Multivariate Linear Models with Predictors

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #13

In This Lecture

- Multivariate linear models with predictors (using path analysis software/packages)
- Details and terminology from path analysis:
 - > Variable naming conventions
 - Software estimation defaults (variables in/out of likelihood)
 - Model comparisons via likelihood ratio tests
 - Measures of absolute and approximate model fit
 - > Model modification methods
 - Standardized regression coefficients
- Additional issues in path analysis
 - > Variable considerations

Data are simulated based on the results reported in:
 Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: a path analysis. *Journal of Educational Psychology, 86*, 193-203.

Sample of 350 undergraduates (229 women, 121 men)

 In simulation, 10% of variables were missing (using missing completely at random mechanism)

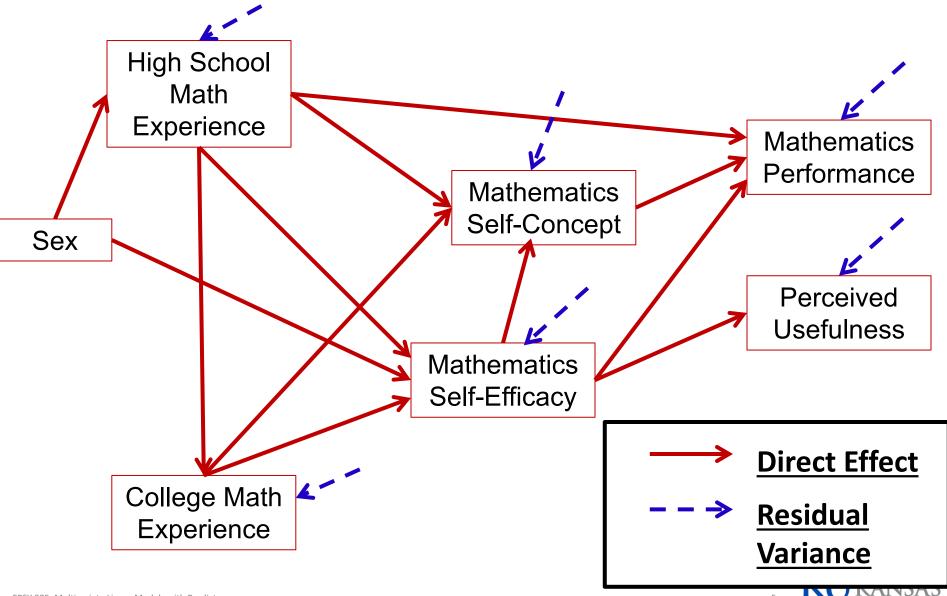
- Note: simulated data characteristics differ from actual data (some variables extend beyond their official range)
 - Simulated using Multivariate Normal Distribution
 - Some variables had boundaries that simulated data exceeded

Results will not match exactly due to missing data and boundaries EPSY 905: Multivariate Linear Models with Predictors

Variables of Data Example

- Sex (1 = male; 0 = female)
- Math Self-Efficacy (MSE)
 - Reported reliability of .91
 - > Assesses math confidence of college students
- Perceived Usefulness of Mathematics (USE)
 - Reported reliability of .93
- Math Anxiety (MAS)
 - Reported reliability ranging from .86 to .90
- Math Self-Concept (MSC)
 - Reported reliability of .93 to .95
- Prior Experience at High School Level (HSL)
 - Self report of number of years of high school during which students took mathematics courses
- Prior Experience at College Level (CC)
 - Self report of courses taken at college level
- Math Performance (PERF)
 - Reported reliability of .788
 - > 18-item multiple choice instrument (total of correct responses)

Our Destination: Overall Path Model



The Big Picture

- Multivariate linear models are statistical methods that, when using an identity link, assume the variables in an analysis follow a multivariate normal distribution
 - Mean vectors
 - Covariance matrices
- By specifying a set of regression equations that are estimated simultaneously, a very specific covariance matrix is implied
- As with all multivariate models, the key to multivariate linear models is finding an approximation to the unstructured (saturated) covariance matrix
 - > With fewer parameters, if possible
- The art to multivariate linear models is in specifying models that blend theory and statistical evidence to produce valid, generalizable results

MULTIVARIATE LINEAR MODELS VIA PATH ANALYSIS SOFTWARE AND PACKAGES

Multivariate Regression

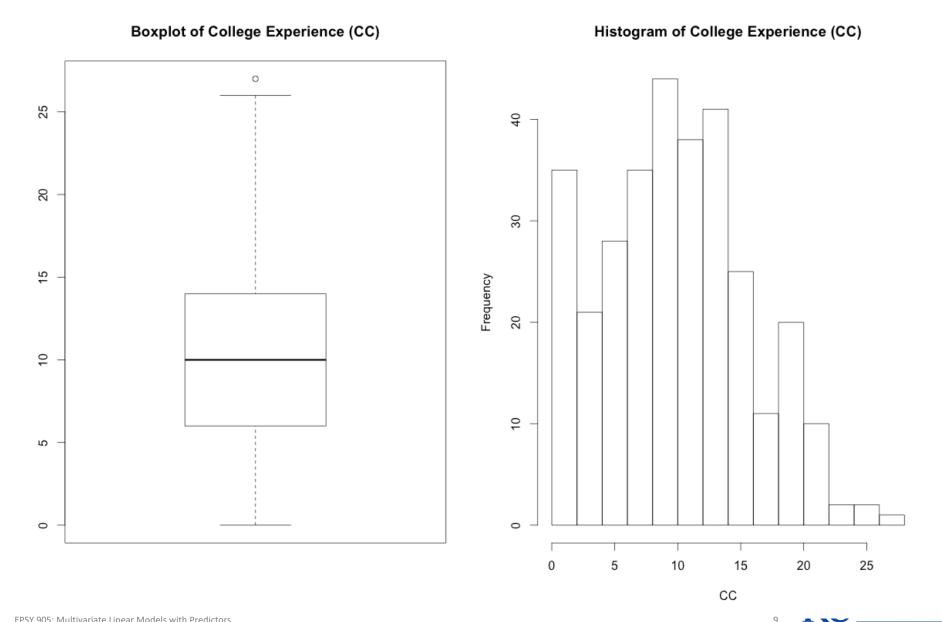
- We begin with a multivariate regression model:
 - Predicting mathematics performance (PERF) with female (F), college math experience (CC), and the interaction between female and college math experience (FxCC)
 - Predicting perceived usefulness (USE) with female (F), college math experience (CC), and the interaction between female and college math experience (FxCC)

