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In This Lecture...

- A short review for maximum likelihood

- Expanding your linear models knowledge to models for

outcomes that are not conditionally normally distributed
» A class of models called Generalized Linear Models

. A furthering of our Maximum Likelihood discussion: how
knowledge of distributions and likelihood functions makes
virtually any type of model possible (in theory)

- An example of generalized models for binary data using
logistic regression
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REVIEWING MAXIMUM LIKELIHOOD
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Properties of Maximum Likelihood Estimators

. Provided several assumptions (“regularity conditions”) are met,
maximum likelihood estimators have good statistical properties:

1. Asymptotic Consistency: as the sample size increases, the
estimator converges in probability to its true value

2.  Asymptotic Normality: as the sample size increases, the
distribution of the estimator is normal (with variance given by
“information” matrix)

3. Efficiency: No other estimator will have a smaller standard error

.- Because they have such nice and well understood properties, MLEs

are commonly used in statistical estimation N
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Things Involved in Maximum Likelihood Estimation

(Marginal) Likelihood/Probability Density Functions:

> The assumed distribution of one observation’s data — following some type of probability
density function that maps the sample space onto a likelihood

> The outcome can come from any distribution

(Joint) Likelihood Function:

> The combination of the marginal likelihood functions (by a product when independence of
observations is assumed)

> Serves as the basis for finding the unknown parameters that find the maximum point

Log-Likelihood Function:

> The natural log of the joint likelihood function, used to make the function easier to work
with statistically and computationally
» Typically the function used to find the unknown parameters of the model

Function Optimization (finding the maximum):

> Initial values of the unknown parameters are selected and the log likelihood is calculated

> New values are then found (typically using an efficient search mechanism like Newton
Raphson) and the log likelihood is calculated again

> If the change in log likelihoods is small, the algorithm stops (found the maximum); if not, the
algorithm continues for another iteration of new parameter guesses
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Once the Maximum Is Found...

. Distribution of the Parameters:

> As sample size gets large, the parameters of the model follow a normal
distribution (note, this is NOT the outcome)

. Standard Errors of Parameters:

» The standard errors of parameters are found by calculating the information
matrix, which results from the matrix of second derivatives evaluated at the
maximum value of the log likelihood function

» The asymptotic covariance matrix of the parameters comes from -1 times the
inverse of the information matrix (contains variances of parameters
along the diagonal)

» The standard error for each parameter is the square root of the variances

» The variances and covariances of the parameters are used in calculating linear
combinations of the parameters, as in the glht() function of the multcomp
package in R
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Once the Maximum is Found...

. Likelihood Ratio/Deviance Tests:
> -2 times the log likelihood (at the maximum) provides what is often called a deviance statistic

> Nested models are compared using differences in -2*log likelihood, which follows a Chi-Square
distribution with DF = difference in number of parameters between models

> Some software reports -2 log likelihood but some reports only the log likelihood
> Sometimes the anova() function does this test for you

- Wald Tests:

> (1 degree of freedom) Wald tests are typically formed by taking a parameter and dividing it by
its standard error

> Typically these are used to evaluate fixed effects for ML estimates of GLMs

- Information Criteria
> The information criteria are used to select from non-nested models
> The model with the lowest value on a given criterion (i.e., AIC, BIC) is the preferred model
> This is not a hypothesis test: no p-values are given
> These aren’t used when models are nested (use likelihood ratio/deviance tests)
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AN INTRODUCTION TO GENERALIZED MODELS
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A World View of Models

. Statistical models can be broadly organized as:

> General (normal outcome) vs. Generalized (not normal outcome)
» One dimension of sampling (one variance term per outcome) vs. multiple
dimensions of sampling (multiple variance terms)
+ Fixed effects only vs. mixed (fixed and random effects = multilevel)

. All models have fixed effects, and then:

» General Linear Models: conditionally normal distribution for data, fixed
effects, no random effects

> General Linear Mixed Models: conditionally normal distribution for data, fixed
and random effects

> Generalized Linear Models: any conditional distribution for data, fixed effects
through link functions, no random effects

> Generalized Linear Mixed Models: any conditional distribution for data, fixed
and random effects through link functions

“Linear” means the fixed effects predict the link-transformed DV in a linear
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Unpacking the Big Picture

Hypothesized
Causal
Process

Model:
Substantive
Theory

Observed
Outcomes
(any format)

