANSAS
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ML EFA WITH BASE R FUNCTION FACTANAL
(THE BAD WAY)
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ML EFA Using the factanal() Function

- The base R program has the factanal() function that
conducts ML-based EFA

» But it is very limited

. Although the function use ML, you still cannot have

missing data in the analysis
> BAD R!

- We will remove cases with any missing data (listwise
deletion) and proceed

W1 RIIBLRPUME WWVIHIIPVIIWI T WML D R VI VUVIIIW L LIy WWLW

#listwise removal of missing data (common in PCA -- but still a problem)

data@2a = data@2[which(is.na(data@2$X1)==FALSE & is.na(data@2%$X3)==FALSE & is.na(data@2%$X5)==FALSE & is.na(data@2$X9)==FALSE & is.na(data@2$X10)==FALSE &
is.na(data@2$X13)==FALSE & is.na(data@2$X14)==FALSE & 1is.na(data@2$X18)==FALSE & is.na(data@2$X21)==FALSE & is.na(data@2$X23)==FALSE),]

- We will also not use a rotation method at first as to show
how default constraints in EFA with ML are ridiculous
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Step #1: Determine Number of Factors

- The EFA factanal() function provides a rudimentary

test for model fit

- Remember the
saturated model from
path analysis?

> All covariances estimated

. The model fit tests the
solution from EFA vs

the saturated model
> EFA 1-factor model shown

- The goal is to find a
model that fits well

EPSY 905: PCA, EFA, and CFA

> EFA_1factor = factanal(x = data@2a, factors = 1, rotation = "none")
> EFA_1factor

Call:
factanal(x = data@2a, factors = 1, rotation = "none™)

Uniquenesses:
X1 X3 X5 X9 X10 X13 X14 X18 X21 X23
0.677 0.728 0.550 0.417 0.527 ©0.488 0.857 0.816 0.538 0.573

Loadings:
Factorl
X1 0.569
X3 0.521
X5 0.670
X9 0.764
X10 0.688
X13 0.715
X14 0.378
X18 0.429
X21 0.680
X23 0.653

Factorl
SS loadings 3.828
Proportion Var 0.383

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 161.14 on 35 degrees of freedom.
The p-value is 4.23e-18
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Step #1 in R: Model Fit Tests

One factor:

Two factors:

Three factors:

Four factors:

EPSY 905: PCA, EFA, and CFA

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 161.14 on 35 degrees of freedom.
The p-value is 4.23e-18

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 56.43 on 26 degrees of freedom.
The p-value is 0.000497

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 31.24 on 18 degrees of freedom.
The p-value is 0.027

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 10.2 on 11 degrees of freedom.
The p-value is 0.512
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Side Note: Default Constraints in ML EFA

- The EFA model imposes the following constraint:
ATWA =A
such that A is a diagonal matrix
- Here are the A matrices from each analysis:

> #constraint demonstration (lambdaAT psi-1 lambda = diag)
> Lambda = matrix(EFA_2factor$loadings, ncol=2)
> Psi = diag(EFA_2factor$uniquenesses)

> t(Lambda) %E%1§°1V9(P51)[%;§ Lambda . 4 onstraint demonstration (lambdaAT psi-1 lambda = diag)

> Lambda = matrix(EFA_3factor$loadings, ncol=3)

[1,]1 7.698164e+00 -1.9428%-16 > Psi = diag(EFA_3factor$uniquenesses)
[2,] 4.163336e-17 5.57827e-01 > t(Lambda) %*% solve(Psi) %*% Lambda

[,1] [,2] [,3]
[1,] 2.026141e+02 2.220446e-16 -3.122502e-16
[2,] -2.220446e-16 2.683701e+00 -1.873501e-16
> Lambda = matrix(EFA_4factor$loadings, [3,] -2.636780e-16 -1.942890e-16 4.352294e-01
> Psi = diag(EFA_4factor$uniquenesses)
> t(Lambda) %*% solve(Psi) %*% Lambda

[,1] [,2] [,3] [,4]
[1,] 2.023692e+02 ©.000000e+00 -2.081668e-16 1.318390e-16
[2,] ©.000000e+00 4.558736e+00 7.524363e-17 -1.139496e-16
[3,1 -1.942890e-16 1.860491e-16 9.039206e-01 -2.110721e-16

[4,]  6.245005e-17 -1.070108e-16 -2.041332e-16 3.539411e-01 ) IQ]KAN"gXS



Step #2: Interpreting the Best Model

- As the four-factor solution fit best, we will interpret it
- Unrotated solution of factor loadings:

Loadings:

Factorl Factor2 Factor3 Factor4
X1 0.356 0.457 0.127 0.346
X3 0.322 0.403
X5 0.452 0.480 0.174
X9 0.468 0.630 0.19% -0.144
X10 0.458 ©0.502 0.186
X13 0.509 0.494
X14 0.292 0.227
X18 0.316 0.294 -0.141 0.128
X21 0.491 0.548 -0.408
X23 0.997

What???
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FACTOR LOADING
ROTATIONS IN EFA
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Rotations of Factor Loadings in EFA

- Transformations of the factor loadings are possible as the
matrix of factor loadings is only unique up to an

orthogonal transformation
> Don’t like the solution? Rotate!

- Historically, rotations use the properties of matrix algebra
to adjust the factor loadings to more interpretable
numbers

- Modern versions of rotations/transformations rely on

“target functions” that specify what a “good” solution
should look like

> The details of the modern approach are lacking in most texts
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Types of Classical Rotated Solutions

- Multiple types of rotations exist but two broad categories
seem to dominate how they are discussed:

- Orthogonal rotations: rotations that force the factor
correlation to zero (orthogonal factors). The name
orthogonal relates to the angle between axes of factor
solutions being 90 degrees. The most prevalent is the
varimax rotation.

. Obligue rotations: rotations that allow for non-zero factor
correlations. The name orthogonal relates to the angle
between axes of factor solutions not being 90 degrees. The

most prevalent is the promax rotation.
> These rotations provide an estimate of “factor correlation”
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How Classical Orthogonal Rotation Works

. Classical orthogonal rotation algorithms work by defining a
new rotated set of factor loadings A™ as a function of the

original (non-rotated) loadings A and an orthogonal
rotation matrix T

AN =AT
where: TTT =TIT =1

- These rotations do not alter the fit of the model as

Y = AN+ P = AT(AT)  + W = ATTTAT + @
= AN+ W
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Modern Versions of Rotation

- Most studies using EFA use the classical rotation
mechanisms, likely due to insufficient training

- Modern methods for rotations rely on the use of a target
function for how an optimal loading solution should look

X 0 0]
x 00
X 00
X 00
L=(0x0
0x0
00x
00x
_00x_
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Rotation Algorithms

- Given a target function, rotation algorithms seek to find a
rotated solution that simultaneously:

1. Minimizes the distance between the rotated solution and the original
factor loadings

2. Fits best to the target function

- Rotation algorithms are typically iterative — meaning they
can fail to converge

- Rotation searches typically have multiple optimal values
> Need many restarts
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Rotated Factor Loadings: Orthogonal Rotation via Varimax

- The Varimax rotation brought about the following loadings

Loadings:
Factorl Factor2 Factor3 Factor4

X1 0.301 0.209 0.114 0.569
X3 0.360 0.213 0.113 0.307
X5 0.532 0.224 0.202 0.301
X9 0.714 0.291 0.157 0.239
X190 0.597 0.231 0.202 0.234
X13 0.414 0.461 0.236 0.268
X14 0.224 0.129 0.162 0.242
X18 0.147 ©0.346 0.144 0.2406
X21 0.300 ©.746 0.184 0.166
X23 0.266 0.270 0.904 0.188

. Are these better for interpretation?

. Also note: no factor correlation
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Rotated Factor Loadings: Oblique Rotation via Promax

- The Promax rotation brought about the following loadings:

Loadings:

Factorl Factor2 Factor3 Factor4
X1 -0.104 0.861
X3 0.249 0.308
X5 0.530 0.171
X9 0.885
X10 0.699
X13 0.254 0.368 0.101
X14 0.274
X18 -0.126 0.314 0.269
X21 0.906 -0.106
X23 1.037

. |t also brought about the following factor correlations:

EPSY 905: PCA, EFA, and CFA

Factor Correlations:

Factorl Factor2 Factor3 Factor4
Factorl 1.000 0.635 -0.628 -0.631
Factor2z ©0.635 1.000 -0.736 -0.852
Factor3 -0.628 -0.736 1.000 0.768
Factor4 -0.631 -0.852 ©0.768 1.000
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EFA VIA CFA
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CFA Approaches to EFA

- We can conduct exploratory analysis usinga CFA model

> Need to set the right number of constraints for identification

> We set the value of factor loadings for a few items on a few of the factors
+ Typically to zero (my usual thought)
+ Sometimes to one (Brown, 2002)

> We keep the factor covariance matrix as an identity
+ Uncorrelated factors (as in EFA) with variances of one

- Benefits of using CFA for exploratory analyses:

» CFA constraints remove rotational indeterminacy of factor loadings —no
rotating is needed (or possible)
> Defines factors with potentially less ambiguity
+ Constraints are easy to see

> For some software (SAS and SPSS), we get much more model
fit information
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EFA with CFA Constraints

- To do EFA with CFA, you must:

> Fix factor loadings (set to either zero or one)
+ Use “row echelon” form:

+ One item has only one factor loading estimated
+ One item has only two factor loadings estimated
+ One item has only three factor loadings estimated

> Fix factor covariances
+Setallto 0

> Fix factor variances
e Setallto 1
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EFA Via CFA Example

- We can use lavaan to do CFA...here is the syntax for the
one factor model

> The ~=is the key = Factor name to the left, items measuring it to the right

#one factor CFA
CFA_1factor.syntax =
factorl =~ X1 + X3 + X5 + X9 + X10 + X13 + X14 + X18 + X21 + X23

#for comparison with EFA we are using standardized factors (var = 1; mean = Q)
CFA_1factor.model = cfa(model = CFA_lfactor.syntax, data = data@2a, estimator = "MLR", std.lv = TRUE)
summary(CFA_1factor.model, fit.measures = TRUE, standardized = TRUE)
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One-Factor Results from lavaan

> summary(CFA_lfactor.model, fit.measures = TRUE, standardized = TRUE)

lavaan (0.5-20) converged normally after 26 iterations Latent Variables:

Estimate Std.Err Z-value P(1zl)  Std.lv Std.all

Number of observations 1333 factorl =~
X1 0.581 0.039 15.002 0.000 0.581 0.569
Estimator ML Robust X3 0.451 0.038 11.89% 0.000 0.451 0.521
Minimum Function Test Statistic 161.846 104.001 X5 0.647 0.041 15.684 0.000 0.047 0.670
Degrees of freedom 35 35 X9 0.542 ©0.034 16.182 0.000 ©0.542  0.764
p-value (Chi-square) | 0.000 0.000 X10 0.598  0.034 17.355 ©0.000 ©.598  ©0.688
c‘; tng correction ractor . : X13 0.684  0.037 18.334  0.000 0.684  0.715
or the Yuan-Bentler correction
X14 0.562 0.038 14.001 0.000 0.562 0.378
X21 0.564 0.036 15.774 0.000 0.564 0.680
Minimum Function Test Statistic 4148.081 2238.585 X23 0.635 0.033 19.346 0.000 0.635 0.653
Degrees of freedom 45 45
P-value 0.000 0.000 Intercepts:
U del. baseli del: Estimate Std.Err Z-value P(>1zl) Std.lv Std.all
S€r modet versus basetine modet: X1 1.818 0.028 65.015 ©0.000 1.818  1.781
Comparative Fit Index (CFI) .969 9.969 X3 1.549 0.024 ©65.300 0.000 1.549 1.789
Tucker-Lewis Index (TLI) 0.960 0.960 X5 1.588 0.026 60.049 0.000 1.588 1.645
X9 1.420 0.019 72.984 0.000 1.420 1.999
Loglikelihood and Information Criteria: X10 1.560 0.024 ©65.466 0.000 1.560 1.793
X13 1.547 0.026 59.027 0.000 1.547 1.617
Loglikelihood user model (H®@) -16575.733 -16575.733 X14 2.340 0.041 57.474 0.000 2.340 1.574
5C2:;“ghg°;[sc’z;‘:2ezg§§:" 2.354 X18 1.794  ©.035 51.372 0.000 1.794  1.407
Loglikelihood unrestricted model (H1) -16494.810 -16494.810 X2l 1.431 0.023 63.009 0.000 1.431 1.726
Scaling correction factor 1.924 X23 1.561 0.027 58.619 0.000 1.561 1.606
for the MLR correction factorl 0.000 0.000 0.000
Number of free parameters 30 30 Variances:
Akaike (AIO) 33211.466  33211.466 Estimate Std.Err Z-value P(1zl) Std.lv Std.all
Bayesian (BIC) 33367.322  33367.322 X1 0.706 ©0.063 11.130 ©0.000 0.706 ©0.677
Sample-size adjusted Bayesian (BIC) 33272.025 33272.025 X3 0.546 0.043 12.732 0.000 0.546 0.728
R N X5 0.513 0.047 10.888 0.000 0.513 0.550
oot Mean Square Error of Approximation:
X9 0.210 0.016 12.932 0.000 0.210 0.417
RMSEA 0.052 0.038 X10 0.399 0.043 9.297 0.000 0.399 0.527
90 Percent Confidence Interval 0.044 0.060 0.032 0.0 X13 0.447 0.047 9.541 0.000 0.447 0.488
P-value RMSEA <= 0.05 0.318 0.997 X14 1.894 0.078 24.226 0.000 1.894 0.857
X18 1.326 0.096 13.842 0.000 1.326 0.816
Standardized Root Mean Square Residual: X21 0.370 0.036 10.303 0.000 0.370 0.538
SRVR 0026 0.026 X23 0.542 0.047 11.570 0.000 0.542 0.573 '(§
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Look Familiar? They are Identical to the One-Factor EFA from factanal()

