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In This Lecture

• Multivariate linear models with predictors (using path 
analysis software/packages)

• Details and terminology from path analysis:
Ø Variable naming conventions
Ø Software estimation defaults (variables in/out of likelihood)
Ø Model comparisons via likelihood ratio tests
Ø Measures of absolute and approximate model fit 
Ø Model modification methods
Ø Standardized regression coefficients

• Additional issues in path analysis
Ø Variable considerations
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Today’s Data Example

• Data are simulated based on the results reported in:

Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and
self-concept beliefs in mathematical problem solving: a path
analysis. Journal of Educational Psychology, 86, 193-203.

• Sample of 350 undergraduates (229 women, 121 men)
Ø In simulation, 10% of variables were missing (using missing completely at 

random mechanism)

• Note: simulated data characteristics differ from actual data 
(some variables extend beyond their official range)

Ø Simulated using Multivariate Normal Distribution
w Some variables had boundaries that simulated data exceeded

Ø Results will not match exactly due to missing data and boundaries
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Variables of Data Example
• Sex (1 = male; 0 = female)
• Math Self-Efficacy (MSE)

Ø Reported reliability of .91
Ø Assesses math confidence of college students

• Perceived Usefulness of Mathematics (USE)
Ø Reported reliability of .93

• Math Anxiety (MAS)
Ø Reported reliability ranging from .86 to .90

• Math Self-Concept (MSC)
Ø Reported reliability of .93 to .95

• Prior Experience at High School Level (HSL)
Ø Self report of number of years of high school during which students took 

mathematics courses
• Prior Experience at College Level (CC)

Ø Self report of courses taken at college level
• Math Performance (PERF)

Ø Reported reliability of .788
Ø 18-item multiple choice instrument (total of correct responses)
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Our Destination: Overall Path Model
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The Big Picture
• Multivariate linear models are statistical methods that, when using an identity 

link, assume the variables in an analysis follow a multivariate normal distribution
Ø Mean vectors
Ø Covariance matrices

• By specifying a set of regression equations that are estimated simultaneously, a 
very specific covariance matrix is implied

• As with all multivariate models, the key to multivariate linear models is finding an 
approximation to the unstructured (saturated) covariance matrix

Ø With fewer parameters, if possible 

• The art to multivariate linear models is in specifying models that blend theory and 
statistical evidence to produce valid, generalizable results
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MULTIVARIATE LINEAR MODELS
VIA PATH ANALYSIS SOFTWARE AND PACKAGES
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Multivariate Regression
• We begin with a multivariate regression model: 

Ø Predicting mathematics performance (PERF) with female (F), college math experience 
(CC), and the interaction between female and college math experience (FxCC)

Ø Predicting perceived usefulness (USE) with female (F), college math experience (CC), 
and the interaction between female and college math experience (FxCC)

!"#$% = '(,*+,- + '-,*+,-$% + '//,*+,-00% + '-∗//,*+,-$%00% + 2%,*+,-
34"% = '(,56+ + '-,56+$% + '//,56+00% + '-∗//,56+$%00% + 2%,56+

• We denote the residual for PERF as 2%,*+,- and the residual for 
USE as 2%,56+

Ø We also assume the residuals are Multivariate Normal:
2%,*+,-
2%,56+ ∼ 89 0

0 , ;<,*+,-9 ;<,*+,-,56+
;<,*+,-,56+ ;<,56+9
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Before Continuing: We will Center CC at 10
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Types of Variables in the Analysis
• An important distinction in path analysis is between endogenous and 

exogenous variables

• Endogenous variable(s): variables whose variability is explained by 
one or more variables in a model

Ø In our example Mathematics Performance (PERF)  and Mathematics Usefulness (USE)
Ø In univariate linear regression, the dependent variable is the only endogenous variable 

in an analysis

• Exogenous variable(s): variables whose variability is not explained by 
any variables in a model 