 $PERF_{i} = \beta_{0,PERF} + \beta_{F,PERF}F_{i} + \beta_{CC,PERF}CC_{i} + \beta_{F*CC,PERF}F_{i}CC_{i} + e_{i,PERF}$ $USE_{i} = \beta_{0,USE} + \beta_{F,USE}F_{i} + \beta_{CC,USE}CC_{i} + \beta_{F*CC,USE}F_{i}CC_{i} + e_{i,USE}$

- We denote the residual for PERF as $e_{i,PERF}$ and the residual for USE as $e_{i,USE}$
 - > We also assume the residuals are Multivariate Normal:

$$\begin{bmatrix} e_{i,PERF} \\ e_{i,USE} \end{bmatrix} \sim N_2 \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{e,PERF}^2 & \sigma_{e,PERF,USE} \\ \sigma_{e,PERF,USE} & \sigma_{e,USE}^2 \end{bmatrix} \right)$$

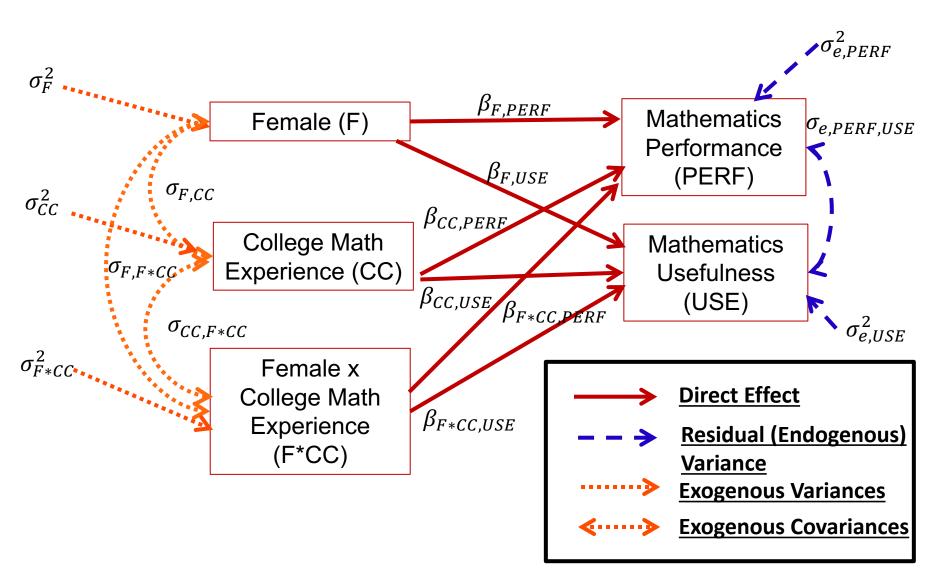
Before Continuing: We will Center CC at 10



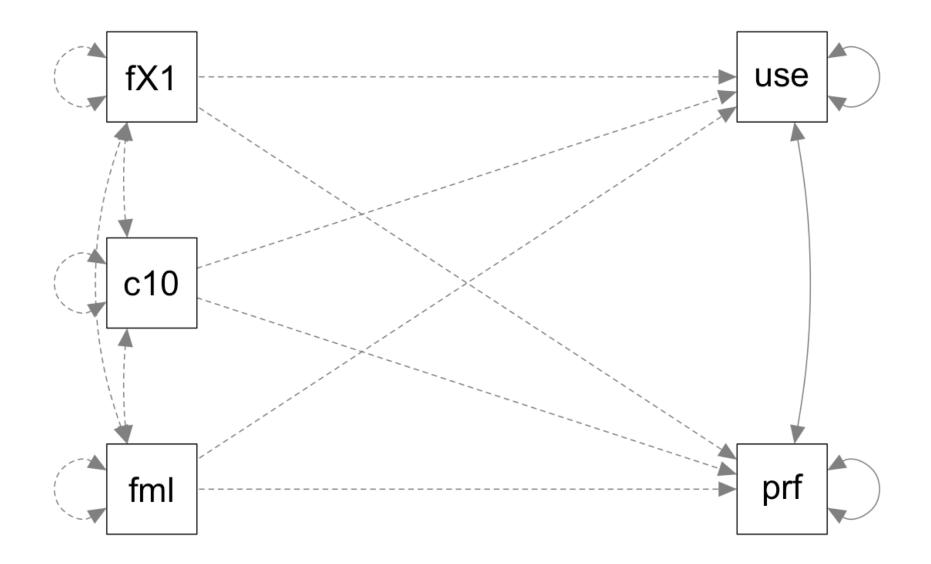
Types of Variables in the Analysis

- An important distinction in path analysis is between endogenous and exogenous variables
- <u>Endogenous variable(s)</u>: variables whose variability *is explained* by one or more variables in a model
 - In our example Mathematics Performance (PERF) and Mathematics Usefulness (USE)
 - In univariate linear regression, the **dependent variable** is the only endogenous variable in an analysis
- <u>Exogenous variable(s)</u>: variables whose variability *is not explained* by any variables in a model
 - > In our example Female (F), college experience (CC), and the interaction (FxCC)
 - In linear regression, the independent variable(s) are the exogenous variables in the analysis

