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In This Lecture...

. An introduction to matrix algebra

> Scalars, vectors, and matrices
» Basic matrix operations
> Advanced matrix operations

. An introduction to matrices in R
> Embedded within the R language
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Why Learning a Little Matrix Algebra is Important

- Matrix algebra is the alphabet of the language of statistics

> You will most likely encounter formulae with matrices very quickly

- For example, imagine you were interested in analyzing
some repeated measures data...but things don’t go as

Formulation of the Mixed Model

The previous general linear model is certainly a useful one (Sez
although you still assume normality.

The mixed model is written as
y=XB+Zy+e

where everything is the same as in the general linear model ex
Henderson (1990) and Searle, Casella, and McCulloch (1992) fi

A key assumption in the foregoing analysis is that ¥ and € are
Y| _|0
SR
Y| _|G 0
“HEE
The variance of y is, therefore, V= ZGZ' + R. You can mode
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Estimating Covariance Parameters in the Mixed Model

Estimation is more difficult in the mixed model than in the general linear model. Not only do y
(y—XB)V~'(y-XB)

However, it requires knowledge of V and, therefore, knowledge of G and R. Lacking such infc

In many situations, the best approach is to use likelihood-based methods, exploiting the ass
(REML). A favorable theoretical property of ML and REML is that they accommodate data tha

PROC MIXED constructs an objective function associated with ML or REML and maximizes i
L
2

REML: [x(G.R) =_%

ML: I(G.R}) =—=log |V[—%r’V"r—;—'log(2ﬂ)
n—p
2

1 1
log |V| - 5 log X'VoIX| - Er'V"'r— log(2m)}

where r =y — X(X'V"'X)"X'V~'y and p is the rank of X. PROC MIXED actually minimiz
analytical details for implementing a QR-decomposition approach to the problem. Wolfinger, 1
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Introduction and Motivation

- Nearly all multivariate statistical techniques are described with
matrix algebra

- When new methods are developed, the first published work typically

involves matrices
> It makes technical writing more concise —formulae are smaller

- Have you seen:
> (XTX)"1XTy
> AOAT + P

- Useful tip: matrix algebra is a great way to get out of boring
conversations and other awkward moments
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- We begin this class with some general definitions (from

dictionary.com):
> Matrix:

1. Arectangular array of numeric or algebraic quantities subject to
mathematical operations

2. The substrate on or within which a fungus grows

> Algebra:

1. A branch of mathematics in which symbols, usually letters of the alphabet,
represent numbers or members of a specified set and are used to
represent quantities and to express general relationships that hold for all
members of the set

2. A set together with a pair of binary operations defined on the set. Usually,
the set and the operations include an identity element, and the
operations are commutative or associative
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Why Learn Matrix Algebra

- Matrix algebra can seem very abstract from the
purposes of this class (and statistics in general)

. Learning matrix algebra is important for:

» Understanding how statistical methods work
+ And when to use them (or not use them)

> Understanding what statistical methods mean
» Reading and writing results from new statistical methods

- This is a first lecture of learning the language of
multivariate statistics
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DATA EXAMPLE ANDR
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A Guiding Example

- To demonstrate matrix algebra, we will make use of data

- Imagine that | collected data SAT test scores for both the
Math (SATM) and Verbal (SATV) sections of 1,000 students

- The descriptive statistics of this data set are given below:

Statistic | SATV | SATM
Mean | 499.3 | 498.3
SD 498 | 81.2
Correlation
SATV 1.00 | 0.78
SATM 0.78 1.00
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The Data...