- Substantive theory: what guides your study

- Hypothetical causal process: what the statistical model is testing
(attempting to falsify) when estimated

- Observed outcomes: what you collect and evaluate based on your theory

» Outcomes can take many forms:
+ Continuous variables (e.g., time, blood pressure, height)
+ Categorical variables (e.g., likert-type responses, ordered categories, nominal categories)

+ Combinations of continuous and categorical (e.g., either 0 or some other
continuous number)
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The Goal of Generalized Models

- Generalized models map the substantive theory onto the

sample space of the observed outcomes
> Sample space = type/range/outcomes that are possible

- The general idea is that the statistical model will not
approximate the outcome well if the assumed distribution is

not a good fit to the sample space of the outcome
> If model does not fit the outcome, the findings cannot be believed

- The key to making all of this work is the use of differing
statistical distributions for the outcome

- Generalized models allow for different distributions for
outcomes

> The mean of the distribution is still modeled by the model for the means
(the fixed effects)

> The variance of the distribution may or may not be modeled
(some distributions don’t have variance terms)
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What kind of outcome? Generalized vs. General

. Generalized Linear Models 2 General Linear Models whose
residuals follow some not-normal distribution and in which a link-
transformed Y is predicted instead of Y

- Many kinds of non-normally distributed outcomes have some kind of
generalized linear model to go with them:
» Binary (dichotomous)

> Unordered categorical (nominal) These two are often called

> Ordered categorical (ordinal) } “multinomial” inconsistently
> Counts (discrete, positive values)

» Censored (piled up and cut off at one end — left or right)

» Zero-inflated (pile of O’s, then some distribution after)

» Continuous but skewed data (pile on one end, long tail)
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Some Links/Distributions (from Wikipedia)

Common distributions with typical uses and canonical link functions

Distribution| Support of distribution Typical uses nLal::a Link function Mean function
Normal real: (—oo, -|-oo) Linear-response data Identity X3 = n=Xg
Exponential Exponential-response 1 1
real: — —
Gamma (0’ +OO) data, scale parameters ess Xﬂ H H (X'B )
Inverse Inverse -2 . —1/2
Gaussian squared XB=p H= (X'B)
count of occurrences in
Poisson integer: [O, +OO) fixed amount of Log XB=In (p,) M = €exp (Xﬂ)
time/space
Bernoulli  |integer: [O : 1] ORECOmE Of Sgle
yes/no occurrence
count of # of "yes"
Binomial integer: [O, N ] occurrences out of N
yes/no occurrences
integer: [O, K ) (Xﬂ) {
—— | Iz exp
~ |Kevector of integer: [O, 1], outcome of single K- |Logit | X3 = In (_ = =
Categorical |yyhere exactly one element way occurrence 1 —p l+exp(XB) 1+exp(—-XP)
in the vector has the value
1
count of occurrences of
L . ) different types (1 .. K)
Mul | |K-vector of integer:
uitinomia ) [0’ N] out of N total K-way
occurrences
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3 Parts of a Generalized Linear Model

. Link Function (main difference from GLM):
»> How a non-normal outcome gets transformed into something
we can predict that is more continuous (unbounded)

» For outcomes that are already normal, general linear models
are just a special case with an “identity” link function (Y * 1)

- Model for the Means (“Structural Model”):

> How predictors linearly relate to the link-transformed outcome
> New link-transformed Y, = B, + B, X, + B,Z, + B:X,Z,

- Model for the Variance (“Sampling/Stochastic Model”):
> If the errors aren’t normally distributed, then what are they?

> Family of alternative distributions at our disposal that map onto what the
distribution of errors could possibly look like
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Link Functions: How Generalized Models Work

. Generalized models work by providing a mapping of the
theoretical portion of the model (the right hand side of the

equation) to the sample space of the outcome (the left
hand side of the equation)
> The mapping is done by a feature called a link function

- The link function is a non-linear function that takes the
linear model predictors, random/latent terms, and

constants and puts them onto the space of the outcome
observed variables

. Link functions are typically expressed for the mean of the

outcome variable (we will only focus on that)
> In generalized models, the variance is often a function of the mean
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Link Functions in Practice

- The link function expresses the conditional value of the mean
of the outcome E(Yp) =Y, = u, (E stands for expectation)...