Ø In our example Female (F), college experience (CC), and the interaction (FxCC)
Ø In linear regression, the independent variable(s) are the exogenous variables 

in the analysis
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Multivariate Linear Regression Path Diagram
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R’s Version of the Path Diagram
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Labeling Variables

• The endogenous (dependent) variables are:
Ø Performance (PERF) and Usefulness (USE)

• The exogenous (independent) variables are:
Ø Female (F), college experience (CC), and the interaction of Female and college 

experience (F*CC)
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Multivariate Regression in R Using the lavaan Package
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• A note about path analysis software: 
• Most packages put all variables into the likelihood function 

(Mplus does not)
• So, you must start with all variables in the model for LRTs

By putting 0* in front of each of the 
variables, we are allowing them to be in 
the likelihood (for model comparisons) but 
not predict either DV



Multivariate Regression Model Parameters
• Lavaan considers all five variables to be part of a multivariate normal distribution, so 

the unstructured (saturated) model has a total of 20 parameters:
Ø 5 means
Ø 5 variances
Ø 10 covariances (5-choose-2 or 5*(5-1)/2))

• The model itself has 14 parameters:
Ø 5 intercepts
Ø 0 regression slopes (but we’ll add these next)
Ø 2 residual variances
Ø 1 residual covariance
Ø 3 exogenous variances
Ø 3 exogenous covariances

• Lavaan will estimate two models for each analysis: H0 (your model) and H1 (saturated 
model)

• Degrees of DF in path models come from comparing the saturated model number of 
parameters with the parameters estimated

Ø Parameters available 20 – 14 parameters estimated = 6 df

• Therefore, this model will not fit perfectly – model fit statistics will be available
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Output from Lavaan: Summary Statement
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Note: 
No information about exogenous 
variables (from fixed.x=TRUE option)



Path Diagram with Numbers Shown
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Output from lavaan: “Fitted” and Saturated Covariance Matrix
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• The fitted covariance matrix 
shows you what the model 
implies the variances and 
covariances should be

• Here the exogenous variables 
are provided by sample 
estimates (fitted.x=TRUE)

• Model parameters provide 
the endogenous parameters

• The lower matrix is the 
saturated model matrix



Output from lavaan: Residual Covariance Matrices
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• The “raw” residuals are the 
difference between the 
model implied covariance 
matrix and the H1 (saturated 
model) covariance 
matrix/mean vector



METHODS OF EXAMINING MODEL FIT
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Methods of Model Fit
• Model-data fit is of utmost concern when building models 

with multivariate outcomes

• If a model does not fit the data:
Ø Parameter estimates may be biased
Ø Standard errors of estimates may be biased
Ø Inferences made from the model may be wrong
Ø If the saturated model fit is wrong, then the LRTs will be inaccurate

• Examining model fit is the first step in multivariate models

• That said, not all “good-fitting” models are useful…
Ø …model fit just allows you to talk about your model…there may be nothing of 

significance (statistically or practically) in your results, though
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Types of Model Fit Information
• Model fit information for models where outcomes are 

conditionally MVN* come in several types, but all are 
based on the premise that any model mean and 
covariance structure must fit as well as the saturated 
mean vector and covariance matrix model

*If model outcomes are not conditionally MVN, model fit is very different

• All possible models/structures are nested within the 
saturated mean vector and covariance matrix model

Ø Most model fit statistics come from comparing any model/structure with the 
saturated model

• Indices shown first are called “global” model fit indices
Ø Report fit of model globally (as opposed to locally for specific parameters)
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Example lavaan Model Fit Output
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The fit.measures=TRUE Model Fit Statistics
• Unlabeled section

Ø Likelihood ratio test versus the saturated model 
Ø Testing if your model fits as well as the saturated model

• Model test baseline model
Ø Likelihood ratio test pitting the saturated model against the independent variables model
Ø Testing whether any variables have non-zero covariances (significant correlations)

• User model versus baseline model
Ø CFI
Ø TLI

• Loglikelihood and Information Criteria
Ø Likelihood ratio tests (nested models)
Ø Information criteria comparisons (non-nested models)