Loadings:
Factorl
X1 0.569
X3 0.521
X5 0.670
X9 0.764
X10 0.688
X13 0.715
X14 0.378
X18 0.429
X21 0.680
X23 0.653

Factorl
SS loadings 3.828
Proportion Var 0.383

Test of the hypothesis that 1 factor is sufficient.

The chi square statistic is 161.14 on 35 degrees of freedom.
The p-value is 4.23e-18
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CFA Logic...Applied to EFA

- Because our one-factor model fit well, we can stop!

- CFA has more indices of model fit — which can make
finding an appropriate solution easier

- CFA also gives you the standard errors for each factor
loading, leading to a Wald test to see if it is non-zero

> No need to use arbitrary .3 cutoff
> Small note: Although most EFA routines (like factanal) don’t give SEs they are
certainly attainable under ML theory

. Although we should stop here..We’'ll continue with the
two- and three-factor versions to compare with EFA
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Two-Factor Syntax

fitwo factor CFA: one item removed from factor 2 and zero covariance between factors

CFA_2factor.syntax = "
factorl =~ X1 + X3 + X5 + X9 + X10 + X13 + X14 + X18 + X21 + X23
+

factor2 =~ X3 + X5 + X9 + X10 + X13 + X14 + X18 + X21 + X23

factorl ~ @*factor?2

#for comparison with EFA we are using standardized factors (var = 1; mean = @)
CFA_2factor.model = cfa(model = CFA_2factor.syntax, data = data@2a, estimator = "MLR", std.lv = TRUE)
summary(CFA_2factor.model, fit.measures = TRUE, standardized = TRUE)
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CFA Two-Factor Results

> summary(CFA_2factor.model, fit.measures = TRUE, standardized = TRUE)
lavaan (0.5-20) converged normally after 64 iterations

Latent Variables:

Number of observations 1333 .
Estimate Std.Err Z-value P(lzl)  Std.lv Std.all
Estimator ML Robust factorl =~
Minimum Function Test Statistic 56.704 39.189 X1 0.578 0.039 14.876 0.000 0.578 0.566
e et e vore oo X3 0.452 0.038 11.780 0.000  0.452  ©0.522
Scaling correction factor 1.447 X5 0.659 0.041 16.022 0.000 0.659 0.682
for the Yuan-Bentler correction X9 0.557 0.032 17.200 0.000 0.557 0.784
Model test baseline model: X10 0.613 0.035 17.707 0.000 0.613 0.705
’ X13 0.671 0.042 16.164 0.000 0.671 0.702
Minimum Function Test Statistic 4148.081  2238.585 X14 0.559 0.039 14.279 0.000 0.559 0.376
Degrees of freedom 45 45 X18 0.524 0.045 11.627 0.000 0.524 0.411
P-value 0.000 0.000 x21 0.555 0.043 13.021 ©0.000 0.555  0.669
User model versus baseline model: X23 0.621 ©0.034 18.196 ©0.000 0.621  ©0.639
factor2 =~
Comparative Fit Index (CFI) 0.993 0.994 X3 -0.023 0.049 -0.466 0.641 -0.023 -0.027
Tucker-Lewis Index (TLI) 0.987 0.9 X5 -0.098  0.069 -1.425 ©0.154 -0.098 -0.101
Loglikelihood and Information Criteria: X9 -0.076 0.069 -1.093 0.274 -0.076 -0.107
X10 -0.108 0.075 -1.430 0.153 -0.108 -0.124
Loglikelihood user model (H®) -16523.162 -16523.162 X13 0.218 0.072 3.034 0.002 0.218 0.228
Scaling correction factor 2.243
for the MLR correction X14 -0.011 0.082 -0.140 0.888 -0.011 -0.008
Loglikelihood unrestricted model (H1) -16494.810 -16494.810 X18 0.306 0.073 4.205 0.000 0.306 0.240
Scaling correction fGFtOF' 1.924 X21 0.297 0.089 3.344 0.001 0.297 0.358
for the MLR correction X23 0.161  0.069 2.322 ©0.020 ©0.161  0.166
Number of free parameters 39 39 .
Akaike (AIC) 33124.324 33124.324 Regr‘essmns:
Bayesian (BIC) 33326.937  33326.937 Estimate Std.Err Z-value P(>l1zl) Std.lv Std.all
Sample-size adjusted Bayesian (BIC) 33203.051 33203.051 factorl ~
Root Mean Square Error of Approximation: factor2 0.000 0.000 0.000
RMSEA 0.030 0.020
90 Percent Confidence Interval 0.019 0.040 0.007 0.029
P-value RMSEA <= 0.05 0.999 1.000