- ...through a (typically) non-linear link function g(-) (when used
on conditional mean); or its inverse g~1(-) when used on
predictors...

. ...of the observed predictors (and their regression weights):

Po + b1Xp + B2Zy + f3Xp 2y
- Meaning:

E(Yp) = Yp — Uy = 9_1(130 + p1Xp + [2Zy + B3XpZyp )

- The term By + 1 X, + B,Z, + f3X,Z,, is called the linear

predictor

> Within the function, the values are linear combinations
> Model for the means (fixed effects)
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Normal GLMs in a Generalized Model Context

Our familiar general linear model is actually a member of the generalized model

family (it is subsumed)
> The link function is called the identity, the linear predictor is unchanged

The normal distribution has two parameters, a mean u and a variance g*
> Unlike most distributions, the normal distribution parameters are directly modeled by the GLM

The expected value of an outcome from the GLM was
E(Y,) =Y, =1y, = g7 (Bo + BuXp + BaZp + BsXpZp)
= Po + b1Xp + B2y + P3X 2y,

In conditionally normal GLMs, the inverse link function is called the identity:
g~ 1(-) = 1 = (linear predictor)
> The identity does not alter the predicted values — they can be any real number
» This matches the sample space of the normal distribution —the mean can be any real number
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And...About the Variance

- The other parameter of the normal distribution described the
variance of an outcome — called the error variance

- We found that the model for the variance for the GLM was:
V(Y,) =V(Bo + BiXy + BoZ, + B3 X, Z, +e,) =V(e,) = 02

. Similarly, this term directly relates to the variance of the outcome in

the normal distribution
> We will quickly see distributions where this doesn’t happen
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GENERALIZED LINEAR MODELS
FOR BINARY DATA
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Today’s Data Example

- To help demonstrate generalized models for binary data, we borrow
from an example listed on the UCLA ATS website:

https://stats.idre.ucla.edu/stata/dae/ordered-logistic-regression/

- Data come from a survey of 400 college juniors looking at factors

that influence the decision to apply to graduate school:
> Y (outcome): student rating of likelihood he/she will apply to grad school — (0 =
unlikely; 1 = somewhat likely; 2 = very likely)

+ We will first look at Y for two categories (0 = unlikely; 1 = somewhat or very likely) - this is to
introduce the topic for you Y is a binary outcome

+ You wouldn’t do this in practice (use a different distribution for 3 categories)
> ParentEd: indicator (0/1) if one or more parent has graduate degree
> Public: indicator (0/1) if student attends a public university
> GPA: grade point average on 4 point scale (4.0 = perfect)
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Descriptive Statistics for Data

Analysis Variable : GPA
N Mean Std Dev Minimum Maximum
400 2.998925 0.3979409 1.9 4
Likelihood of Applying (1 = likely)
Lapply Frequency Percent Cumulative Cumulative
Frequency Percent
0 220 55 220 55
1 180 45 400 100
APPLY Frequency Percent Cumulative Cumulative
Frequency Percent
0 220 55 220 55
1 140 35 360 90
2 40 10 400 100
Parent Has Graduate Degree
parentGD Frequency Percent Cumulative Cumulative
Frequency Percent
0 337 84.25 337 84.25
1 63 15.75 400 100
Student Attends Public University
PUBLIC Frequency Percent Cumulative Cumulative
Frequency Percent
0 343 85.75 343 85.75
1 57 14.25 400 100
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What If We Used a Normal GLM for Binary Outcomes?

- If Y}, is a binary (0 or 1) outcome...
> Expected mean is proportion of people who have a 1 (or “p”, the probability of
Y, = 1inthe sample)
> The probability of having a 1 is what we’re trying to predict for each person,
given the values of his/her predictors

> General linear model: Y, = B, + B,x, + B,z,+ e,
+ B, = expected probability when all predictors are 0
+ Bs = expected change in probability for a one-unit change in the predictor
+ e, = difference between observed and predicted values

> Model becomes Y, = (predicted probability of 1) + e,

THE UNIVERSITY OF
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A General Linear Model Predicting Binary Outcomes?