• Root Mean Square Error of Approximation
Ø How far off a model is from the saturated model, per degree of freedom

• Standardized Root Mean Square Residual
Ø How far off a model’s correlations are from the saturated model correlations
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Indices of Global Model Fit
• Primary: obtained model χ2 (from Model test baseline model) 

– here we use the MLR rescaled χ2 from the “Robust” Column
Ø !" is evaluated based on model df (difference in parameters between your 

CFA model and the saturated model)
Ø Tests null hypothesis that this model (H0) fits equally to saturated model (H1) 

so significance is undesirable (smaller χ2, bigger p-value is better)
w Means saturated model is estimated automatically for each model analyzed

Ø Just using χ2 is insufficient, however:
w Distribution doesn’t behave like a true χ2 if sample sizes are small 

(or, if not using MLR, if items are non-normally distributed)
w Obtained χ2 depends largely on sample size 
w Some mention this is an unreasonable null hypothesis (perfect fit??)

• Because of these issues, alternative measures of fit are usually used 
in conjunction with the χ2 test of model fit

Ø Absolute Fit Indices (besides χ2)
Ø Parsimony-Corrected; Comparative (Incremental) Fit Indices
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Chi-Square Test of Model Fit
• The Chi-Square Test of Model Fit provides a likelihood ratio test 

comparing the current model to the 

saturated (unstructured) model:
Ø The value is -2 times the difference in log-likelihoods (rescaled if MLR)

Ø The degrees of freedom is the difference in the number of estimated 

model parameters

Ø The p-value is from the Chi-square distribution

• If this test has a significant p-value:
Ø The current model (!") is rejected – the model fit is significantly worse than 

the full model

Ø In latent variable models, this test is usually ignored 

w Said to be overly sensitive

• If this test does not have a significant p-value:
Ø The current model (!") is not rejected – fits equivalently to full model
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Where the Saturated Model Test Comes From
• The saturated model LRT comes from a likelihood ratio test of the 

current model with the saturated model

• If using MLR (Robust method), then this LRT is rescaled based on the 
estimated scaling factors of both models

• This same information can be obtained from:
Ø Loglikelihood model output section
Ø anova() function comparing fit for 

current and saturated models
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Calculating the LRT for Global Fit Test for Model 04
• From the lavaan output:

• Calculation:
Ø 14 parameters in our model; 20 in saturated model
Ø Scaling correction factor:

!"# =
%&'()&*+)', !&'()&*+)', − %./00 !./00

%&'()&*+)', − %./00
= 1.005

Ø 56 = 66.789
:.88; = 22.204

Ø DF = 6

• Conclusion: this model fit significantly worse than the 
saturated model

Ø And it should—especially if any of our predictors have non-zero betas
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Saturated Model LRT and Loglikelihood Output 

• If the loglikelihoods of the current model (“User model” or 
!") are equal to the loglikelihoods of the saturated model 
(“Unrestriced model” or !#), then you are running a model 
that is equivalent to the saturated model

Ø No other model fit will be available or useful

EPSY 905: Multivariate Linear Models with Predictors 29



The fit.measures=TRUE Model Fit Statistics
• Unlabeled section

Ø Likelihood ratio test versus the saturated model 
Ø Testing if your model fits as well as the saturated model

• Model test baseline model
Ø Likelihood ratio test pitting the saturated model against the independent variables model
Ø Testing whether any variables have non-zero covariances (significant correlations)

• User model versus baseline model
Ø CFI
Ø TLI

• Loglikelihood and Information Criteria
Ø Likelihood ratio tests (nested models)
Ø Information criteria comparisons (non-nested models)

• Root Mean Square Error of Approximation
Ø How far off a model is from the saturated model, per degree of freedom

• Standardized Root Mean Square Residual
Ø How far off a model’s correlations are from the saturated model correlations
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Model Test Baseline Model 
• The “model test baseline model” section provides a LRT:

Ø Comparing the saturated (unstructured) model with
an independent variables model (called the baseline model)

• Here, the “null” model is the baseline (the independent 
variables model)

Ø If the test is significant, this means that at least one (and likely more than one) 
variable has a significant covariance (and correlation)

Ø If the test is not significant, this means that the independence model is 
appropriate 

w This is not likely to happen
w But if it does, there are virtually no other models that will be significant

• Not often reported as it is likely variables are correlated
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The fit.measures=TRUE Model Fit Statistics
• Unlabeled section

Ø Likelihood ratio test versus the saturated model 
Ø Testing if your model fits as well as the saturated model

• Model test baseline model
Ø Likelihood ratio test pitting the saturated model against the independent variables model
Ø Testing whether any variables have non-zero covariances (significant correlations)

• User model versus baseline model
Ø CFI
Ø TLI

• Loglikelihood and Information Criteria
Ø Likelihood ratio tests (nested models)
Ø Information criteria comparisons (non-nested models)

• Root Mean Square Error of Approximation
Ø How far off a model is from the saturated model, per degree of freedom

• Standardized Root Mean Square Residual
Ø How far off a model’s correlations are from the saturated model correlations
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User Model Versus Baseline Model Section

• The “User model versus baseline model” section provides 
two additional measures of model fit comparing the 
current (user) model to the baseline (independent 
variables) model

• CFI stands for Comparative Fit Index
Ø Higher is better (above .95 indicates good fit)

• TLI stands for Tucker Lewis Index
Ø Higher is better (above .95 indicates good fit)
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Comparative (Incremental) Fit Indices
• Fit evaluated relative to a ‘null’ model (of 0 covariances)

Ø Relative to that, your model should be great!

• CFI: Comparative Fit Index
Ø Based on idea of the chi-square non-centrality parameter: (χ2 – df)

Ø !"# = 1 − '() *+,-./+,1
'() *+,-./+,*2, -./2,1

Ø From 0 to 1: bigger is better, > .90 = “acceptable”, > .95 = “good”

• TLI: Tucker-Lewis Index (= Non-Normed Fit Index)

Ø 34# =
52,
672

- 5+,
67+

52,
672

-8

Ø From <0 to >1, bigger is better, >.95 = “good”
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T = target (current/estimated) model

N = null (baseline/independent variables) model



Information Criteria Output

• The information criteria output provides relative fit statistics: 

Ø AIC: Akaike Information Criterion
Ø BIC: Bayesian Information Criterion (also called Schwarz’s criterion)
Ø Sample-size Adjusted BIC

• These statistics weight the information given by the parameter 
values by the parsimony of the model (the number of
model parameters)

Ø For all statistics, the smaller number is better

• The core of these statistics is -2*log-likelihood
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The fit.measures=TRUE Model Fit Statistics
• Unlabeled section

Ø Likelihood ratio test versus the saturated model 
Ø Testing if your model fits as well as the saturated model

• Model test baseline model
Ø Likelihood ratio test pitting the saturated model against the independent variables model
Ø Testing whether any variables have non-zero covariances (significant correlations)

• User model versus baseline model
Ø CFI
Ø TLI

• Loglikelihood and Information Criteria
Ø Likelihood ratio tests (nested models)
Ø Information criteria comparisons (non-nested models)

• Root Mean Square Error of Approximation
Ø How far off a model is from the saturated model, per degree of freedom

• Standardized Root Mean Square Residual
Ø How far off a model’s correlations are from the saturated model correlations
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Comparing Information Criteria
• Information criteria are relative tests of fit

• The are calculated based on the log-likelihood of the model, 
factoring in a penalty for number of parameters (plus other things)

• They should never be used to compare nested models
Ø The likelihood ratio test is the most powerful test statistic to use for nested models

• When comparing non-nested models, first choose a statistic
Ø AIC, BIC, or Sample-size Adjusted BIC are what are given by default