In Excel: In R:

x -
| — SATV SATM
’Homs“ Inserl Page l Form ‘ Data‘ Revie ‘ View l Add-l‘ o @ =&
X pes 1 52@ 58e
25 — ) w1 | T v AT
2 o Al = % A B 3 ;g. 2 s  sse
Paste Font ' Alignment Number Styles @ Cells 3 469 449
Clipboard 1 ‘ [ ‘ | | Editing ‘ 4 560 530
Al v (- fe | sATV 5 430 248
4 A B | ¢ | o | e | F | 6% 6 490 538
| 1 [SATV SATM E' 7 570 cg0
2 520 580
3 520 550 8 53e 57e
4 460 440 9 498 549
2 560, 530 10 ase  a7e
6 430 440
8 570 580 12 480 510
9 530 570 13 a7e 220
10 430 540
1 450 470 14 see 520
12 510 560 15 43e 470
= s >10 16 450 390
14 470 420
15 500 520 17 5ee 4g8@
16 480 470 18 51@ See
17 450 3590 19 6l1e 638
18 500 480
20 458 419
19 510 500
20 610 630 21 4@ e
21 450 410 22 462 460
22 410 380
23 460 460
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DEFINITIONS OF MATRICES, VECTORS,
AND SCALARS

EEEEEEEEEEEEE
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- A matrix is a rectangular array of data
> Used for storing numbers

. Matrices can have unlimited dimensions

> For our purposes all matrices will have two dimensions:
+ Row
+ Columns

- Matrices are symbolized by boldface font in text, typically

with capital letters SAT Verbal  SAT Math

> Size (r rows x ¢ columns) (Column 1) (Column 2)
520 5807
X — 5?0 5?0

540 660110002
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A vector is a matrix where one dimension is equal to size 1

> Column vector: a matrix of sizer x 1
[520]

520
X1 = .

1540 1000 x 1

> Row vector: a matrix of size 1 x ¢
X1. = [520 580]1x2

Vectors are typically written in boldface font text, usually with lowercase letters

The dots in the subscripts x.; and x;. represent the dimension aggregated across
in the vector

> X1.is the first row and all columns of X

> X.q1 is the first column and all rows of X

> Sometimes the rows and columns are separated by a comma (making it possible to
read double-digits in either dimension)
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Matrix Elements

- A matrix (or vector) is composed of a set of elements
> Each element is denoted by its position in the matrix (row and column)

. For our matrix of data X (size 1000 rows and 2 columns),
each element is denoted by:
xij
> The first subscript is the index for the rows: i =1,...,r (= 1000)
> The second subscript is the index for the columns: j=1,...,c (= 2)
C X11 X12
X21 X22

X =

X1000,1  *1000,2] (1000 x 2)
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. A scalar is just a single number

- The name scalar is important: the number “scales” a
vector — it can make a vector “longer” or “shorter”

. Scalars are typically written without boldface:
xll —_ 520

. Each element of a matrix is a scalar

THE UNIVERSITY OF
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Matrix Transpose

- The transpose of a matrix is a reorganization of the matrix by
switching the indices for the rows and columns

520 580]
X — 520 550
_540 660_ (1000 x 2)
xT _ [520 520 - 540
580 550 -+ 660 (2x1000)

- An element x;; in the original matrix X is now x;j; in the
transposed matrix X7

- Transposes are used to aligh matrices for operations where
the sizes of matrices matter (such as matrix multiplication)

THE UNIVERSITY OF
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Types of Matrices

- Square Matrix: A square matrix has the same number of

rows and columns
> Correlation/covariance matrices are square matrices

- Diagonal Matrix: A diagonal matrix is a square matrix with
non-zero diagonal elements (x;; # 0 for i = j) and zeros

on the off-diagonal elements (x;; = 0 for i # j):

2.759 0 0
A=] 0 1.643 0
0 0 0.879

> We will use diagonal matrices to form correlation matrices

- Symmetric Matrix: A symmetric matrix is a square matrix
where all elements are reflected across the diagonal
(ai; = aj;)

> Correlation and covariance matrices are symmetric matrices ————
. Kl J KANSAS
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VECTORS
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EPSY 905: Matrix Algebra 17 w KANSAS




Vectors in Space...