Multivariate Linear Regression Path Diagram



R's Version of the Path Diagram



12 _____

Labeling Variables

• The endogenous (dependent) variables are:

Performance (PERF) and Usefulness (USE)

- The exogenous (independent) variables are:
 - Female (F), college experience (CC), and the interaction of Female and college experience (F*CC)

Multivariate Regression in R Using the lavaan Package

```
#analysis syntax
model01.syntax = "
```

```
#Means:
perf ~ 1 + 0*female + 0*cc10 + 0*femXcc10
use ~ 1 + 0*female + 0*cc10 + 0*femXcc10
```

```
#Variances:
perf ~~ perf
use ~~ use
```

```
#Covariance:
perf ~~ use
```

...

By putting 0* in front of each of the variables, we are allowing them to be in the likelihood (for model comparisons) but not predict either DV

#analysis estimation
model01.fit = sem(model01.syntax, data=data01, conditional.x=TRUE, fixed.x = TRUE, mimic = "MPLUS", estimator = "MLR")

- A note about path analysis software:
 - Most packages put all variables into the likelihood function (Mplus does not)
 - So, you must start with all variables in the model for LRTs

Multivariate Regression Model Parameters

- Lavaan considers all five variables to be part of a multivariate normal distribution, so the unstructured (saturated) model has a total of 20 parameters:
 - > 5 means
 - > 5 variances
 - > 10 covariances (5-choose-2 or 5*(5-1)/2))
- The model itself has 14 parameters:
 - > 5 intercepts
 - > 0 regression slopes (but we'll add these next)
 - > 2 residual variances
 - > 1 residual covariance
 - > 3 exogenous variances
 - > 3 exogenous covariances
- Lavaan will estimate two models for each analysis: H0 (your model) and H1 (saturated model)
- Degrees of DF in path models come from comparing the saturated model number of parameters with the parameters estimated
 - Parameters available 20 14 parameters estimated = 6 df
- Therefore, this model will not fit perfectly model fit statistics will be available

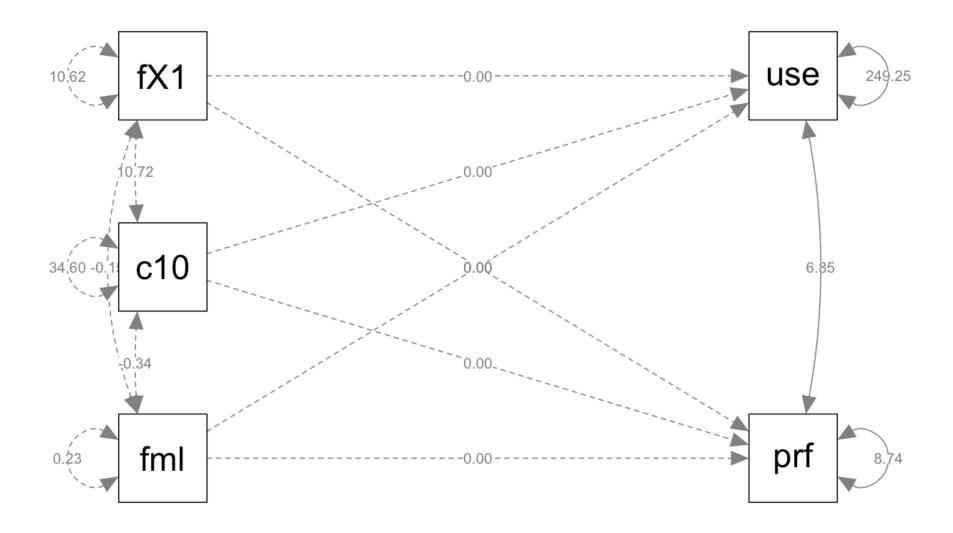
Output from Lavaan: Summary Statement

lavaan (0.5-20) converged normally after 28 iterations

Number of observations	350		Regressions:						
Number of observations	350		5	Estimate	Std Err	7-value	P(> z)	Std. 1v	Std.all
Number of missing patterns	7		perf ~	2001110000	5001211		. (* 121)	500101	0001011
5 1				0 000				0 000	0.000
Estimator	ML	Robust	female	0.000				0.000	0.000
Minimum Function Test Statistic	22.307	22.204	cc10	0.000				0.000	0.000
Degrees of freedom	6	6	femXcc10	0.000				0.000	0.000
P-value (Chi-square)	0.001	0.001	use ~						
Scaling correction factor		1.005		0.000				0 000	0 000
for the Yuan-Bentler correction (Mpl	us variant)		female	0.000				0.000	0.000
Model test baseline model:			cc10	0.000				0.000	0.000
House lest buschine moule.			femXcc10	0.000				0.000	0.000
Minimum Function Test Statistic	28.371	27.908							
Degrees of freedom	7	7							
P-value	0.000	0.000	Covariances:			_			
				Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
User model versus baseline model:			perf ~~						
			use	6.847	2.850	2.403	0.016	6.847	0.147
Comparative Fit Index (CFI)	0.237	0.225	use	0.041	2.050	2.405	0.010	0.047	0.141
Tucker-Lewis Index (TLI)	0.110	0.096	_						
Loglikelihood and Information Criteria:			Intercepts:						
Ebyerketthood and information criteria.				Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
Loglikelihood user model (H0)	-4073.253	-4073.253	perf	13.959	0.174	80.442	0.000	13.959	4.721
Scaling correction factor		1.028	•	52,440	0.872	60.140	0.000	52.440	3.322
for the MLR correction			use	52.440	0.072	00.140	0.000	52.440	5.522
Loglikelihood unrestricted model (H1)	-4062.099	-4062.099							
Scaling correction factor		1.015	Variances:						
for the MLR correction				Estimate	Std.Err	Z-value	P(> z)	Std. 1v	Std.all
Number of free non-meters	-	-	perf	8.742	0.754	11.596	0.000	8.742	1.000
Number of free parameters Akaike (AIC)	5 8156.505	5 8156.505							
Bayesian (BIC)	8175.795	8175.795	use	249.245	19.212	12.973	0.000	249.245	1.000
Sample-size adjusted Bayesian (BIC)	8159.933	8159.933							
	02001000	01001000							
Root Mean Square Error of Approximation:			•••						
			Note:						
RMSEA	0.088	0.088	NOLC.						
90 Percent Confidence Interval	0.051 0.129	0.051 0.128				-			
P-value RMSEA <= 0.05	0.046	0.047	No infor	matio	n aha	nit e	xngel	nous	
Standardized Deet Mars Course Deside				matio			~~~~~~		
Standardized Root Mean Square Residual:			• • •	10	C.				١
SRMR	0.077	0.077	variable	s (tron	n tixe	$= x \cdot D \cdot x$	IKUF	opti	on)
J.C.IX	0.011	0.011							~ ··/
Parameter Estimates:									