• The preferred model is the one with the lowest value of that statistic
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The fit.measures=TRUE Model Fit Statistics
• Unlabeled section

Ø Likelihood ratio test versus the saturated model 
Ø Testing if your model fits as well as the saturated model

• Model test baseline model
Ø Likelihood ratio test pitting the saturated model against the independent variables model
Ø Testing whether any variables have non-zero covariances (significant correlations)

• User model versus baseline model
Ø CFI
Ø TLI

• Loglikelihood and Information Criteria
Ø Likelihood ratio tests (nested models)
Ø Information criteria comparisons (non-nested models)

• Root Mean Square Error of Approximation
Ø How far off a model is from the saturated model, per degree of freedom

• Standardized Root Mean Square Residual
Ø How far off a model’s correlations are from the saturated model correlations
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Indices of Global Model Fit
Parsimony-Corrected: RMSEA
• Root Mean Square Error of Approximation
• Uses comparison with CFA model and saturated model

Ø !" listed here from first part of lavaan output

• Relies on a non-centrality parameter (NCP)
Ø Indexes how far off your model is à χ2 distribution shoved over
Ø NCP à d = (χ2 – df) / (N-1)   Then, RMSEA = SQRT(d/df)

w df is difference between # parameters in CFA model and saturated model
Ø RMSEA ranges from 0 to 1; smaller is better

w < .05 or .06 = “good”, .05 to .08 = “acceptable”, 
.08 to .10 = “mediocre”, and >.10 = “unacceptable”

Ø In addition to point estimate, get 90% confidence interval
Ø RMSEA penalizes for model complexity – it’s discrepancy in fit per df left in 

model (but not sensitive to N, although CI can be)
Ø Test of “close fit”: null hypothesis that RMSEA ≤ .05
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RMSEA (Root Mean Square Error of Approximation)
• The RMSEA is an index of model fit where 0 indicates 

perfect fit (smaller is better):

• RMSEA is based on the approximated covariance matrix

• The goal is a model with an RMSEA less than .05
Ø Although there is some flexibility

• The result above indicates our model fits poorly 
(RMSEA of .0088)
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The fit.measures=TRUE Model Fit Statistics
• Unlabeled section

Ø Likelihood ratio test versus the saturated model 
Ø Testing if your model fits as well as the saturated model

• Model test baseline model
Ø Likelihood ratio test pitting the saturated model against the independent variables model
Ø Testing whether any variables have non-zero covariances (significant correlations)

• User model versus baseline model
Ø CFI
Ø TLI

• Loglikelihood and Information Criteria
Ø Likelihood ratio tests (nested models)
Ø Information criteria comparisons (non-nested models)

• Root Mean Square Error of Approximation
Ø How far off a model is from the saturated model, per degree of freedom

• Standardized Root Mean Square Residual
Ø How far off a model’s correlations are from the saturated model correlations
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Standardized Root Mean Squared Residual

• The SRMR (standardized root mean square residual) 
provides the average standardized difference between:

Ø The estimated covariance matrix of the saturated model
Ø The estimated covariance matrix of the current model

• Lower is better (some suggest less than 0.08)
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LOCAL MODEL FIT MEASURES
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“Local” Measures of Model (Mis)Fit
• Local measures of model (mis)fit are statistics that point to 

the location (typically of a covariance matrix) where a 
model may not fit well

Ø As opposed to “global” measures that indicate a model fit overall

• Local measures of model (mis)fit are typically of two types:
Ø Residual covariance matrices (unstandardized, standardized, or normalized)

w The difference between the model’s estimated covariance matrix and the 
saturated model’s estimated covariance matrix

w These were used for the SRMR

Ø Model “modification indices” 
w 1-degree of freedom hypothesis tests for the improvement of the model LRT if one 

more parameter was allowed to be estimated
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Residual Covariance Matrices
• Residual covariance matrices are used to figure out how to 

best improve model misfit

• The “raw” or “unstandardized” residual covariance matrix 
for the model literally takes the difference between model 
implied and saturated model covariance matrices

