Introduction to Models for Binary Outcomes: Logistic Regression

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7a

- Models for binary outcomes: Logistic regression
- Converting parameters from logits to probability and odds
- Interpreting main effects, simple main effects, and interactions

GENERALIZED LINEAR MODELS FOR BINARY DATA: LOGISTIC REGRESSION

EPSY 905: Logistic Regression

Today's Data Example

 To help demonstrate generalized models for binary data, we borrow from an example listed on the UCLA ATS website:

https://stats.idre.ucla.edu/stata/dae/ordered-logistic-regression/

- Data come from a survey of 400 college juniors looking at factors that influence the decision to apply to graduate school:
 - Y (outcome): student rating of likelihood he/she will apply to grad school (0 = unlikely; 1 = somewhat likely; 2 = very likely)
 - We will first look at Y for two categories (0 = unlikely; 1 = somewhat or very likely) this is to introduce the topic for you Y is a binary outcome
 - You wouldn't do this in practice (use a different distribution for 3 categories)
 - > ParentEd: indicator (0/1) if one or more parent has graduate degree
 - > Public: indicator (0/1) if student attends a public university
 - > GPA: grade point average on 4 point scale (4.0 = perfect)

Analysis Variable : GPA					
N	Mean	Std Dev	Minimum	Maximum	
400	2.998925	0.3979409	1.9	4	

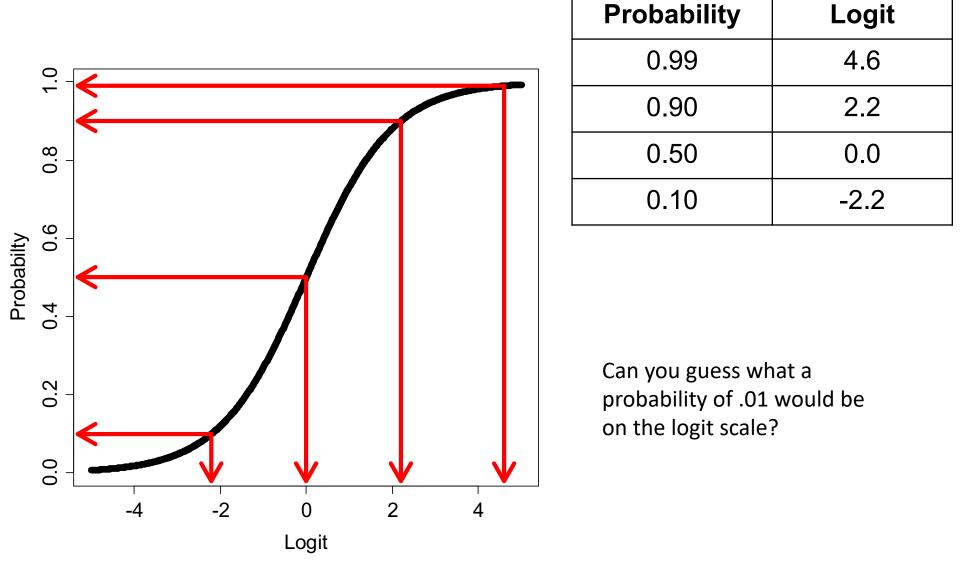
Likelihood of Applying (1 = likely)						
Lapply	Cumulative	Cumulative				
			Frequency	Percent		
0	220	55	220	55		
1	180	45	400	100		

APPLY	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
0	220	55	220	55
1	140	35	360	90
2	40	10	400	100

Parent Has Graduate Degree					
parentGD	Frequency	Percent	Cumulative	Cumulative	
			Frequency	Percent	
0	337	84.25	337	84.25	
1	63	15.75	400	100	

