Multivariate Models: Robust Maximum Likelihood and Relative Model Fit

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #12

In This Lecture

- The version of ML used in lavaan to estimate multivariate linear models
- How that implies a scaled likelihood ratio test
- How R computes all of it for you automatically

EXAMPLE DATA SET

EPSY 905: Multivariate Models Robust ML and Relative Model Fit

Data are simulated based on the results reported in:
 Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: a path analysis. *Journal of Educational Psychology, 86*, 193-203.

Sample of 350 undergraduates (229 women, 121 men)

 In simulation, 10% of variables were missing (using missing completely at random mechanism)

- Note: simulated data characteristics differ from actual data (some variables extend beyond their official range)
 - > Simulated using Multivariate Normal Distribution
 - Some variables had boundaries that simulated data exceeded

Results will not match exactly due to missing data and boundaries KU THE UNIVERSITY OF A CONTRACT A CONTRACT OF A CONTRACT A CONT

Variables of Data Example

- Female (sex variable: 0 = male; 1 = female)
- Math Self-Efficacy (MSE)
 - Reported reliability of .91
 - > Assesses math confidence of college students
- Perceived Usefulness of Mathematics (USE)
 - Reported reliability of .93
- Math Anxiety (MAS)
 - Reported reliability ranging from .86 to .90
- Math Self-Concept (MSC)
 - Reported reliability of .93 to .95
- Prior Experience at High School Level (HSL)
 - Self report of number of years of high school during which students took mathematics courses
- Prior Experience at College Level (CC)
 - Self report of courses taken at college level
- Math Performance (PERF)
 - Reported reliability of .788
 - > 18-item multiple choice instrument (total of correct responses)

Model Notation From Last Time

• The multivariate model for PERF and USE is given by two regression models, which are estimated simultaneously:

$$PERF_{i} = \beta_{0,PERF} + e_{i,PERF}$$
$$USE_{i} = \beta_{0,USE} + e_{i,USE}$$

 As there are two variables, the error terms have a joint distribution that will be multivariate normal:

$$\begin{bmatrix} e_{i,PERF} \\ e_{i,USE} \end{bmatrix} \sim N_2 \left(\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{R} = \begin{bmatrix} \sigma_{e,PERF}^2 & \sigma_{e,PERF,USE} \\ \sigma_{e,PERF,USE} & \sigma_{e,USE}^2 \end{bmatrix} \right)$$

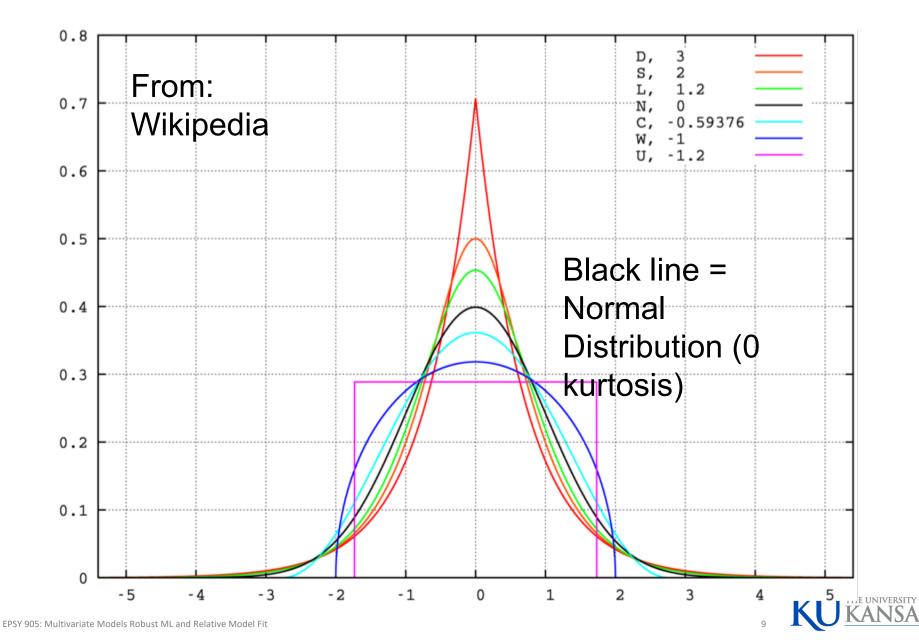
- Model 02 estimated $\sigma_{e,PERF,USE}$
- Model 03 set $\sigma_{e,PERF,USE} = 0$
- We compare these two models EPSY 905: Multivariate Models Robust ML and Relative Model Fit