• I often prefer “normalized” versions of these matrices
Ø We can inspect the normalized residual covariance matrix (like z-scores) to see 

where our biggest misfit occurs
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• As we used Maximum Likelihood to estimate our model, another useful 
feature is that of the modification indices

Ø Modification indices, also called Score or LaGrangian Multiplier tests, attempt to 
suggest the change in the log-likelihood for adding a given model parameter 
(larger values indicate a better fit for adding the parameter)

• mi column: the expected value of the LRT of the current model 
and a model where this parameter was added

• mi.scaled column: the scaled (robust) LRT
Ø Should be bigger than 3.84 for 1 df 
Ø Practice is to find values that are much higher (say 10 or more)

• epc column: expected value of the parameter in the model 
where this parameter was added

Modification Indices: More Help for Fit

EPSY 905: Multivariate Linear Models with Predictors 46



ADDING PREDICTORS TO THE MODEL
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Adding Predictors: Removing Zero Values from Parameters
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First Question: Which Model “Fits” Better?
• After adding the predictors (estimating their betas) to the 

model, we must first ask which model fits better

• A likelihood ratio test (LRT) can be performed comparing 
model02 (with predictors) and model01 (without)

• Which model is the null model?

• Which model is the alternative model?

• What is the null hypothesis?

• What is the alterative hypothesis?
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LRT With Scaled Chi-Squares
• R makes the scaled Chi-square LRT easy…use the anova() 

function and it will rescale the Chi-squares automatically

• Here we see that we reject model01 (the null model)
• So we conclude that at least one beta value was 

significantly different from zero
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Step 2: Inspect Model Fit
• Next we inspect the model fit of model02:
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• Model02 has the same log-
likelihood as the saturated 
model…so it is equivalent to the 
saturated model
• Therefore it fits perfectly!

• Any path model where all 
exogenous variables predict all 
endogenous variables AND all 
covariances between endogenous 
variables are estimated is the 
saturated model



Up Next: Inspect Parameters and Make Interpretations
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New Terms: Standardized Parameters
• Standardized parameters are parameters that are 

transformed by dividing by one or more standard 
deviations

• Big-picture example: Recall the covariance to correlation 
formula

Correlation(X, Y) = Covariance X, Y
SD X ∗ SD(Y)

• The correlation is a standardized covariance
• Standardized = units removed
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Standardized Regression Parameters
• The standardized regression parameters are similar

• Take the original equation for a simple linear (one 
predictor) regression:

!"# = %#,"
'(
')

Ø !"# is interpreted as the increase in units of Y per units of X

• To standardize (std.all in lavaan), remove units:

*"# = !"#
')
'(

= %#,"
Ø *"# is interpreted as the increase in SDs of Y per SDs of X

• Standardized parameters are useful for comparing effects 
on different scales
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Questions to Answer about this Model
• What is the effect of college experience on usefulness for 

males?

• What is the effect of college experience on usefulness for 
females?

• What is the difference between males and females ratings 
of usefulness when college experience = 10?

• How did the difference between males and females ratings 
change for each additional hour of college experience?
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Questions to Answer about this Model
• What is the effect of college experience on performance 

for males?

• What is the effect of college experience on performance 
for females?

• What is the difference between males and females 
performance when college experience = 10?

• How did the difference between males and females 
performance change for each additional hour of college 
experience?
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WRAPPING UP
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Multivariate Linear Models with Predictors

• In this lecture we discussed the basics of multivariate 
linear models with predictors

Ø Model specification/identification
Ø Model estimation
Ø Model fit (necessary, but not sufficient)
Ø Model modification and re-estimation
Ø Final model parameter interpretation

• There is a lot to the analysis – but what is important to 
remember is the over-arching principal of multivariate 
analyses: covariance between variables is important

Ø Path models imply very specific covariance structures
Ø The validity of the results hinge upon accurately finding an approximation to 

the covariance matrix
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