- Butif ¥, is binary, then e, can only be 2 things:

p
> e, =Y, =Y,
+ If ¥}, = 0 then e, = (0 - predicted probability)
+ If Y}, =1then e, = (1 - predicted probability)

» The mean of errors would still be 0...by definition

> But variance of errors can’t possibly be constant over levels of X like we
assume in general linear models
+ The mean and variance of a binary outcome are dependent!
+ As shown shortly, mean = p and variance = p*(1-p), so they are tied together

+ This means that because the conditional mean of Y (p, the predicted probability
Y= 1) is dependent on X, then so is the error variance

THE UNIVERSITY OF
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A General Linear Model With Binary Outcomes?

- How can we have a linear relationship between X & Y?

. Probability of a 1 is bounded between 0 and 1, but predicted
probabilities from a linear model aren’t bounded
> Impossible values

- Linear relationship needs to ‘shut off’ somehow = made nonlinear
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3 Problems with General* Linear Models Predicting Binary Outcomes

*General = model for continuous, conditionally normal
outcome

Restricted range (e.g., 0 to 1 for binary item)

» Predictors should not be linearly related to observed outcome
- Effects of predictors need to be ‘shut off’ at some point to
keep predicted values of binary outcome within range

Variance is dependent on the mean, and not estimated

> Fixed (= predicted value) and random (error) parts are related
— So residuals can’t have constant variance

Further, residuals have a limited number of possible values

» Predicted values can each only be off in two ways
—> So residuals can’t be normally distributed
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EPSY 905: Intro to Generalized 25 KANSAS




The Binary Case: Bernoulli Distribution

For items that are binary (dichotomous/two options), a frequent distribution chosen is the
Bernoulli distribution (the Bernoulli distribution is also called a one-trial binomial distribution):

Notation: ¥, ~ B(pp) (where p is the conditional probability of a 1 for person p)

Sample Space: Y, € {0,1} (Y, can either be a0 ora 1)

Probability Density Function (PDF):

f(Yp) = (pp)yp(l - pp)l_yp

Expected value (mean) of Y: E(Y,,) = py, = p,

Variance of Y: V(Y,) = of = p,(1 - pp)

Note: p, is the only parameter — so we only need to provide a link function for it...
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Generalized Models for Binary Outcomes

- Rather than modeling the probability of a 1 directly, we need to transform it into a

more continuous variable with a link function, for example:

> We could transform probability into an odds ratio:
+ Odds ratio: (p / 1-p) =2 prob(1) / prob(0)
+ If p=.7,then Odds(1) = 2.33; Odds(0) = .429
+ Odds scale is way skewed, asymmetric, and ranges from 0 to +oo
— Nope, that’s not helpful

> Take natural log of odds ratio = called “logit” link
+ LN (p / 1-p) = Natural log of (prob(1) / prob(0))
+ If p=.7, then LN(Odds(1)) = .846; LN(Odds(0)) = -.846
+ Logit scale is now symmetric about 0 2 DING

> The logit link is one of many used for the Bernoulli distribution
+ Names of others: Probit, Log-Log, Complementary Log-Log
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Turning Probability into Logits

- Logit is a nonlinear transformation of probability:
> Equal intervals in logits are NOT equal in probability
> The logit goes from £eo and is symmetric about prob = .5 (logit = 0)
» This solves the problem of using a linear model

+ The model will be linear with respect to the logit, which translates into nonlinear
with respect to probability (i.e., it shuts off as needed)

»
- 005 0.12 0.27 0.50 073 D88 0.95
Probability: p — 11 Zero-point on
! each scale:
Prob=.5
Odds=1
Logit: l Logit =0
LN (p / 1-p) - | = '
4 2 -1 0 1 ] 3 4
logit(p)
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Transforming Probabilities to Logits

Probability Logit
° g 0.99 4.6
& 0.90 2.2
@ 0.50 0.0
0.10 -2.2
=
s €
a S
o
~ Can you guess what a
o] probability of .01 would be
2 on the logit scale?
g | I I Y IV I v
4 2 0 2 4
Logit
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Transforming Logits to Probabilities: g(-) and g~ 1(*)

- In the terminology of generalized models, the link function for a logit
is defined by (log = natural logarithm):

P(Y, =1
g (E(Yp)) = log <(1 —(PZ(DYP :)1))> =l,30 + 1 Xp + :fzzp + ﬁ3Xpr'

| Linear Predictor |

. A logit can be translated to a probability with some algebra:

exp |log P = 1) = exp|Bo + B1Xp + B2Zp + B3 XpZyp|
(1-P(v, = 1))