Information Observed Standard Errors Robust.huber.white EPSY 905: Multivariate Linear Models with Predictors

Path Diagram with Numbers Shown



Output from lavaan: "Fitted" and Saturated Covariance Matrix

> fitted(model01.fit)

\$COV					
	perf	use	female	cc10	fmXc10
perf	8.742				
use	6.847	249.245			
female	0.000	0.000	0.226		
cc10	0.000	0.000	-0.335	34.600	
femXcc10	0.000	0.000	-0.146	10.723	10.616

\$mean

perf	use	female	cc10	femXcc10
13.959	52.440	0.346	0.320	-0.211

```
> inspect(model01.fit, what="sampstat.h1")
```

\$cov

	perf	use	female	cc10	fmXc10
perf	8.730				
use	6.788	249.254			
female	0.070	0.341	0.226		
cc10	4.123	8.751	-0.335	34.600	
femXcc10	1.920	4.500	-0.146	10.723	10.616
\$mean					
perf	use	e femal	le co	c10 femXo	cc10
13.946	52.468	3 0.34	16 0. 3	320 -0.	.211

- The fitted covariance matrix shows you what the model implies the variances and covariances should be
- Here the exogenous variables are provided by sample estimates (fitted.x=TRUE)
- Model parameters provide the endogenous parameters
- The lower matrix is the saturated model matrix

Output from lavaan: Residual Covariance Matrices

```
> residuals(model01.fit, type = "raw")
$type
[1] "raw"
```

\$cov

	perf	use	female	cc10	fmXc10
perf	-0.012				
use	-0.059	0.009			
female	0.070	0.341	0.000		
cc10	4.123	8.751	0.000	0.000	
femXcc10	1.920	4.500	0.000	0.000	0.000

\$mean

perf	use	female	cc10	femXcc10
-0.013	0.029	0.000	0.000	0.000

 The "raw" residuals are the difference between the model implied covariance matrix and the H1 (saturated model) covariance matrix/mean vector

METHODS OF EXAMINING MODEL FIT

Methods of Model Fit

- Model-data fit is of utmost concern when building models with multivariate outcomes
- If a model does not fit the data:
 - Parameter estimates may be biased
 - Standard errors of estimates may be biased
 - Inferences made from the model may be wrong
 - > If the saturated model fit is wrong, then the LRTs will be inaccurate
- Examining model fit is the first step in multivariate models
- That said, not all "good-fitting" models are useful...
 - ...model fit just allows you to talk about your model...there may be nothing of significance (statistically or practically) in your results, though

Types of Model Fit Information

- Model fit information for models where outcomes are <u>conditionally MVN*</u> come in several types, but all are based on the premise that any model mean and covariance structure must fit <u>as well as</u> the saturated mean vector and covariance matrix model
 *If model outcomes are not conditionally MVN, model fit is very different
- All possible models/structures **are nested within** the saturated mean vector and covariance matrix model
 - Most model fit statistics come from comparing any model/structure with the saturated model
- Indices shown first are called "global" model fit indices

Report fit of model globally (as opposed to locally for specific parameters)

Example lavaan Model Fit Output

Standard Errors

lavaan (0.5-20) converged normally after	28 iterations		
Number of observations	350		
Number of missing patterns	7		
Estimator	ML	Robust	
Minimum Function Test Statistic	22.307	22.204	
Degrees of freedom	6	6	
P-value (Chi-square)	0.001	0.001	
Scaling correction factor for the Yuan-Bentler correction (Mpl	us variant)	1.005	
Model test baseline model:			
Minimum Function Test Statistic	28.371	27.908	
Degrees of freedom	7	7	
P-value	0.000	0.000	
User model versus baseline model:			
Comparative Fit Index (CFI)	0.237	0.225	
Tucker-Lewis Index (TLI)	0.110	0.096	
Loglikelihood and Information Criteria:			
Loglikelihood user model (H0)	-4073.253	-4073.253	
Scaling correction factor		1.028	
for the MLR correction			
Loglikelihood unrestricted model (H1)	-4062.099	-4062.099	
Scaling correction factor		1.015	
for the MLR correction			
Number of free parameters	5	5	
Akaike (AIC)	8156.505	8156.505	
Bayesian (BIC)	8175.795	8175.795	
Sample-size adjusted Bayesian (BIC)	8159.933	8159.933	
Root Mean Square Error of Approximation:			
RMSEA	0.088	0.088	
90 Percent Confidence Interval	0.051 0.129	0.051	0.128
P-value RMSEA <= 0.05	0.046	0.047	
Standardized Root Mean Square Residual:			
SRMR	0.077	0.077	
Parameter Estimates:			
Information	Observed		