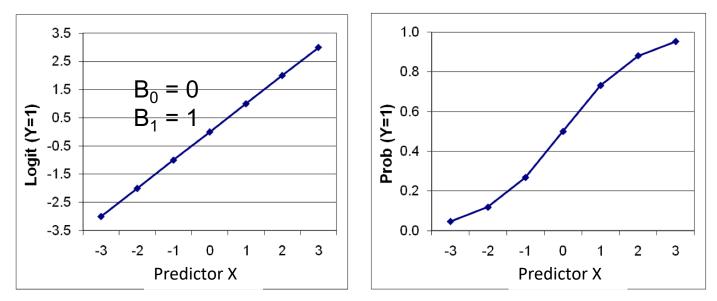
PUBLIC	Student Attends P Frequency	Percent	Cumulative	Cumulative
FODLIC	Trequency	reitent	Frequency	Percent
0	343	85.75	343	85.75
1	57	14.25	400	100

Transforming Probabilities to Logits



Nonlinearity in Prediction

- The relationship between X and the probability of response=1 is "nonlinear" → an s-shaped logistic curve whose shape and location are dictated by the estimated fixed effects
 - > Linear with respect to the logit, nonlinear with respect to probability



• The logit version of the model will be easier to explain; the probability version of the prediction will be easier to show

Putting it Together with Data: The Empty Model

• The empty model (under GLM):

where
$$e_p \sim N(0, \sigma_e^2) E(Y_p) = \beta_0$$
 and $V(Y_p) = \sigma_e^2$

• The empty model for a Bernoulli distribution with a logit link:

$$g\left(E(Y_p)\right) = logit\left(P(Y_p = 1)\right) = logit(p_p) = \beta_0$$
$$p_p = P(Y_p = 1) = E(Y_p) = g^{-1}(\beta_0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$
$$V(Y_p) = p_p(1 - p_p)$$

 $Y_n = \beta_0 + e_n$

- Note: many generalized LMs don't list an error term in the linear predictor is for the expected value and error usually has a 0 mean so it disappears
- We could have listed e_p for the logit function
 - > e_p would have a logistic distribution with a zero mean and variance $\frac{\pi^2}{3} = 3.29$
 - > Variance is fixed cannot modify variance of Bernoulli distribution after modeling the mean

Linear Predictor

LOGISTIC REGRESSION IN R

EPSY 905: Logistic Regression

The Ordinal Package

- The ordinal package is useful for modeling categorical dependent variables
- We will use the clm() function
 - > clm stands for cumulative linear models

Unpacking clm() Function Syntax

 Example syntax below for empty model differs only slightly from lm() syntax we have already seen

```
# response variable must be a factor:
data01$Lapply = factor(data01$Lapply)
```

```
# EMPTY MODEL PREDICTING DICHOTOMOUS (0/1): Likely To Apply; Modeling Prob of 1
model01 = clm(formula = Lapply ~ 1, data = data01, control = clm.control(trace = 1))
summary(model01)
```

- The dependent variable must be stored as a factor
- The formula and data arguments are identical to Im()
- The control argument is only used here to show iteration history of the ML algorithm

Empty Model Output

- The empty model is estimating one parameter: β_0
- However, for this package, the logistic regression is formed using a threshold (τ_0) rather than intercept rather

 \succ Here $\beta_0 = -\tau_0$

```
> summary(model01)
formula: Lapply ~ 1
data: data01
link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 400 -275.26 552.51 3(0) 3.31e-14 1.0e+00
Threshold coefficients:
    Estimate Std. Error z value
0|1 0.2007 0.1005 1.997
```


Interpretation of summary() Output

- $\tau_0 = 0.2007$, so...
- β₀ = -0.2007 (0.1005): interpreted as the predicted
 logit of y_p =1 for an individual when all predictors are zero
 » Because of the empty model, this becomes average logit for sample
 » Note: exp(-.2007)/(1+exp(-.2007)) = .55 the sample mean proportion
- The log-likelihood is -256.26

> Used for nested model comparisons

• The AIC is 552.51

> Used for non-nested model comparisons

Predicting Logits, Odds, & Probabilities:

<u>Coefficients for each form of the model:</u>

- > Logit: $Log(p_p/1-p_p) = \beta_0$
 - Predictor effects are **linear and additive** like in regression, but what does a 'change in the logit' mean anyway?
 - Here, we are saying the average logit is -.2007
- > Odds: $(p_p/1-p_p) = exp(\beta_0)$
 - A compromise: effects of predictors are **multiplicative**
 - Here, we are saying the average odds of a applying to grad school is exp(-.2007) = .819
- > Prob: $P(y_p=1) = \frac{exp(\beta_0)}{1 + exp(\beta_0)}$
 - Effects of predictors on probability are nonlinear and non-additive (no "one-unit change" language allowed)
 - Here, we are saying the average probability of applying to grad school is .550

ADDING PREDICTORS TO THE EMPTY MODEL

EPSY 905: Logistic Regression

Adding Predictors to the Empty Model

 Having examined how the logistic link function works and how estimation works, we can now add predictor variables to our model:

$$g(E(Y_p)) = logit(P(Y_p = 0)) = logit(p_p)$$

= $\beta_0 + \beta_1 PARED_p + \beta_2(GPA_p - 3) + \beta_3 PUBLIC_p$

$$p_p = E(Y_p) = g^{-1}(\beta_0 + \beta_1 PARED_p + \beta_2(GPA_p - 3) + \beta_3 PUBLIC_p)$$

=
$$\frac{\exp(\beta_0 + \beta_1 PARED_p + \beta_2(GPA_p - 3) + \beta_3 PUBLIC_p)}{1 + \exp(\beta_0 + \beta_1 PARED_p + \beta_2(GPA_p - 3) + \beta_3 PUBLIC_p)}$$

$$V(Y_p) = p_p(1-p_p)$$

- Here PARED is Parent Education, PUBLIC is Public University, and GPA is Grade Point Average (centered at a value of 3)
- For now, we will omit any interactions (to simplify interpretation)
- We will also use the default parameterization (modeling Y = 0)

• First...the syntax

• The algorithm iteration history:

> # MODEL 02: ADDING PREDICTORS TO THE EMPTY MODEL > model02 = clm(formula = Lapply $\sim 1 + PARED + PUBLIC + GPA3$, data = data01, control = clm.control(trace = 1)) + iter: step factor: Value: maxlgradl: Parameters: 1.000000e+00: 277.259: 2.000e+01: 0 0 0 0 0: nll reduction: 1.22751e+011: 1.000000e+00: 264.984: 5.723e-01: 0.3322 1.014 -0.1885 0.5169 nll reduction: 2.13685e-02 4.991e-03: 0.3382 1.059 -0.2005 0.5481 2: 1.000000e+00: 264.962: nll reduction: 1.17396e-06 3: 1.000000e+00: 264.962: 3.705e-07: 0.3382 1.06 -0.2006 0.5482

Question #1: Does Conditional Model Fit Better than Empty Model

• Question #1: does this model fit better than the empty model? $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ $H_1:$ At least one not equal to zero

anova(model01, model02)

> anova(model01, model02)

formula:

no.par

model01 Lapply ~ 1

model01 model02

Likelihood ratio tests of cumulative link models:

1 552.51 -275.26

model02 Lapply ~ 1 + PARED + PUBLIC + GPA3 logit flexible

AIC logLik LR.stat df Pr(>Chisq)

4 537.92 -264.96 20.586 3 0.0001283 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- Likelihood Ratio Test Statistic = Deviance = -2*(-275.26- -264.96) = 20.586
 - > -275.26 is log likelihood from empty model
 - -264.96 is log likelihood from conditional model
- DF = 4 − 1 = 3