P(Yp =1)
1-P(Y,=1)

o (1-pP(r, =1)) l( )] = (expBo + BuiXp + BaZp + B3XpZp]) (1 — P(¥, = 1))

IIIIIIIIIIIIIII
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Transforming Logits to Probabilities: g(-) and g~ 1(*)

- Continuing:

P(Yp = 1) = (exp[Bo + BiXp + B2Zp + BsXpZy]) — ((exp[Bo + BiXp + BaZp + B3XpZp|)P(¥p = 1))
P(Y, = 1)(1 — exp|Bo + P1Xp + B2Zp + B3XpZp|) = exp|Bo + B1Xp + B2Zp + B3 XpZy|

- Which finally gives us:
1) = exp(Bo + P1Xp + BaZy + B3XpZ))

P(Y,=1) =
1+ eXp(,BO + ,BlXp + ﬁZZp + ﬁgXpr)

p =

Linear Predictor

. Therefore, the inverse logit (un-logit...or g~1(¥)) is:
E(Yp) = 9_1(:30 + 1 Xy + oy + 'B3szp)
_ exp(ﬁo + [1Xp + B2Zp + BBXpr)
1+ exp(Bo + B1Xp + BaZy + B3XpZy)
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Written Another Way...

. The inverse logit g~1(-) has another form that is sometimes used:
E(Y,) =9 Y By + B1Xp + B2Zp + B3XyZ,)
D Y 0 14p 24 34p“p

_ eXp(IBO + ,81Xp + IBZZp + ,BBXpr)
1+ eXp(,BO + ﬂlXp + ﬁZZp + ,B3szp)

1
1+exp (—(ﬁo + B1 Xy + BoZy + ﬁgxpzp))

_ (1 + exp (_(ﬁo + B Xy, + BrZy, + ﬁgxpzp)))-l

llllllllllllll
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Nonlinearity in Prediction

- The relationship between X and the probability of response=1
is “nonlinear” = an s-shaped logistic curve whose shape and
location are dictated by the estimated fixed effects

> Linear with respect to the logit, nonlinear with respect to probability

35 - 1.0

25 a //
0.8
15 B0 =0 /
T 05 B, = 1/./ =06 /
> >
= 05 / 73' 0.4
g -1.5 / £ /
0.2
25 17 //
'3.5 T T T T T T 0.0 ) T T T T ! T
3 2 41 0 1 2 3 3 2 1 0 1 2 3
Predictor X Predictor X

- The logit version of the model will be easier to explain; the
probability version of the prediction will be easier to show
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Putting it Together with Data: The Empty Model

- The empty model (under GLM):
Yp — ﬂo ~+ ep
where e, ~ N(0,02) E(Y,) = By and V(Y,) = o7

Linear Predictor

- The empty model for a Bernoulli distribution with a logit link:
g (E(Yp)) = logit (P(Yp = 1)) = logit(pp) = Bo
_ exp(Bo)
Dp = P(Yp = 1) = E(Yp) =g 1(180) — T expgﬁo)
V(Y) =pp(1—pp)

Note: many generalized LMs don’t list an error term in the linear predictor — is for
the expected value and error usually has a 0 mean so it disappears

- We could have listed e, for the logit function

2
> e, would have a logistic distribution with a zero mean and variance % = 3.29

» Variance is fixed — cannot modify variance of Bernoulli distribution after modeling the mean
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LOGISTIC REGRESSION IN R
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The Ordinal Package

- The ordinal package is useful for modeling categorical
dependent variables

- We will use the cIm() function
> clm stands for cumulative linear models
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Unpacking clm() Function Syntax

- Example syntax below for empty model differs only slightly
from Im() syntax we have already seen

# response variable must be a factor:
data@l$Lapply = factor(data@l$Lapply)

# EMPTY MODEL PREDICTING DICHOTOMOUS (@/1): Likely To Apply; Modeling Prob of 1
model@l = clm(formula = Lapply ~ 1, data = data@l, control = clm.control(trace = 1))
summary(model@lj

- The dependent variable must be stored as a factor
- The formula and data arguments are identical to Im()

- The control argument is only used here to show iteration
history of the ML algorithm
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Empty Model Output

