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In This Lecture…

• Matrices in data

• The Multivariate Normal Distribution
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DATA EXAMPLE AND R
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A Guiding Example

• To demonstrate matrix algebra, we will make use of data

• Imagine that I collected data SAT test scores for both the 
Math (SATM) and Verbal (SATV) sections of 1,000 students

• The descriptive statistics of this data set are given below:
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The Data…
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In Excel: In R:



MULTIVARIATE STATISTICS 
AND DISTRIBUTIONS
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Multivariate Statistics
• Up to this point in this course, we have focused on the prediction (or 

modeling) of a single variable
Ø Conditional distributions (aka, generalized linear models)

• Multivariate statistics is about exploring joint distributions
Ø How variables relate to each other simultaneously

• Therefore, we must adapt our conditional distributions to have 
multiple variables, simultaneously (later, as multiple outcomes)

• We will now look at the joint distributions of two variables ! "#, "%
or in matrix form: ! & (where & is size N x 2; ! & gives a 
scalar/single number)

Ø Beginning with two, then moving to anything more than two
Ø We will begin by looking at multivariate descriptive statistics

w Mean vectors and covariance matrices

• In this lecture, we only consider the joint distribution of sets of 
variables – but next time we will put this into a GLM-like setup

Ø The joint distribution will the be conditional on other variables
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Multiple Means: The Mean Vector
• We can use a vector to describe the set of means for our data

!" = 1
% &

'( =
*̅+
*̅,
⋮
*̅.

Ø Here ( is a N x 1 vector of 1s
Ø The resulting mean vector is a v x 1 vector of means

• For our data: !" = 499.32
499.27 = *̅56'.

*̅56'7
• In R:
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Mean Vector: Graphically

• The mean vector is the center of the distribution of 
both variables
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Covariance of a Pair of Variables

• The covariance is a measure of the relatedness
Ø Expressed in the product of the units of the two variables:

!"#"$ =
1
'()*+

,
-)+ − -̅+ -)0 − -̅0

Ø The covariance between SATV and SATM was 3,132.22 (in SAT Verbal-Maths)
Ø The denominator N is the ML version – unbiased is N-1

• Because the units of the covariance are difficult to 
understand, we more commonly describe association 
(correlation) between two variables with correlation

Ø Covariance divided by the product of each variable’s standard deviation
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Correlation of a Pair of Variables

• Correlation is covariance divided by the product of 
the standard deviation of each variable:

!"#"$ =
&"#"$
&"#' &"$'

Ø The correlation between SATM and SATV was 0.78

• Correlation is unitless – it only ranges between 
-1 and 1

Ø If () and (' both had variances of 1, the covariance between 
them would be a correlation

w Covariance of standardized variables = correlation
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Covariance and Correlation in Matrices

• The covariance matrix (for any number of variables v) is 
found by:

! = 1
$ % − '()* * % − '()* =

+,-. ⋯ +,-,0
⋮ ⋱ ⋮

+,-,0 ⋯ +,0.

• ! = 2,477.34 3,123.22
3,132.22 6,589.71

• In R:
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From Covariance to Correlation

• If we take the SDs (the square root of the diagonal of the 
covariance matrix) and put them into a diagonal matrix !,
the correlation matrix is found by:

" = !$%&!$% =

'()*

'()* '()*
⋯

'()(,
'()* '(-*

⋮ ⋱ ⋮
'()(-
'()* '(-*

⋯ '(-*

'(-* '(-*

=
1 ⋯ 1()(-
⋮ ⋱ ⋮

1()(- ⋯ 1
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Example Covariance Matrix
• For our data, the covariance matrix was:

! = 2,477.34 3,123.22
3,132.22 6,589.71

• The diagonal matrix . was:

. = 2,477.34 0
0 6,589.71

= 49.77 0
0 81.18

• The correlation matrix 0 was:
0 = .12!.12

=
1

49.77 0

0 1
81.18

2,477.34 3,123.22
3,132.22 6,589.71

1
49.77 0

0 1
81.18

0 = 1.00 .78
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In R:

EPSY 905: Multivariate Normal Distribution 15



Generalized Variance
• The determinant of the covariance matrix is the generalized 

variance
Generalized Sample Variance = 0

• It is a measure of spread across all variables
Ø Reflecting how much overlap (covariance) in variables occurs in the sample
Ø Amount of overlap reduces the generalized sample variance
Ø Generalized variance from our SAT example: 6,514,104.5
Ø Generalized variance if zero covariance/correlation: 16,324,929

• The generalized sample variance is:
Ø Largest when variables are uncorrelated
Ø Zero when variables form a linear dependency

• In data:
Ø The generalized variance is seldom used descriptively, but shows up more 

frequently in maximum likelihood functions
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Total Sample Variance

• The total sample variance is the sum of the variances of 
each variable in the sample

Ø The sum of the diagonal elements of the sample covariance matrix
Ø The trace of the sample covariance matrix

!"#$% &$'(%) *$+,$-.) = 0
123

4
5678 = tr ;

• Total sample variance for our SAT example: 

• The total sample variance does not take into consideration 
the covariances among the variables