Robust.huber.white

KU KANSAS

The fit.measures=TRUE Model Fit Statistics

Unlabeled section

- > Likelihood ratio test versus the saturated model
- > Testing if your model fits as well as the saturated model
- Model test baseline model
 - > Likelihood ratio test pitting the saturated model against the independent variables model
 - > Testing whether any variables have non-zero covariances (significant correlations)
- User model versus baseline model
 - > CFI
 - > TLI
- Loglikelihood and Information Criteria
 - Likelihood ratio tests (nested models)
 - Information criteria comparisons (non-nested models)
- Root Mean Square Error of Approximation
 - > How far off a model is from the saturated model, per degree of freedom
- Standardized Root Mean Square Residual
 - \succ How far off a model's correlations are from the saturated model correlations \mathbf{v}

Indices of Global Model Fit

- Primary: obtained model χ^2 (from Model test baseline model)
 - here we use the MLR rescaled χ^2 from the "Robust" Column
 - > χ^2 is evaluated based on model df (difference in parameters between your CFA model and the saturated model)
 - > Tests null hypothesis that **this** model (H_0) fits equally to **saturated model** (H_1) so significance is undesirable (smaller χ^2 , bigger p-value is better)
 - Means saturated model is estimated **automatically** for each model analyzed
 - > Just using χ^2 is insufficient, however:
 - Distribution doesn't behave like a true χ² if sample sizes are small (or, if not using MLR, if items are non-normally distributed)
 - Obtained χ^2 depends largely on sample size
 - Some mention this is an unreasonable null hypothesis (perfect fit??)
- Because of these issues, alternative measures of fit are usually used in conjunction with the χ^2 test of model fit
 - > Absolute Fit Indices (besides χ^2)
 - Parsimony-Corrected; Comparative (Incremental) Fit Indices

Chi-Square Test of Model Fit

- The Chi-Square Test of Model Fit provides a likelihood ratio test comparing the current model to the saturated (unstructured) model:
 - > The value is -2 times the difference in log-likelihoods (rescaled if MLR)
 - The degrees of freedom is the difference in the number of estimated model parameters
 - > The p-value is from the Chi-square distribution

• If this test has a significant p-value:

- The current model (H₀) is rejected the model fit is significantly worse than the full model
- > In latent variable models, this test is usually ignored
 - Said to be overly sensitive

If this test does not have a significant p-value:

> The current model (H_0) is not rejected – **fits equivalently to full model**

Where the Saturated Model Test Comes From

- The saturated model LRT comes from a likelihood ratio test of the current model with the saturated model
- If using MLR (Robust method), then this LRT is rescaled based on the estimated scaling factors of both models
- This same information can be obtained from:
 - Loglikelihood model output section
 - > anova() function comparing fit for current and saturated models

Calculating the LRT for Global Fit Test for Model 04

From the lavaan output:

Estimator	ML	Robust
Minimum Function Test Statistic	22.307	22.204
Degrees of freedom	6	6
P-value (Chi-square)	0.001	0.001
Scaling correction factor		1.005
for the Yuan-Bentler correction (Mplus	variant)	

Loglikelihood and Information Criteria:

} 5	Loglikelihood user model (H0) Scaling correction factor	-4073.253	-4073.253 1.028
L	for the MLR correction Loglikelihood unrestricted model (H1)	-4062.099	-4062.099
•	Scaling correction factor for the MLR correction		1.015

- Calculation:
 - > 14 parameters in our model; 20 in saturated model
 - > Scaling correction factor:

$$c_{LR} = \left| \frac{(q_{restricted})(c_{restricted}) - (q_{full})(c_{full})}{(q_{restricted} - q_{full})} \right| = 1.005$$
> $\chi^2 = \frac{22.307}{1.005} = 22.204$
> DF = 6

 Conclusion: this model fit significantly worse than the saturated model

And it should—especially if any of our predictors have non-zero betas

Saturated Model LRT and Loglikelihood Output

Loglikelihood and Information Criteria:

Loglikelihood user model (H0)	-4073.253	-4073.253
Scaling correction factor		1.028
for the MLR correction		
Loglikelihood unrestricted model (H1)	-4062.099	-4062.099
Scaling correction factor		1.015
for the MLR correction		

- If the loglikelihoods of the current model ("User model" or H₀) are equal to the loglikelihoods of the saturated model ("Unrestriced model" or H₁), then you are running a model that is equivalent to the saturated model
 - No other model fit will be available or useful

The fit.measures=TRUE Model Fit Statistics

Unlabeled section

> Likelihood ratio test versus the saturated model

> Testing if your model fits as well as the saturated model

Model test baseline model

> Likelihood ratio test pitting the saturated model against the independent variables model

- > Testing whether any variables have non-zero covariances (significant correlations)
- User model versus baseline model
 - > CFI
 - > TLI
- Loglikelihood and Information Criteria
 - Likelihood ratio tests (nested models)
 - > Information criteria comparisons (non-nested models)
- Root Mean Square Error of Approximation
 - > How far off a model is from the saturated model, per degree of freedom
- Standardized Root Mean Square Residual
 - \succ How far off a model's correlations are from the saturated model correlations \mathbf{v}

Model Test Baseline Model

- The "model test baseline model" section provides a LRT:
 - Comparing the saturated (unstructured) model with an independent variables model (called the baseline model)