- The empty model is estimating one parameter: 5,

- However, for this package, the logistic regression is formed

using a threshold (7,) rather than intercept rather
> Here By = —1,

> summary(model@1)
formula: Lapply ~ 1
data: data@l

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 400 -275.26 552.51 3(0) 3.31le-14 1.0e+00

Threshold coefficients:
Estimate Std. Error z value
211 0.2007 0.1005 1.997
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Interpretation of summary() Output

- 7o = 0.2007, so...
. ,BO —

—0.2007 (0.1005): interpreted as the predicted

logit of y, =1 for an individual when all predictors are zero

» Because of the empty model, this becomes average logit for sample

> Note: exp(-.2007)/(1+exp(-.2007)) = .55 — the sample mean proportion

- The log-likelihood is -256.26

> Used for nested model comparisons

- The AICis 552.51

» Used for non-nested model comparisons

EPSY 905: Intro to Generalized
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Predicting Logits, Odds, & Probabilities:

. Coefficients for each form of the model:

> Logit: Log(p,/1-p,) = B,
+ Predictor effects are linear and additive like in regression,
but what does a ‘change in the logit’ mean anyway?

+ Here, we are saying the average logit is -.2007

> 0dds: (p,/1-p,) = exp(B,)
+ A compromise: effects of predictors are multiplicative

+ Here, we are saying the average odds of a applying to grad school
is exp(-.2007) = .819

> Prob: P(y,=1)=exp(B)

1+ exp(B,)
+ Effects of predictors on probability are nonlinear and
non-additive (no “one-unit change” language allowed)

+ Here, we are saying the average probability of applying to grad school is .550
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MAXIMUM LIKELIHOOD ESTIMATION OF
GENERALIZED MODELS
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Maximum Likelihood Estimation of Generalized Models

- The process of ML estimation in Generalized Models is

similar to that from the GLM, with two exceptions:

> The error variance is not estimated

> The fixed effects do not have closed form equations (so are now part of the
log likelihood function search)

- We will describe this process for the previous analysis,
using our grid search

- Here, each observation has a Bernoulli distribution where
the “height” of the curve is given by the PDF:

f(Yp) = (pp)yp(l ~ pp)l_yp

- The generalized linear model then models

exp(Bo)
E(Y..) = =
() =pr =13 exp(Bo) | KURANGA:
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From One Observation...To The Sample

. The likelihood function shown previously was for one

observation, but we will be working with a sample

» Assuming the sample observations are independent and identically
distributed, we can form the joint distribution of the sample

Multiplication comes from independence assumption:
Here,L(B0|Yp)is the Bernoulli PDF for Y,, using a logit link for 3,

L(.301|VY1» s Yyy) = L(Bo Y1) XL(Bo|Y2) X -+ XL(By|Yy)

N
= _f(yp) = Hp;p(l — pp)l_yp
p=1

p=1
B (o0 ) - (ot )
b1 1 + exp(fo) 1+ exp(fBo)

THE UNIVERSITY OF
EPSY 905: Intro to Generalized 43 KANSAS




The Log Likelihood Function

- The log likelihood function is found by taking the natural
log of the likelihood function:

108}6(.30|Y1r s Yy) = loglgL(,BoWﬂXL(ﬁoWz)x "'XL(.30|YN))

= D, os (1(5a1%)) = D, [ 1 =) ]

z Yplog(pp) + (1 — ;) log(1 - p)

— i ( exp(ﬁO) > + (1 Y )log <1 I eXp(ﬁO) )
£ PP\ T + exp(Bo) P 1+ exp(Bo)
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Grid Search of the Log Likelihood Function

. Just like we did for the normal distribution, we can plot the
log likelihood function for all possible values of (5,

O r— 77—+ 71+ 1+ —1®—1®—1 1 1 1 7 1T ~“"° 7T "7 "1 1T ‘1T
H NN ONTONNNAO A NN INON QO
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Iteration History from cim()

- We can show the history of iterations, where the “value”
column is -1 times the log-likelihood

> model@l = clm(formula = Lapply ~ 1, data = data@l, control = clm.control(trace = 1))
iter: step factor: Value: max|gradl : Parameters:
0: 1.000000e+00: 277.259: 2.000e+01: 0
nll reduction: 2.00332e+00
1: 1.000000e+00: 275.256: 6.640e-02: 0.2
nll reduction: 2.22672e-05
2: 1.000000e+00: 275.256: 2.222e-06: 0.2007
nll reduction: -5.68434e-14
3: 1.000000e+00: 275.256: 3.308e-14: 0.2007
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At the Maximum...