> Parameters from empty model = 1

- Parameters from this model = 4
- P-value: p = .0001283
- Conclusion: reject H_0 ; this model is preferred to empty model

link: threshold:

logit flexible

Interpreting Model Parameters from summary()

```
> summary(model02)
• Parameter Estimates:
                                         formula: Lapply \sim 1 + PARED + PUBLIC + GPA3
                                          data:
                                                  data01
                                          link threshold nobs logLik AIC niter max.grad cond.H
                                          logit flexible 400 -264.96 537.92 3(0) 3.71e-07 1.0e+01
                                         Coefficients:
                                                Estimate Std. Error z value Pr(>|z|)
                                                            0.2974 3.563 0.000367 ***
                                                1.0596
                                         PARED
                                         PUBLIC -0.2006
                                                           0.3053 -0.657 0.511283
                                                 0.5482
                                                           0.2724 2.012 0.044178 *
                                         GPA3
                                         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                         Threshold coefficients:
                                             Estimate Std. Error z value
                                         01 0.3382
                                                         0.1187
                                                                 2.849
```

- Intercept $\beta_0 = -0.3382 \ (0.1187)$: this is the predicted value for the **logit of y_p = 1** for a person with: 3.0 GPA, parents without a graduate degree, and at a private university
 - Converted to a probability: .417 probability a student with 3.0 GPA, parents without a graduate degree, and at a private university is likely to apply to grad school (y_p = 1)

parentGD: $\beta_1 = 1.0596 (0.2974)$; p = .0004

- The change in the **logit of** $y_p = 1$ for every one-unit change in parentGD...or, the difference in the **logit of** $y_p = 1$ for students who have parents with a graduate degree
- Because logit of $y_p = 1$ means a rating of "likely to apply" this means that students who have a parent with a graduate degree are more likely to rate the item with a "likely to apply"

 The quantification of how much less likely a student is to respond with "unlikely to apply" can be done using odds ratios or probabilities:

Odds Ratios:

- Odds of "likely to apply" (Y=1) for student with parental graduate degree: $\exp(\beta_0 + \beta_1) = 2.05$
- Odds of "likely to apply" (Y=1) for student **without** parental graduate degree: $\exp(\beta_0) = .713$
- Ratio of odds = $2.88525 = \exp(\beta_1)$ meaning, a student **with** parental graduate degree has almost 3x the odds of rating "likely to apply"

Probabilities:

- Probability of "likely to apply" for student with parental graduate degree: $\frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = .673$
- Probability of "likely to apply" for student **without** parental graduate degree: $\frac{\exp(\beta_0)}{1+\exp(\beta_0)} = .416$

PUBLIC:
$$\beta_2 = -0.2006 (0.3053); p = .5113:$$

The change in the **logit of** $y_p = 1$ for every one-unit change in GPA...

But, PUBLIC is a coded variable where 0 represents a student in a private university, so this is the difference in logits of the **logit of y_p = 1** for students in public vs private universities

Because logit of 1 means a rating of "likely to apply" this means that students who are at a public university are more unlikely to rate "likely to apply"

More on Slopes

 The quantification of how much more likely a student is to respond with "likely to apply" can be done using odds ratios or probabilities:

Public	Logit	Odds of 1	Prob = 1
1	-0.539	0.583	0.368
0	-0.338	0.713	0.416

• The odds are found by: $\exp(\beta_0 + \beta_3 PUB_p)$

• The probability is found by:
$$\frac{\exp(\beta_0 + \beta_3 PUB_p)}{1 + \exp(\beta_0 + \beta_3 PUB_p)}$$

GPA3: $\beta_2 = 0.5482 (0.2724); p = .0442:$

The change in the **logit of** $y_p = 1$ for one-unit change in GPA

Because logit of $y_p = 1$ means a rating of "likely to apply" this means that students who have a higher GPA are more likely to rate "likely to apply"

More on Slopes

 The quantification of how much more likely a student is to respond with "likely to apply" can be done using odds ratios or probabilities:

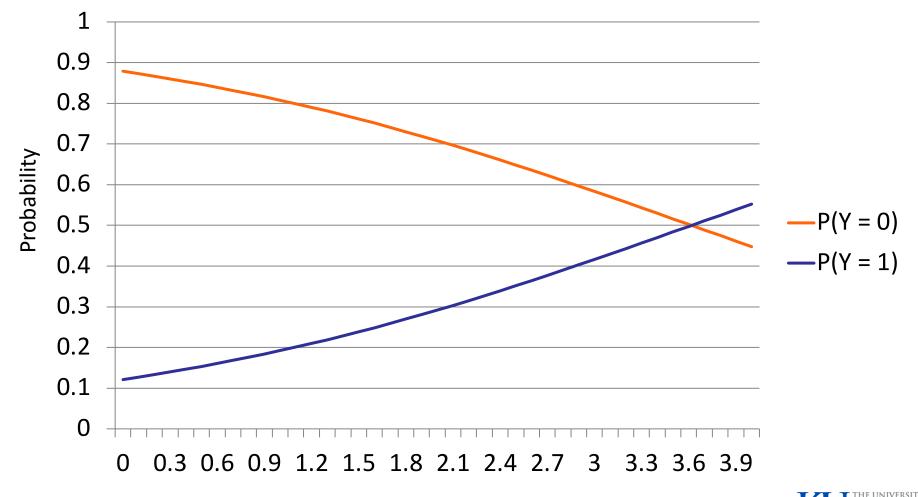
GPA3	Logit	Odds of 1	Prob = 1
1	0.210	1.234	0.552
0	-0.338	0.713	0.416
-1	-0.886	0.412	0.292
-2	-1.435	0.238	0.192

• The odds are found by: $\exp(\beta_0 + \beta_2(GPA_p - 3))$

• The probability is found by:
$$\frac{\exp(\beta_0 + \beta_2(GPA_p - 3))}{1 + \exp(\beta_0 + \beta_2(GPA_p - 3))}$$

Plotting GPA

 Because GPA is an unconditional main effect, we can plot values of it versus probabilities of rating "likely to apply"



26

Interpretation In General

 In general, the linear model interpretation that you have worked on to this point still applies for generalized models, with some nuances

For logistic models with two responses:

- Regression weights are now for LOGITS
- > The direction of what is being modeled has to be understood (Y = 0 or = 1)
- The change in odds and probability is not linear per unit change in the IV, but instead is linear with respect to the logit
 - Hence the term "linear predictor"
- Interactions will still
 - Will still modify the conditional main effects
 - Simple main effects are effects when interacting variables = 0

ADDING AND INTERPRETING INTERACTIONS

EPSY 905: Logistic Regression

Adding Interactions

• To show how interactions work in logistic models, I will add the interaction of GPA3 and PARED to the model:

MODEL 03: TESTING OUT INTERACTIONS: ADDING THE INTERACTION OF PARENTAL EDUCATION ALONG WITH GPA =======

model03 = clm(formula = LapplyF ~ 1 + PARED + PUBLIC + GPA3 + PARED*GPA3, data = data01, control = clm.control(trace = 1))

summary(model03)
anova(model02, model03)

 We can use anova() to see if the interaction provides a significant improvement in model fit:

Summary of Model Parameter Estimates

<pre>> summary(model03) formula: LapplyF ~ 1 + PARED + PUBLIC + GPA3 + PARED * GPA3 data: data01</pre>
link threshold nobs logLik AIC niter max.grad cond.H logit flexible 400 -264.45 538.91 3(0) 2.21e-07 5.9e+01
Coefficients:
Estimate Std. Error z value Pr(> z)
PARED 1.1608 0.3185 3.645 0.000268 ***
PUBLIC -0.1830 0.3044 -0.601 0.547672
GPA3 0.6567 0.2944 2.231 0.025713 *
PARED:GPA3 -0.7588 0.7566 -1.003 0.315875
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Threshold coefficients: Estimate Std. Error z value 0 1 0.3387 0.1189 2.848