Nodel test baseline model:		
Minimum Function Test Statistic	28.371	27.908
Degrees of freedom	7	7
P-value	0.000	0.000

- Here, the "null" model is the baseline (the independent variables model)
 - If the test is significant, this means that at least one (and likely more than one) variable has a significant covariance (and correlation)
 - If the test is not significant, this means that the independence model is appropriate
 - This is not likely to happen
 - But if it does, there are virtually no other models that will be significant

• Not often reported as it is likely variables are corrected as it is likely variables

The fit.measures=TRUE Model Fit Statistics

Unlabeled section

> Likelihood ratio test versus the saturated model

Testing if your model fits as well as the saturated model

Model test baseline model

- Likelihood ratio test pitting the saturated model against the independent variables model
 - Testing whether any variables have non-zero covariances (significant correlations)

User model versus baseline model

- > CFI
- > TLI
- Loglikelihood and Information Criteria
 - Likelihood ratio tests (nested models)
 - Information criteria comparisons (non-nested models)
- Root Mean Square Error of Approximation
 - > How far off a model is from the saturated model, per degree of freedom
- Standardized Root Mean Square Residual
 - How far off a model's correlations are from the saturated model correlations

User Model Versus Baseline Model Section

 The "User model versus baseline model" section provides two additional measures of model fit comparing the current (user) model to the baseline (independent variables) model

User model versus baseline model:

Comparative Fit Index (CFI)	0.237	0.225
Tucker-Lewis Index (TLI)	0.110	0.096

• CFI stands for Comparative Fit Index

> Higher is better (above .95 indicates good fit)

• TLI stands for Tucker Lewis Index

> Higher is better (above .95 indicates good fit)

Comparative (Incremental) Fit Indices

- Fit evaluated relative to a 'null' model (of 0 covariances)
 - > Relative to that, your model should be great!

• CFI: Comparative Fit Index

T = target (current/estimated) model N = null (baseline/independent variables) model

> Based on idea of the chi-square non-centrality parameter: $(\chi^2 - df)$

$$CFI = 1 - \frac{\max(\chi_T^2 - df_T, 0)}{\max(\chi_T^2 - df_T, \chi_N^2 - df_N, 0)}$$

> From 0 to 1: bigger is better, > .90 = "acceptable", > .95 = "good"

TLI: Tucker-Lewis Index (= Non-Normed Fit Index)

$$\succ TLI = \frac{\frac{\chi_N^2}{df_N} \frac{\chi_T^2}{df_T}}{\frac{\chi_N^2}{df_N} - 1}$$

> From <0 to >1, bigger is better, >.95 = "good"

Information Criteria Output

• The information criteria output provides relative fit statistics:

Number of free parameters	5	5
Akaike (AIC)	8156.505	8156.505
Bayesian (BIC)	8175.795	8175.795
Sample-size adjusted Bayesian (BIC)	8159.933	8159.933

- > AIC: Akaike Information Criterion
- > BIC: Bayesian Information Criterion (also called Schwarz's criterion)
- Sample-size Adjusted BIC
- These statistics weight the information given by the parameter values by the parsimony of the model (the number of model parameters)
 - > For all statistics, the smaller number is better
- The core of these statistics is -2*log-likelihood

The fit.measures=TRUE Model Fit Statistics

Unlabeled section

> Likelihood ratio test versus the saturated model

> Testing if your model fits as well as the saturated model

Model test baseline model

Likelihood ratio test pitting the saturated model against the independent variables model
 Testing whether any variables have non-zero covariances (significant correlations)

- Loglikelihood and Information Criteria
 - > Likelihood ratio tests (nested models)
 - > Information criteria comparisons (non-nested models)
- Root Mean Square Error of Approximation
 - > How far off a model is from the saturated model, per degree of freedom
- Standardized Root Mean Square Residual
 - \succ How far off a model's correlations are from the saturated model correlations \mathbf{v}

Comparing Information Criteria

Information criteria are relative tests of fit

Number of free parameters	5	5
Akaike (AIC)	8156.505	8156.505
Bayesian (BIC)	8175.795	8175.795
Sample-size adjusted Bayesian (BIC)	8159.933	8159.933

- The are calculated based on the log-likelihood of the model, factoring in a penalty for number of parameters (plus other things)
- They should never be used to compare nested models
 - > The likelihood ratio test is the most powerful test statistic to use for nested models
- When comparing non-nested models, first choose a statistic
 > AIC, BIC, or Sample-size Adjusted BIC are what are given by default
- The preferred model is the one with the lowest value of that statistic

The fit.measures=TRUE Model Fit Statistics

Unlabeled section

> Likelihood ratio test versus the saturated model

> Testing if your model fits as well as the saturated model

Model test baseline model

Likelihood ratio test pitting the saturated model against the independent variables model
 Testing whether any variables have non-zero covariances (significant correlations)

- Loglikelihood and Information Criteria
 - > Likelihood ratio tests (nested models)
 - Information criteria comparisons (non-nested models)
- Root Mean Square Error of Approximation
 - > How far off a model is from the saturated model, per degree of freedom
- Standardized Root Mean Square Residual
 - \succ How far off a model's correlations are from the saturated model correlations \checkmark

Parsimony-Corrected: RMSEA

- Root Mean Square Error of Approximation
- Uses comparison with CFA model and saturated model