. At the maximum (5, = —0.2007) we now assume that the

parameter 55 has a normal distribution
» Only the data Y have a Bernoulli distribution

. Putting this into statistical context:

Bo ~ N (Bo»se(/?o)z)

- This says that the true parameter 5, has a mean at our
estimate and has a variance equal to the square of the
standard error of our estimate
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ADDING PREDICTORS TO THE EMPTY MODEL
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Adding Predictors to the Empty Model

- Having examined how the logistic link function works and how
estimation works, we can now add predictor variables to our model:

g (E(Y,)) = logit (P(¥, = 0)) = logit(p,)
= By + BLPARED, + B,(GPA, — 3) + B3 PUBLIC,

p, = E(Y,) = g7 *(Bo + BPARED, + B,(GPA, — 3) + B3 PUBLIC,)
_ exp(Bo + B1PARED,, + B,(GPA, — 3) + B3 PUBLIC,)
1+ exp(Bo + BLPARED, + B,(GPA, — 3) + B;PUBLIC,)

V(Yp) = pp(l — pp)
- Here PARED is Parent Education, PUBLIC is Public University, and
GPA is Grade Point Average (centered at a value of 3)

- For now, we will omit any interactions (to simplify interpretation)
- We will also use the default parameterization (modelingY=0)
KANSAS
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Understanding R Input and Output

. First...the syntax

# MODEL ©2: ADDING PREDICTORS TO THE EMPTY MODEL
model@2 = clm(formula = Lapply ~ 1 + PARED + PUBLIC + GPA3,
data = data@l, control = clm.control(trace = 1))

- The algorithm iteration history:

> # MODEL ©2: ADDING PREDICTORS TO THE EMPTY MODEL
> model@2 = clm(formula = Lapply ~ 1 + PARED + PUBLIC + GPA3,
- data = data@l, control = clm.control(trace = 1))
iter: step factor: Value: maxlgradl:  Parameters:
0: 1.000000e+00: 277.259: 2.000e+01: 0 0 0 0
nll reduction: 1.22751e+01
1: 1.000000e+00: 264.984: 5.723e-01: 0.3322 1.014 -0.1885 0.5169
nll reduction: 2.13685e-02
2: 1.000000e+00: 264.962: 4.991e-03: 0.3382 1.059 -0.2005 0.5481
nll reduction: 1.17396e-06
3: 1.000000e+00: 264.962: 3.705e-07: 0.3382 1.06 -0.2006 0.5482
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Question #1: Does Conditional Model Fit Better than Empty Model

- Question #1: does this model fit better than the empty model?
Hy:py =B, =p3=0
H;: At least one not equal to zero

anova(model@1, model@2)
Likelihood Ratio Test Statistic = Deviance =

-2*(-275.26- -264.96) = 20.586

> -275.26 is log likelihood from empty model
> -264.96 is log likelihood from conditional model

> anova(model@l, model@2)
Likelihood ratio tests of cumulative link models:

DF=4-1=3
> Parameters from empty model =1
» Parameters from this model = 4

formula: link: threshold:
model@l1 Lapply ~ 1 logit flexible
model@2 Lapply ~ 1 + PARED + PUBLIC + GPA3 logit flexible

no.par AIC 1loglLik LR.stat df Pr(>Chisq)

mode101 1 552.51 -275.26
model02 4 537.92 -264.96 20.586 3 0.0001283 ***
. P'Value: p = 0001283 Signif. codes: 0 “***’ 0.001 “**’ 0.01 “** 0.05 .’ 0.1 ¢ * 1

Conclusion: reject Hy; this model is preferred to empty model
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Interpreting Model Parameters from summaryy()

- Parameter Estimates:

> summary(model@2)
formula: Lapply ~ 1 + PARED + PUBLIC + GPA3
data: data0l

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 400 -264.96 537.92 3(0) 3.71e-07 1.0e+01

Coefficients:
Estimate Std. Error z value Pr(>lzl)

PARED 1.0596 0.2974 3.563 0.000367 ***
PUBLIC -0.2006 0.3053 -0.657 0.511283
0.5482 0.2724 2.012 0.044178 *

GPA3

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 “* ’ 1
Threshold coefficients:
Estimate Std. Error z value