ROBUST MAXIMUM LIKELIHOOD: AN ESTIMATOR EXCLUSIVE TO PATH ANALYSIS MODELING SOFTWARE

Robust Estimation: The Basics

- Robust estimation in ML still assumes the data follow a multivariate normal distribution
 - But that the data have more or less kurtosis than would otherwise be common in a normal distribution
- Kurtosis: measure of the shape of the distribution
 - From Greek word for bulging
 - Can be estimated for data (either marginally for each item or jointly across all items)
- The degree of kurtosis in a data set is related to how incorrect the log-likelihood value will be
 - > Leptokurtic data (too-fat tails): χ^2 inflated, SEs too small
 - > Platykurtic data (too-thin tails): χ^2 depressed, SEs too large

Visualizing Kurtosis



Robust ML for Non-Normality in lavaan: MLR

- Robust ML can be specified very easily in lavan:
 - > Add estimator = "MLR" to your sem() function call

#empty model estimation
model03.fit = sem(model03.syntax, data=job_data, mimic="MPLUS", fixed.x=TRUE, estimator = "MLR")

- The model parameter estimates will all be identical to those found under regular maximum likelihood
 - > And...if data are MVN then no adjustment is made (so we can use MLR for everything!)
- MLR adjusts:
 - > Model χ^2 (and associated fit statistics that use it: RMSEA, CFI, TLI) closely related to Yuan-Bentler T_2 (permits MCAR or MAR missing data)
 - Model standard errors: uses Huber-White "sandwich" estimator to adjust standard errors
 - Sandwich estimator found using information matrix of the partial first derivatives
 to correct information matrix from the partial second derivatives

- Under MLR, model fit statistics are adjusted based on an estimated scaling factor:
 - Scaling factor = 1.000
 - Perfectly MVN data
 - Scaling factor > 1.000
 - Leptokurtosis (too-fat tails; fixes too big χ^2)
 - Scaling factor < 1.000</p>
 - Platykurtosis (too-thin tails; fixes too small χ^2)
- The scaling factor will now show up in all likelihood ratio tests (deviance tests)
 - So you must add it to your calculations

Adjusted Standard Errors

- The standard errors for all parameter estimates will be different under MLR
 - Remember, these are used in Wald tests
- If the data show leptokurtosis (too-fat tails):
 - Increases information matrix
 - Fixes too small SEs
- If the data show platykurtosis (too-thin tails):
 - > Lowers values in information matrix
 - Fixes too big SEs

Data Analysis Example with MLR

- To demonstrate, we will revisit our analysis of the example data for today's class using MLR
- So far, we have estimated two models:
 - Saturated model (Model 02)
 - > Independence model (Model 03)
- We compare results of the two estimators (ML v. MLR)
- Because MLR is something does not affect our results if we have MVN data, we can be using MLR for each analysis

lavaan Output: Log-likelihoods Under ML and MLR

 Model 3 Results (Covariance = 0) Under Under N AI

	IVIL	IVILK
<pre>> summary(model03.fit, fit.measures=TRUE)</pre>		
lavaan (0.5-23.1097) converged normally after	18 iterati	ons
	Used	Total
Number of observations	348	350
Number of missing patterns	3	
Estimator	ML	Robust
Minimum Function Test Statistic	6.064	5.573
Degrees of freedom	1	1
P-value (Chi-square)	0.014	0.018
Scaling correction factor		1.088
for the Yuan-Bentler correction (Mplus va	riant)	

The actual log-likelihoods are the same

Loglikelihood and Information Criteria:

Loglikelihood user model (H0)	-2088.064	-2088.064
Scaling correction factor		1.012
for the MLR correction		
Loglikelihood unrestricted model (H1)	-2085.032	-2085.032
Scaling correction factor		1.028
for the MLR correction		

lavaan Output: Log-likelihoods Under ML and MLR

Model 2 (estimated covariance)