> χ^2 listed here from first part of lavaan output

- Relies on a non-centrality parameter (NCP)
 - > Indexes how far off your model is $ightarrow \chi^2$ distribution shoved over
 - > NCP → d = (χ^2 df) / (N-1) Then, RMSEA = SQRT(d/df)
 - df is difference between # parameters in CFA model and saturated model
 - RMSEA ranges from 0 to 1; smaller is better
 - < .05 or .06 = "good", .05 to .08 = "acceptable", .08 to .10 = "mediocre", and >.10 = "unacceptable"
 - In addition to point estimate, get 90% confidence interval
 - RMSEA penalizes for model complexity it's discrepancy in fit per df left in model (but not sensitive to N, although CI can be)
 - > Test of "close fit": null hypothesis that RMSEA \leq .05

RMSEA (Root Mean Square Error of Approximation)

 The RMSEA is an index of model fit where 0 indicates perfect fit (smaller is better):

Root Mean Square Error of Approximation:

RMSEA		0.088	0.088
90 Percent Confidence Interval	0.051	0.129	0.051 0.128
P-value RMSEA <= 0.05		0.046	0.047

- RMSEA is based on the approximated covariance matrix
- The goal is a model with an RMSEA less than .05
 > Although there is some flexibility
- The result above indicates our model fits poorly (RMSEA of .0088)

The fit.measures=TRUE Model Fit Statistics

Unlabeled section

> Likelihood ratio test versus the saturated model

> Testing if your model fits as well as the saturated model

Model test baseline model

Likelihood ratio test pitting the saturated model against the independent variables model
 Testing whether any variables have non-zero covariances (significant correlations)

User model versus baseline model CFI TII

Loglikelihood and Information Criteria

> Likelihood ratio tests (nested models)

> Information criteria comparisons (non-nested models)

Root Mean Square Error of Approximation How far off a model is from the saturated model, per degree of freedom

Standardized Root Mean Square Residual

How far off a model's correlations are from the saturated model correlations

Standardized Root Mean Squared Residual

- The SRMR (standardized root mean square residual) provides the average standardized difference between:
 - > The estimated covariance matrix of the saturated model
 - > The estimated covariance matrix of the current model

Standardized Root Mean Square Residual:

SRMR

0.077 0.077

• Lower is better (some suggest less than 0.08)

LOCAL MODEL FIT MEASURES

"Local" Measures of Model (Mis)Fit

- Local measures of model (mis)fit are statistics that point to the location (typically of a covariance matrix) where a model may not fit well
 - > As opposed to "global" measures that indicate a model fit overall
- Local measures of model (mis)fit are typically of two types:
 - > Residual covariance matrices (unstandardized, standardized, or normalized)
 - The difference between the model's estimated covariance matrix and the saturated model's estimated covariance matrix
 - These were used for the SRMR
 - > Model "modification indices"
 - 1-degree of freedom hypothesis tests for the improvement of the model LRT if one more parameter was allowed to be estimated

Residual Covariance Matrices

- Residual covariance matrices are used to figure out how to best improve model misfit
- The "raw" or "unstandardized" residual covariance matrix for the model literally takes the difference between model implied and saturated model covariance matrices
- I often prefer "normalized" versions of these matrices

[1] "normalized"

\$cov					
\$COV	perf	use	female	cc10	fmXc10
perf	-0.016				
use	-0.021	0.000			
female	0.848	0.856	0.000		
cc10	3.916	1.591	0.000	0.000	
femXcc10	2.775	1.636	0.000	0.000	0.000
\$mean					
perf	us	se fer	nale	cc10	femXcc10
-0.078	0.03	33 0	.000	0.000	0.000

Modification Indices: More Help for Fit

- As we used Maximum Likelihood to estimate our model, another useful feature is that of the modification indices
 - Modification indices, also called Score or LaGrangian Multiplier tests, attempt to suggest the change in the log-likelihood for adding a given model parameter (larger values indicate a better fit for adding the parameter)

```
> modindices(model01.fit)
```

	lhs	ор	rhs	mi	mi.scaled	epc	<pre>sepc.lv</pre>	<pre>sepc.all</pre>	sepc.nox
2	perf	~	female	0.811	0.808	0.326	0.326	0.052	0.110
3	perf	~	cc10	15.420	15.348	0.121	0.121	0.240	0.041
4	perf	~	femXcc10	9.285	9.242	0.169	0.169	0.187	0.057
6	use	~	female	0.436	0.434	1.204	1.204	0.036	0.076
7	use	~	cc10	1.134	1.128	0.166	0.166	0.062	0.010
8	use	~	femXcc10	1.196	1.190	0.307	0.307	0.063	0.019

- <u>mi column</u>: the expected value of the LRT of the current model and a model where this parameter was added
- mi.scaled column: the scaled (robust) LRT
 - Should be bigger than 3.84 for 1 df
 - Practice is to find values that are much higher (say 10 or more)
- <u>epc column</u>: expected value of the parameter in the model where this parameter was added

ADDING PREDICTORS TO THE MODEL

Adding Predictors: Removing Zero Values from Parameters

```
#model 02: all parameters included ------
model02.syntax = "
```

```
#Means:
```

```
perf ~ 1 + (p_f)*female + (p_cc)*cc10 + (p_f_cc)*femXcc10
use ~ 1 + (u_f)*female + (u_cc)*cc10 + (u_f_cc)*femXcc10
```

```
#Variances:
```

```
perf ~~ perf
use ~~ use
```

```
#Covariance:
perf ~~ use
```

```
#Defined parameters (glht() analog in lavaan)
cc_perf_fem := p_cc + p_f_cc
cc_use_fem := u_cc + u_f_cc
```

```
....
```

```
#analysis estimation
model02.fit = sem(model02.syntax, data=data01, conditional.x=TRUE, fixed.x = TRUE, mimic = "MPLUS", estimator = "MLR")
```


First Question: Which Model "Fits" Better?