Standardized Root Mean Square Residual:
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CFA Three-Factor Syntax

lavaan (0.5-20) converged normally after 245 iterations

Latent Variables:

Number of observations 1333 Estimate Std.Err Z-value P(>lzl) Std.lv Std.all
factorl =~
E§tw:;mator ) o ML Robust X1 0.595 0.043 13.915 0.000 0.595 0.582
Minimum Function Test Statistic 31.402 32.372 X3 0.464 0.043 1@.?7@ 0.000 0.464 0.535
Degrees of freedom 18 18
P-value (Chi-square) 0.026 0.020 X5 0.654 0.041 15.870 0.000 0.654 0.677
Scaling correction factor 0.970 X9 0.527 0.043 12.127 0.000 0.527 0.742
for the Yuan-Bentler correction X10 0.593 0.044 13.580 0.000 0.593 0.681
Model test baseline model: X13 0.648 0.048 13.617 0.000 0.648 0.677
’ X14 0.603 0.084 7.199 0.000 0.603 0.4006
Minimum Function Test Statistic 4148.081 2238.585 X18 0.512 0.053 9.603 0.000 0.512 0.401
Degrees of freedom 45 45 X21 0.522 0.051 10.283 0.000 0.522 0.630
P-value 0.000 0.000 X23 0.631 0.046 13.755 ©0.000 0.631  0.649
User model versus baseline model: factorz =~
X3 -0.009 0.091 -0.095 0.924 -0.009 -0.010
Comparative Fit Index (CFI) 0.997 0.993 X5 -0.016 0.604 -0.027 0.978 -0.016 -0.017
Tucker-Lewis Index (TLI) 0.992 0.984 X9 0.120 4.094 0.029 0.977 0.120 0.169
Loglikelihood and Information Criteria: X10 0.009 0.646 0.014 0.989 0.009 0.010
X13 0.265 0.233 1.136 0.256 0.265 0.277
Loglikelihood user model (HO) -16510.511 -16510.511 X14 -0.071 0.275 -0.257 0.797 -0.071 -0.047
Scaling correction factor 2.290 X18 0.29% 0.567 0.518 0.604 0.29% 0.230
for the MLR correction
Loglikelihood unrestricted model (H1) -16494.810 -16494.810 X21 0.381 0.4% 0.763 0.443 0.381 0.459
Scaling correction factor 1.924 X23 0.152 0.567 0.268 0.789 0.152 0.156
for the MLR correction factor3 =~
X5 -0.081 0.154 -0.526 0.599 -0.081 -0.084
Number of free parameters 47 47 X9 -0.484  0.936 -0.517 0.605 -0.484 -0.681
Akaike (AIC) 33115.022  33115.022
Bayesian (BIC) 33359.195  33359.195 X10 -0.093 0.404 -0.230 0.818 -0.093 -0.107
Sample-size adjusted Bayesian (BIC) 33209.897  33209.897 X13 0.022 2.195 0.010 0.992 0.022 0.023
X14 0.048 0.829 0.058 0.954 0.048 0.032
Root Mean Square Error of Approximation: X18 0.079  2.207 ©0.036 0.971 0.079 0.062
RMSEA 0.024 0.024 X21 0.056 3.082 0.018 0.985 0.056 0.068
90 Percent Confidence Interval 0.008 0.037 0.009 | X23 0.075 1.095 0.069 0.945 0.075 0.077
P-value RMSEA <= 0.05 1.000 0.999

Standardized Root Mean Square Residual:
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CONCLUDING REMARKS
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Wrapping Up

- Today we discussed the world of exploratory factor

analysis and found the following:
> PCA is what people typically run when they are after EFA

> ML EFA is a better option to pick (likelihood based)
+ Constraints employed are hidden!
+ Rotations can break without you realizing they do

> ML EFA can be shown to be equal to CFA for certain models

> Overall, CFA is still your best bet
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