Investigating Unconditional Main Effects

- Because PUBLIC is not part of the interaction, its effect applies to everyone
- Lets build some predicted values to show how it works
 - > We can use glht() like we did with lm()
- First, what is the predicted value (in logits) for someone who is:
 - > At a private university (PUBLIC=0)
 - > With no parents holding graduate degrees (PARED=0)
 - > With a GPA of 3 (GPA3=0)

Coding glht(): Remember the Threshold

$$\begin{aligned} Logit(Y_p = 1) = \\ -\tau_0 + \beta_1 PARED + \beta_2 PUBLIC + \beta_3 GPA3 + \\ \beta_4 PARED * GPA3 \end{aligned}$$

- Starting with the model above, we plug in the values for our prediction
 - > NOTE: we have to use -1 for the first spot as $\beta_0 = -\tau_0$

```
PUBLICeffect = matrix(c(-1,0,1,0,0), nrow = 1); rownames(PUBLICeffect) = "PUBLIC for GPA=3 and PARED=0"
LinearCombination = glht(model = model03, linfct = PUBLICeffect)
LinearCombinationResult = summary(LinearCombination)
LinearCombinationResult
```


Results: All in Logits

The results are all in logits (log odds of Y=1)

Simultaneous Tests for General Linear Hypotheses

```
Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

PUBLIC for GPA=3 and PARED=0 == 0 -0.5217 0.2868 -1.819 0.0689 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)
```

- This comes from the sum of $- au_0+eta_2$

Converting Logits to Probabilities

 Logits are hard to interpret, but for predictions, we can use probabilities (note: only for predictions; any differences make probabilities not useful)

```
# THIS TELLS USE THE EXPECTED LOGIT OF THE THE PROBABILITY OF APPLYING TO GRAD SCHOOL FOR A PERSON:
# IN PUBLIC UNIVERSITY, WITH NO PARENTAL GRADUATE DEGRESS, AND WITH GPA = 3 IS -.5217
# WE CAN CONVERT THIS TO PROBABILITY = .372
prob = exp(LinearCombinationResult$test$coefficients[1])/(1+exp(LinearCombinationResult$test$coefficients[1]))
prob
```

PUBLIC for GPA=3 and PARED=0 0.3724535

• We can also create the odds from this:

```
0.5935075
```


Mean Differences: Work the Same in Logits

To compare the mean difference between PUBLIC=0 and PUBLIC=1, we start with the predicted logit for PUBLIC=1

```
# FINALLY, WE CAN COMPARE THE DIFFERENCE BETWEEN THIS AND SOMEONE WHO ATTENDED A PRIVATE UNIVERSITY
# (WITH GPA=3 AND NO PARENTAL GRADUATE DEGREES)
PRIVATE of antrix(c(-1,0,0,0,0), nrow = 1); rownames(PRIVATE of GPA=3 and PARED=0"
AllEffects = rbind(PUBLIC ffect, PRIVATE of GPA=3); linearCombination = glht(model = model03, linfct = AllEffects)
LinearCombinationResult = summary(LinearCombination)
LinearCombinationResult
```

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

```
Estimate Std. Error z value Pr(>|z|)

PUBLIC for GPA=3 and PARED=0 == 0 -0.5217 0.2868 -1.819 0.13289

PRIVATE for GPA=3 and PARED=0 == 0 -0.3387 0.1189 -2.848 0.00876 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)
```

Probabilities and Odds Are Also The Same for Predictions

• As we are working with a prediction, we can do the same conversion for probabilities (and odds)

What is the odds ratio?
 Odds(Apply|PUBLIC=1)/Odds(Apply|PUBLIC=0)

```
PUBLIC
```

```
0.8327299
```

But: Probabilities Depend on Other Predictors

• Whatever difference in probabilities we observe is always conditional on the values of other predictors