- After adding the predictors (estimating their betas) to the model, we must first ask which model fits better
- A likelihood ratio test (LRT) can be performed comparing model02 (with predictors) and model01 (without)
- Which model is the null model?
- Which model is the alternative model?
- What is the null hypothesis?
- What is the alterative hypothesis?

LRT With Scaled Chi-Squares

• R makes the scaled Chi-square LRT easy...use the anova() function and it will rescale the Chi-squares automatically

- Here we see that we reject model01 (the null model)
- So we conclude that at least one beta value was significantly different from zero

Step 2: Inspect Model Fit

Next we inspect the model fit of model02:

> summary(model02.fit, standardized=TRUE, fit.measures=TRUE) lavaan (0.5-20) converged normally after 57 iterations

Number of observations	350		
Number of missing patterns	7		
Estimator Minimum Function Test Statistic Degrees of freedom Scaling correction factor for the Yuan-Bentler correctior	ML 0.000 0 (Mplus variant)	Robust 0.000 0 NA	
Model test baseline model:			
Minimum Function Test Statistic Degrees of freedom P-value	28.371 7 0.000	27.908 7 0.000	
User model versus baseline model:			
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	1.000 1.000	1.000 1.000	
Loglikelihood and Information Crite	eria:		
Loglikelihood user model (H0) Loglikelihood unrestricted model	-4062.099 (H1) -4062.099		
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BI	11 8146.198 8188.635 C) 8153.739	8146.198 8188.635	
Root Mean Square Error of Approxima	ition:		
RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.000 0.000 0.000 1.000	0.000 0.000 1.000	0.000
Standardized Root Mean Square Resid	lual:		
SRMR	0.000	0.000	
Parameter Estimates:			
Information Standard Errors	Observed Robust.huber.white		

FP⁽

- Model02 has the same loglacksquarelikelihood as the saturated model...so it is equivalent to the saturated model
 - Therefore it fits perfectly!
 - Any path model where **all** exogenous variables predict all endogenous variables AND all covariances between endogenous variables are estimated is the saturated model

Up Next: Inspect Parameters and Make Interpretations

R	egressions:								
	-		Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all	
	perf ~								
	female	(p_f)	0.510	0.352	1.448	0.148	0.510	0.082	
		(p_cc)	0.096	0.033	2.931	0.003	0.096	0.191	
	fmXcc10 ((p_f_)	0.091	0.068	1.341	0.180	0.091	0.100	
	use ~								
	female	(u_f)	1.960	1.776	1.104	0.270	1.960	0.059	
		(u_cc)	0.192	0.200	0.961	0.337	0.192	0.072	
	fmXcc10 ((u_f_)	0.257	0.329	0.780	0.436	0.257	0.053	
_									
C	ovariances:			C			C · · · J	C	
	c		Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all	
	perf ~~		- 26-		4 000	0.055	- 26-	0 4 2 0	
	use		5.365	2.794	1.920	0.055	5.365	0.120	
т									
T	ntercepts:		[ctimeto	Ctd Emm	7				
	norf		Estimate 13.758	Std.Err 0.209	Z-value 65.944	P(> z) 0.000	Std.lv 13.758	Std.all	
	perf		51.783	1.128	45.921	0.000	51.783	4.656 3.280	
	use		51.765	1.120	43.921	0.000	51.705	5.200	
V	ariances:								
	ur funces.		Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all	
	perf		8.124	0.712	11.411	0.000	8.124	0.931	
	use		245.747	18.726	13.123	0.000	245.747	0.986	
			2.01.1	1011110	101110	01000		0.000	
D	Defined Parameters:								
			Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all	
	cc_perf_f	Fem	0.187	0.059	3.150	0.002	0.187	0.291	
ar N	cc_use_fe	em	0.449	0.261	1.720	0.086	0.449	0.125	

EPSY 905: Multivariate Linear N

New Terms: Standardized Parameters

- Standardized parameters are parameters that are transformed by dividing by one or more standard deviations
- Big-picture example: Recall the covariance to correlation formula

$$Correlation(X, Y) = \frac{Covariance(X, Y)}{SD(X) * SD(Y)}$$

- The correlation is a standardized covariance
- Standardized = units removed

Standardized Regression Parameters

- The standardized regression parameters are similar
- Take the original equation for a simple linear (one predictor) regression:

$$\beta_Y^X = \rho_{X,Y} \frac{\sigma_y}{\sigma_x}$$

> β_Y^X is interpreted as the increase in units of Y per units of X

• To standardize (std.all in lavaan), remove units:

$$b_Y^X = \beta_Y^X \left(\frac{\sigma_x}{\sigma_y}\right) = \rho_{X,Y}$$

> b_Y^X is interpreted as the increase in SDs of Y per SDs of X

 Standardized parameters are useful for comparing effects on different scales

Questions to Answer about this Model

- What is the effect of college experience on usefulness for males?
- What is the effect of college experience on usefulness for females?
- What is the difference between males and females ratings of usefulness when college experience = 10?
- How did the difference between males and females ratings change for each additional hour of college experience?

Questions to Answer about this Model

- What is the effect of college experience on performance for males?
- What is the effect of college experience on performance for females?
- What is the difference between males and females performance when college experience = 10?
- How did the difference between males and females performance change for each additional hour of college experience?

WRAPPING UP

Multivariate Linear Models with Predictors

- In this lecture we discussed the basics of multivariate linear models with predictors
 - Model specification/identification
 - Model estimation
 - > Model fit (necessary, but not sufficient)
 - Model modification and re-estimation
 - Final model parameter interpretation
- There is a lot to the analysis but what is important to remember is the over-arching principal of multivariate analyses: covariance between variables is important
 - Path models imply very specific covariance structures
 - The validity of the results hinge upon accurately finding an approximation to the covariance matrix