·	Under ML	Under MLR
Loglikelihood and Information Criteria:		
Loglikelihood user model (H0)	-2085.032	-2085.032
Loglikelihood unrestricted model (H1)	-2085.032	-2085.032
Number of free parameters	5	5
Akaike (AIC)	4180.064	4180.064
Bayesian (BIC)	4199.325	4199.325
Sample-size adjusted Bayesian (BIC)	4183.464	4183.464

• The actual log-likelihoods are the same

> But, under MLR, the log-likelihood gets re-scaled

Adding Scaling Factors to the Analysis

- The MLR-estimated scaling factors are used to rescale the loglikelihoods under LR test model comparisons
 - > Extra calculations are needed
- The rescaled LR test is given by:

$$LR_{RS} = \frac{-2(\log L_{restricted} - \log L_{full})}{c_{LR}}$$

 The denominator is found by the scaling factors (c) and number of parameters (q) in each model:

$$c_{LR} = \left| \frac{(q_{restricted})(c_{restricted}) - (q_{full})(c_{full})}{(q_{restricted} - q_{full})} \right|$$

• Sometimes c_{LR} can be negative - so take the absolute value

Model Comparison: Independence v. Saturated Model

> summary(model03.fit, fit.measures=TRUE)

lavaan (0.5-23.1097) converged normally after 18 iterations

Number of observations	Used 348	Total 350
Number of missing patterns	3	
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square) Scaling correction factor for the Yuan-Bentler correction (N	ML 6.064 1 0.014 Mplus variant)	Robust 5.573 1 0.018 1.088

Loglikelihood and Information Criteria:

Loglikelihood user model (H0)	-2088.064	-2088.064
Scaling correction factor		1.012
for the MLR correction		
Loglikelihood unrestricted model (H1)	-2085.032	-2085.032
Scaling correction factor		1.028
for the MLR correction		

- To compare the independence model against the saturated model we must first calculate the scaling factor
 - > $q_{full} = 5 -$ number of parameters in saturated model

>
$$c_{full} = 1.028 - \text{scaling factor from saturated model}$$

- > $q_{reduced} = 4 \text{number of parameters in one-factor model}$
- > $c_{reduced} = 1.012 \text{scaling factor from one-factor model}$
- The scaling factor for the LR test is then:

$$c_{LR} = \frac{4 * 1.012 - 5 * 1.028}{4 - 5} = \frac{-1.092}{-1} \approx 1.088$$

Model Comparison #1: Independence v. Saturated Model

 The next step is to calculate the re-scaled likelihood ratio test using the original log-likelihoods and the scaling factor:

$$LR_{RS} = \frac{-2(\log L_{restricted} - \log L_{full})}{C_{LR}}$$
$$= \frac{-2(-2088.064 - -2085.032)}{1.088} = 107.0225$$

• Finally, we use the rescaled LR test as we would in any other LR test- compare it to a χ^2 with df = difference in number of parameters (here 1)

Standard Errors/Wald Tests Under MLR

	Under ML					Under MLR			
Intercepts:	Estimate	Std.Err	z-value	P(> z)	Intercepts:	Estimate	Std.Err	z-value	P(> z)
perf	13.966	0.174	80.397	0.000	perf	13.966	0.174	80.397	0.000
use	52.500	0.874	60.047	0.000	use	52.500	0.874	60.047	0.000
Variances:	Estimate	Std.Err	z-value	P(> z)	Variances:	Estimate	Std.Err	z-value	P(> z)
perf	8.751	0.727	12.042	0.000	perf	8.751	0.756	11.581	0.000
use	249.201	19.519	12.767	0.000	use	249.201	19.212	12.971	0.000

 The SEs of our model under MLR are smaller than the SEs under ML

> As such, the values of the Wald tests are larger (SEs are the denominator)

MLR: The Take-Home Point

- If you feel you have continuous data that are (tenuously) normally distributed, use MLR
 - > Any time you use SEM/CFA/Path Analysis as we have to this point
 - > In general, likert-type items with 5 or more categories are treated this way
 - If data aren't/cannot be considered normal we should still use different distributional assumptions
- If data truly are MVN, then MLR doesn't adjust anything
- If data are not MVN (but are still continuous), then MLR adjusts the important inferential portions of the results

WRAPPING UP

Wrapping Up

- Today was an introduction to ML and "Robust" ML estimation for multivariate outcomes using path analysis
- These topics are important when using lavaan as there are quite a few different estimators in the package
 - > ML is not always the default