. Vectors (row or column) can be represented as lines on a Cartesian
coordinate system (a graph)

- Consider the vectors: a = E] and b = [g]

- A graph of these vectors would be:

- Question: how would a column vector for each of our example
variables (SATM and SATV) be plotted?
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Vector Length

- The length of a vector emanating from the origin is given
by the Pythagorean formula

> This is also called the Euclidean distance between the endpoint of the vector
and the origin

Ly = \/x11 +x31 + -+ xf = x|l

. From the last slide: ||a|| = V5 = 2.24: ||b|| = V13 = 3.61

- From our data:
ISATV]|| = 15,868.138; [|SATM|| = 15,964.42

- In data: length is an analog to the standard deviation

> In mean-centered variables, the length is the square root of the sum of mean
deviations (not quite the SD, but close THE UNIVERSITY OF
not g ) KU KANSAS
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Vector Addition

- Vectors can be added together so that a new vector
is formed

- Vector addition is done element-wise, by adding each of

the respective elements together:
> The new vector has the same number of rows and columns

c=arv= [} [~ [}

> Geometrically, this creates a new vector along either of the previous two
+ Starting at the origin and ending at a new point in space

. In Data: a new variable (say, SAT total) is the result of
vector addition

SAT1oraL = X1 + X,

THE UNIVERSITY OF
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Vector Addition: Geometrically
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Vector Multiplication by Scalar

- Vectors can be multiplied by scalars
> All elements are multiplied by the scalar

d=2a=2[] =[]

. Scalar multiplication changes the length of the vector:

Idll = v/22 + 42 = V20 = 4.47

. This is where the term scalar comes from: a scalar ends up
“rescaling” (resizing) a vector

. In Data: the GLM (where X is a matrix of data) the fixed

effects (slopes) are scalars multiplying the data R
. KU KANSAS



Scalar Multiplication: Geometrically

av

scalar multipication au

u +

vactor addition vactor addition

afu + v) = auav

u+v
scalar mulipication

+
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Linear Combinations

. Addition of a set of vectors (all multiplied by scalars) is
called a linear combination:
y —_ a1X1 ~+ a2X2 + -+ akxk

- Here, y is the linear combination

» For all k vectors, the set of all possible linear combinations is called their span

> Typically not thought of in most analyses — but when working with things that
don’t exist (latent variables) becomes somewhat important

- In Data: linear combinations happen frequently:

> Linear models (i.e., Regression and ANOVA)
> Principal components analysis

THE UNIVERSITY OF
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Linear Dependencies

- A set of vectors are said to be linearly dependent if
a1X1 +aX, + -+ apXx, =0
-and-
ai, a,, ..., a; are all not zero

- Example: let’s make a new variable — SAT Total:
SATiota1 = 1 * SATV + 1 x SATM

- The new variable is linearly dependent with the others:
(1) * SATV + (1) * SATM + (—1) * SAT;yq = O

- In Data: (multi)collinearity is a linear dependency. Linear
dependencies are bad for statistical analyses that use

matrix inve rses THE UNIVERSITY OF
. KU KANSAS




Inner (Dot) Product of Vectors

- An important concept in vector geometry is that of the inner
product of two vectors

> The inner product is also called the dot product
N

a-b=a'b=ay by +ay b+ +ay by = z a;1biq
i—1

- The dot or inner product is related to the angle between
vectors and to the projection of one vector onto another

« Fromourexample:ta:-b=1%x24+2%x3 =28
- Fromourdata: x; - x, = 251,928,400

In data: the angle between vectors is related to the correlation between
variables and the projection is related to regression/ANOVA/Iintjg

EPSY 905: Matrix Algebra 26



Angle Between Vectors

- As vectors are conceptualized geometrically, the angle
between two vectors can be calculated

a-b
0,, = cos 1 ( )
lall]|bl|

- From the example:

= 0.12

6,, = cos™

(8
(=

- From our data:

251,928,400 )
J/15,868.138,/15,946.42
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In Data: Cosine Angle = Correlation

- If you have data that are:

> Placed into vectors
> Centered by the mean (subtract the mean from each observation)