> Here, we will try PARED=1 and GPA=3

```
> # NOW, THE DIFFERENCE IN PROBABILITY HAS CHANGED:
> exp(LinearCombinationResult$test$coefficients)/(1+exp(LinearCombinationResult$test$coefficients))
PUBLIC for GPA=3 and PARED=0 PRIVATE for GPA=3 and PARED=0 PUBLIC for GPA=3 and PARED=1 PRIVATE for GPA=3 and PARED=1
                    0.3724535
                                                                                0.6545427
                                                  0.4161351
                                                                                                               0.6946849
>
> # HERE IS THE DIFFERENCE IN PROBABILITY WHEN PARED=0
> exp(LinearCombinationResult$test$coefficients[2])/(1+exp(LinearCombinationResult$test$coefficients[2])) -
    exp(LinearCombinationResult$test$coefficients[1])/(1+exp(LinearCombinationResult$test$coefficients[1]))
PRIVATE for GPA=3 and PARED=0
                   0.04368161
>
> # HERE IS THE DIFFERENC IN PROBABILITY WHEN PARED=1
> exp(LinearCombinationResult$test$coefficients[4])/(1+exp(LinearCombinationResult$test$coefficients[4])) -
    exp(LinearCombinationResult$test$coefficients[3])/(1+exp(LinearCombinationResult$test$coefficients[3]))
PRIVATE for GPA=3 and PARED=1
                   0.04014214
```

Odds (not odds ratios) also depend on other predictors

> # NOW, LOOK AT THE DIFFERENCE IN ODDS: ALSO DIFFERENT

> exp(LinearCombinationResult\$test\$coefficients)

PUBLIC for GPA=3 and PARED=0 PRIVATE for GPA=3 and PARED=0PUBLIC for GPA=3 and PARED=1PRIVATE for GPA=3 and PARED=10.59350750.71272511.89471402.2753044

Odds Ratios: Stay the Same

Odds ratios are the same regardless of predictors

```
> # NOW, LOOK AT THE DIFFERENCE IN ODDS: ALSO DIFFERENT
> exp(LinearCombinationResult$test$coefficients)
PUBLIC for GPA=3 and PARED=0 PRIVATE for GPA=3 and PARED=0 PUBLIC for GPA=3 and PARED=1 PRIVATE for GPA=3 and PARED=1
0.5935075 0.7127251 1.8947140 2.2753044
> # BUT, THE ODDS RATIOS ARE NOT DIFFERENT:
> exp(LinearCombinationResult$test$coefficients[1])/exp(LinearCombinationResult$test$coefficients[2])
PUBLIC for GPA=3 and PARED=0
0.8327299
> exp(LinearCombinationResult$test$coefficients[3])/exp(LinearCombinationResult$test$coefficients[4])
PUBLIC for GPA=3 and PARED=1
0.8327299
```

Part of the reason odds ratios get used to describe effects

Interpreting the Interaction: Mean Difference

 Let's start by looking at the difference in mean logits for PARED=0 vs PARED=0 when GPA3 = 0 (GPA=3)

> This is a simple main effect

• Beginning with the model

$$\begin{aligned} Logit(Y_p = 1) = \\ -\tau_0 + \beta_1 PARED + \beta_2 PUBLIC + \beta_3 GPA3 + \\ \beta_4 PARED * GPA3 \end{aligned}$$

- The predicted logit for PARED=0 and GPA3=0: $-\tau_0 + \beta_1 PARED$
- The predicted logit for PARED=1 and GPA3=0: $-\tau_0 + \beta_1 PARED + \beta_2$
- The predicted mean logit difference:

Results

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|) DIFF IN PARED for GPA=3 == 0 0.8221 0.3021 2.722 0.0156 * PARED =0 for GPA=3 and PUBLIC=0 == 0 -0.3387 0.1189 -2.848 0.0105 * PARED =1 for GPA=3 and PUBLIC=0 == 0 1.1608 0.3185 3.645 <0.001 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)