Ø Will not equal zero if linearly dependency exists

• In data:
Ø The total sample variance is commonly used as the denominator (target) 

when calculating variance accounted for measures
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MULTIVARIATE DISTRIBUTIONS (VARIABLES ≥ 2)

EPSY 905: Multivariate Normal Distribution 18



Multivariate Normal Distribution

• The multivariate normal distribution is the generalization 
of the univariate normal distribution to multiple variables

Ø The bivariate normal distribution just shown is part of the MVN

• The MVN provides the relative likelihood of observing all V 
variables for a subject p simultaneously:

!" = $"% $"& … $"(

• The multivariate normal density function is:

) !" = 1
2,

(
& -

%
&
exp − !"2 − 3

2-4% !"2 − 3
2
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The Multivariate Normal Distribution

! "# = 1
2'

(
) *

+
)
exp − "#0 − 1

0*2+ "#0 − 1
2

• The mean vector is 1 =
345346
⋮
348

• The covariance matrix is * =
945) 94546 ⋯ 94548
94546 946) ⋯ 94648
⋮ ⋮ ⋱ ⋮

94548 94648 ⋯ 948)

Ø The covariance matrix must be non-singular (invertible)
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Comparing Univariate and Multivariate Normal Distributions

• The univariate normal distribution:

! "# = 1
2'()

exp − " − . )

2()

• The univariate normal, rewritten with a little algebra:

! "# = 1
2'

/
)|()|

/
)
exp − " − . (1

/
) " − .
2

• The multivariate normal distribution

! 2# = 1
2'

3
) 4

/
)
exp − 2#5 − 6

541/ 2#5 − 6
2

Ø When 7 = 1 (one variable), the MVN is a univariate normal distribution
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The Exponent Term

• The term in the exponent (without the −"
#) is called the 

squared Mahalanobis Distance
$# %& = (&) − *

)+," (&) − *
Ø Sometimes called the statistical distance

Ø Describes how far an observation is from its mean vector, in 
standardized units

Ø Like a multivariate Z score (but, if data are MVN, is actually distributed as a 
-#variable with DF = number of variables in X)

Ø Can be used to assess if data follow MVN
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Multivariate Normal Notation

• Standard notation for the multivariate normal distribution 
of v variables is !" #, %

Ø Our SAT example would use a bivariate normal: !& #, %

• In data:
Ø The multivariate normal distribution serves as the basis for most every 

statistical technique commonly used in the social and educational sciences
w General linear models (ANOVA, regression, MANOVA)
w General linear mixed models (HLM/multilevel models)
w Factor and structural equation models (EFA, CFA, SEM, path models)
w Multiple imputation for missing data

Ø Simply put, the world of commonly used statistics revolves around the 
multivariate normal distribution

w Understanding it is the key to understanding many statistical methods
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Bivariate Normal Plot #1

! = #$%#$& = 0
0 , ) = *$%+ *$%$&

*$%$& *$&+
= 1 0

0 1
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Density Surface (3D) Density Surface (2D): 
Contour Plot



Bivariate Normal Plot #2 (Multivariate Normal)

! = #$%#$& = 0
0 , ) = *$%+ *$%$&

*$%$& *$&+
= 1 .5

.5 1
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Density Surface (3D) Density Surface (2D): 
Contour Plot



Multivariate Normal Properties

• The multivariate normal distribution has some useful 
properties that show up in statistical methods

• If ! is distributed multivariate normally:
1. Linear combinations of ! are normally distributed

2. All subsets of ! are multivariate normally distributed

3. A zero covariance between a pair of variables of !
implies that the variables are independent

4. Conditional distributions of ! are multivariate normal
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Multivariate Normal Distribution in PROC IML
• To demonstrate how the MVN works, we will now investigate 

how the PDF provides the likelihood (height) for a 
given observation:

Ø Here we will use the SAT data and assume the sample mean vector and covariance 
matrix are known to be the true:

! = 499.32
498.27 ; + = 2,477.34 3,123.22

3,132.22 6,589.71

• We will compute the likelihood value for several observations 
(SEE EXAMPLE R SYNTAX FOR HOW THIS WORKS):

Ø 0123,⋅ = 590 730 ; 6 0 = 0.0000001393048
Ø 0737,⋅ = 340 300 ; 6 0 = 0.0000005901861
Ø 0 = 80 = 499.32 498.27 ; 6 0 = 0.000009924598

• Note: this is the height for these observations, not the joint 
likelihood across all the data 

Ø Next time we will use the R packaged named lavaan to find the parameters in !
and 9 using maximum likelihood
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WRAPPING UP
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Wrapping Up

• We are now ready to discuss multivariate models and the 
art/science of multivariate modeling

• Many of the concepts of univariate models carry over
Ø Maximum likelihood
Ø Model building via nested models

• All of the concepts involve multivariate distributions
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Wrapping Up
• The last two classes set the stage to discuss multivariate 

statistical methods that use maximum likelihood

• Matrix algebra was necessary so as to concisely talk about 
our distributions (which will soon be models)

• The multivariate normal distribution will be necessary to 
understand as it is the most commonly used distribution 
for estimation of multivariate models

• Next week we will get back into data analysis – but for 
multivariate observations…using R’s lavaan package for 
path analysis

Ø Each term of the MVN will be mapped onto the lavaan() output
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