. ...then the cosine of the angle between those vectors is the
correlation between the variables:

a-b Li(ay —a)(byy — D)
lla][[|bl] \/ZliV=1(ai1 _ 2y \/Zé\’:l(bu - 5)2

Tap = €0S(O4p) =

For the SAT example data (using mean centered variables):

TSATV, SATM — COS(HSATVC,SATMC)
( 3,132,223.6
= COS

=.775
1’573!956 * 2,567!0425) THE UNIVERSITY OF
. KU KANSAS




Vector Projections

. A final vector property that shows up in statistical terms
frequently is that of a projection

- The projection of a vector a onto b is the orthogonal
projection of a onto the straight line defined by b

> The projection is the “shadow” of one vector onto the other:
a-b b
“proib = p[2 ‘

A G080

- In data: linear models can be
thought of as projections
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Vector Projections Example

- To provide a bit more context for vector projections, let’s

consider the projection of mean centered SATV onto
SATM:

SATVc - SATMc

SATVCpI‘Oj SATMc — ”SATMC”Z SATMc
- The first portion turns out to be:
SATVc-SATMc 3,132,223.6

= '4’.75

|ISATMc||? = 1,573.9562

Estimate std. Error t value pr(z|tl)
(Intercept) 262.48200 6.18941 42.41 <2e-16 ¥¥¥%
satm 0.47532 0.01226 38.77 <2e-16 #¥¥*

Signif. codes: 0 “*%%’ 0.001 ‘**’ 0.01 ‘%’ 0.05 "." O.T



MATRIX ALGEBRA
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Moving from Vectors to Matrices

- A matrix can be thought of as a collection of vectors
> Matrix operations are vector operations on steroids

- Matrix algebra defines a set of operations and entities
on matrices

> | will present a version meant to mirror your previous algebra experiences

. Definitions:
> ldentity matrix
» Zero vector
» Ones vector

- Basic Operations:

> Addition

> Subtraction

> Multiplication
> “Division”

THE UNIVERSITY OF
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Matrix Addition and Subtraction

Matrix addition and subtraction are much like vector
addition/subtraction

Rules:
> Matrices must be the same size (rows and columns)

Method:

> The new matrix is constructed of element-by-element addition/subtraction of
the previous matrices

Order:

> The order of the matrices (pre- and post-) does not matter

THE UNIVERSITY OF
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Matrix Addition/Subtraction

A+B-=

EPSY 905: Matrix Algebra

ail

a2
A=
asi1

aq

a1 + b1
as + by
as1 + b3y
aq + by

a2
a2
as2
@42

ai2 + b12
azz + baa
az2 + ba2
a42 + bya

[ b bio
ba1 b2
ba1  bsz

| bgy bao

a1 — b
as — boy
asy — b3
as — by

ai2 — bi2
aze — bao
az2 — b3z
ag2 — byo
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Matrix Multiplication

- Matrix multiplication is a bit more complicated

> The new matrix may be a different size from either of the two
multiplying matrices

A(r X c)B(c xk) — C(r x k)

. Rules:

» Pre-multiplying matrix must have number of columns equal to the number of
rows of the post-multiplying matrix

- Method:

> The elements of the new matrix consist of the inner (dot) product of the row
vectors of the pre-multiplying matrix and the column vectors of the post-
multiplying matrix

- Order:

> The order of the matrices (pre- and post-) matters

THE UNIVERSITY OF
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Matrix Multiplication

AB =

EPSY 905: Matrix Algebra

ap ai2
az; a2
A —
asy as2
| @41 Q42

ay1biy + araby
az1byy + aznby
az1biy + aszabyy
ag1biy + asoby

b11

b1

a11bia + aj2bag
a1 by + azobaya
azybia + azabao
ag1b12 + agobyr

bia  bis

bao  bos

a11b13 + a12bys
az1by3 + aszobas
azi1byy + azabas
ag1b13 + asobys
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Multiplication in Statistics

- Many statistical formulae with summation can be re-expressed
with matrices

- A common matrix multlplication formis: XTX

> Diagonal elements: Y\ 1X2
> Off-diagonal elements: YN . X, Xip

. For our SAT example:

z SATV? z SATV;SATM;
XTX = '
Z SATV;SATM; z SATM?