Next: What is Difference in Slope for GPA3

- We next want to compare the difference in slope for GPA3 for PARED=0 and PARED=1
- Beginning with the model

 $\begin{aligned} Logit(Y_p = 1) = \\ -\tau_0 + \beta_1 PARED + \beta_2 PUBLIC + \beta_3 GPA3 + \\ \beta_4 PARED * GPA3 \end{aligned}$

- The slope for GPA3 when PARED=0: $\beta_3 GPA3$
- The slope for GPA3 when PARED=1: $\beta_3 GPA3 + \beta_4 GPA3 = (\beta_3 + \beta_4) GPA3$
- The slope difference:

Results

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

	Estimate	Std. Error	z value	Pr(> z)		
DIFF IN PARED for $GPA=3 == 0$	0.8221	0.3021	2.722	0.0280	*	
PARED =0 for GPA=3 and PUBLIC=0 == 0	-0.3387	0.1189	-2.848	0.0191	*	
PARED =1 for GPA=3 and PUBLIC=0 == 0	1.1608	0.3185	3.645	0.0012	**	
GPA3 effect for PARED=0 == 0	0.6567	0.2944	2.231	0.1046		
GPA3 effect for PARED=1 == 0	-0.1021	0.7045	-0.145	0.9998		
Signif. codes: 0 '***' 0.001 '**' 0	.01'*'0.	.05 '.' 0.1	''1			
(Adjusted p values reported single-step method)						

Changes in Mean Difference

- We can express the mean difference for any level of GPA
- Beginning with the model

$$\begin{aligned} Logit(Y_p = 1) = \\ -\tau_0 + \beta_1 PARED + \beta_2 PUBLIC + \beta_3 GPA3 + \\ \beta_4 PARED * GPA3 \end{aligned}$$

• The mean for PARED=0:

$$-\tau_0 + \beta_2 PUBLIC + \beta_3 GPA3$$

• The mean for PUBLIC=1:

 $-\tau_0 + \beta_1 + \beta_2 PUBLIC + (\beta_3 + \beta_4)GPA3$

• The general mean difference:

 $\beta_1 + \beta_4 GPA3$

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|) PARED =0 for GPA=3 and PUBLIC=0 == 0 -0.3387 0.1189 -2.848 0.01911 * PARED =0 for GPA=4 and PUBLIC=0 == 0 0.3180 0.3283 0.969 0.78719 DIF IN PARED FOR GPA3 == 0 0.4020 0.7098 0.566 0.96151 DIF IN PARED FOR GPA4 == 0 1.1608 0.3185 3.645 0.00115 ** DIFFERENCE IN MEANS FOR +1 GPA == 0 -0.7588 0.7566 -1.003 0.76608 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)

Results for Varying GPA3

Mean difference for PUBLIC is only significant at GPA=3

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|) PARED=1 vs 0 for GPA=0 == 0 3.4372 2.4006 1.432 0.316631 PARED=1 vs 0 for GPA=1 == 0 2.6784 1.6526 1.621 0.230373 PARED=1 vs 0 for GPA=2 == 0 1.9196 0.9186 2.090 0.089222 . PARED=1 vs 0 for GPA=3 == 0 1.1608 0.3185 3.645 0.000879 *** PARED=1 vs 0 for GPA=0 == 0 0.4020 0.7098 0.566 0.833392 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Adjusted p values reported -- single-step method)

WRAPPING UP

EPSY 905: Logistic Regression

Wrapping Up

- Generalized linear models are models for outcomes with distributions that are not necessarily normal
- The estimation process is largely the same: maximum likelihood is still the gold standard as it provides estimates with understandable properties
- Learning about each type of distribution and link takes time:
 - They all are unique and all have slightly different ways of mapping outcome data onto your model
- Logistic regression is one of the more frequently used generalized models – binary outcomes are common