251, 797 800 251,928, 400
~ [251,928400 254,862,700 . .. -
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Identity Matrix

- The identity matrix is a matrix that, when pre- or post-
multiplied by another matrix results in the original matrix:
Al = A
IA=A

- The identity matrix is a square matrix that has:

» Diagonal elements =1
» Off-diagonal elements =0

I(3x3) —

o O
O = O
_ O O
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. The zero vector is a column vector of zeros

0
Ozx1) = 0]
0
- When pre- or post- multiplied the result is the zero vector:
AO=0
0A=0

THE UNIVERSITY OF
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. A ones vector is a column vector of 1s:
1
1
1

1(3x1) =

- The ones vector is useful for calculating statistical terms,
such as the mean vector and the covariance matrix

THE UNIVERSITY OF
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Matrix “Division”: The Inverse Matrix

. Division from algebra:

- “Division” in matrices serves a similar role

> For square and symmetric matrices, an inverse matrix is a matrix that when
pre- or post- multiplied with another matrix produces the identity matrix:

A71A =1
AA~1l =]

. Calculation of the matrix inverse is complicated
> Even computers have a tough time

- Not all matrices can be inverted

> Non-invertible matrices are called singular matrices
+ In statistics, singular matrices are commonly caused by linear dependencies

THE UNIVERSITY OF
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The Inverse

- In data: the inverse shows up constantly in statistics

> Models which assume some type of (multivariate) normality need an inverse
covariance matrix

. Using our SAT example

> Our data matrix was size (1000 x 2), which is not invertible

> However XTX was size (2 x 2) — square, and symmetric
XTYX — [251,797,800 251,928,400
~1251,928,400 254,862,700
> The inverse is:
(XTX)"! = 3.61E —7 —3.57E—-7

—3.57E -7 3.56E -7
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Matrix Algebra Operations

. (A+B)+C= . A(B+C) = AB + AC
A+ (B+C) . (AB)T = BTAT

- A+B=B+A - For x; such that Ax; exists:

. c(A+B)=cA+cB N al

. (c+d)A=cA+dA EAXJ':AEXJ

. (A+B)T = A" + B’ I )=

 (cd)A = c(dh) ) (ax)(ax;)" =

.+ (cA)T = cAT =1

- ¢(AB) = (cA)B N

. A(BC) = (AB)C A z X;Xj | AT
j=1

IIIIIIIIIIIIIII



ADVANCED MATRIX OPERATIONS
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Advanced Matrix Functions/Operations

- We end our matrix discussion with some advanced topics
> All related to multivariate statistical analysis

- To help us throughout, let’s consider the correlation matrix

of our SAT data:
00 0.78

R= [(1):78 1.00
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- For a square matrix A with p rows/columns, the

trace is the sum of the diagonal elements:
D

trA = 2 Aii
i=1
.- For our data, the trace of the correlation matrix is 2

> For all correlation matrices, the trace is equal to the number of
variables because all diagonal elements are 1

- The trace is considered the total variance in

multivariate statistics

» Used as a target to recover when applying statistical models
KANSAS
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Matrix Determinants

- A square matrix can be characterized by a scalar value
called a determinant:

detA = |A]

Calculation of the determinant is tedious
»> Our determinant was 0.3916

The determinant is useful in statistics:

> Shows up in multivariate statistical distributions
> |Is a measure of “generalized” variance of multiple variables

If the determinant is positive, the matrix is called positive
definite = the matrix has an inverse

If the determinant is not positive, the matrix is called non-
positive definite = the matrix does not have an inverse
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WRAPPING UP
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Much Ado About Matrices...

- Matrices show up nearly anytime multivariate statistics are
used, often in the help/manual pages of the package you
intend to use for analysis

- You don’t have to do matrix algebra, but please do try to
understand the concepts underlying matrices

- Your working with multivariate statistics will be better off
because of even a small amount of understanding