011 0.3382 0.1187 2.849

. Intercept 5y = —0.3382 (0.1187): this is the predicted
value for the logit of y, = 1 for a person with: 3.0 GPA,
parents without a graduate degree, and at a private

university

» Converted to a probability: .417 — probability a student with 3.0 GPA, parents
without a graduate degree, and at a private university is likely to apply to grad

school (y, = 1)

EPSY 905: Intro to Generalized
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Interpreting Model Parameters

parentGD: f; = 1.0596 (0.2974); p = .0004

The change in the logit of y, = 1 for every one-unit change in
parentGD...or, the difference in the logit of y, = 1 for
students who have parents with a graduate degree

Because logit of y, = 1 means a rating of “likely to apply” this
means that students who have a parent with a graduate
degree are more likely to rate the item with a “likely to

apply”
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More on Slopes

- The quantification of how much less likely a student is to respond with
“unlikely to apply” can be done using odds ratios or probabilities:

Odds Ratios:

- Odds of “likely to apply” (Y=1) for student with parental graduate degree:
eXp(,BO + ﬁl) = 2.05

- Odds of “likely to apply” (Y=1) for student without parental graduate
degree: exp(f,) = .713

- Ratio of odds = 2.88525 = exp(f3;) - meaning, a student with parental
graduate degree has almost 3x the odds of rating “likely to apply”

Probabilities:

- Probability of “likely to apply” for student with parental graduate degree:
eXp(ﬁO"‘Bl) — 673

1+exp(Bo+P1)
- Probability of “likely to apply” for student without parental graduate

. exp(Bo) _
degree: Trexp(B) 416
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Interpreting Model Parameters

PUBLIC: B, = —0.2006 (0.3053); p = .5113:

The change in the logit of y, = 1 for every one-unit change in
GPA...

But, PUBLIC is a coded variable where 0 represents a student
in a private university, so this is the difference in logits of the
logit of y, = 1 for students in public vs private universities

Because logit of 1 means a rating of “likely to apply” this

means that students who are at a public university are more
unlikely to rate “likely to apply”
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More on Slopes

- The quantification of how much more likely a student is to
respond with “likely to apply” can be done using odds

ratios or probabilities:
Public Logit Odds of 1 Prob=1
1 -0.539 0.583 0.368
0 -0.338 0.713 0.416

- The odds are found by: exp(,BO + ,83PUBp)

exp(Bo+B3PUBy)
1+exp(Bo+P3PUBy)

- The probability is found by:
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Interpreting Model Parameters

GPA3: £, = 0.5482 (0.2724); p = .0442:
The change in the logit of y, = 1 for one-unit change in GPA

Because logit of y, = 1 means a rating of “likely to apply” this
means that students who have a higher GPA are more likely
to rate “likely to apply”
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More on Slopes

- The quantification of how much more likely a student is to
respond with “likely to apply” can be done using odds

ratios or probabilities:
GPA3 Logit Odds of 1 Prob=1
1 0.210 1.234 0.552
0 -0.338 0.713 0.416
-1 -0.886 0.412 0.292
-2 -1.435 0.238 0.192

- The odds are found by: exp (,80 + 5 (GPAp — 3))

exp(,BO +B2(GPA, —3))
1+exp(ﬁ0 +5 (GPAp—B)) EEEEEEEEEEE .

- The probability is found by:
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Plotting GPA

- Because GPA is an unconditional main effect, we can plot
values of it versus probabilities of rating “likely to apply”

1

0.9

0.8
0.7

—
—
0.6 T~
0.5 P(Y=0)
0.4 >< P(Y=1)
/
/
P——

Probability

0.3
0.2
0.1

O L D D e e e e e e

0O 030609121518 212427 3 33 3.6 3.9

G PA THE UNIVERSITY OF
EPSY 905: Intro to Generalized 59 KANSAS




Interpretation In General

. In general, the linear model interpretation that you have
worked on to this point still applies for generalized models,
with some nuances

. For logistic models with two responses:

> Regression weights are now for LOGITS
> The direction of what is being modeled has to be understood (Y =0or=1)
» The change in odds and probability is not linear per unit change in the IV, but
instead is linear with respect to the logit
+ Hence the term “linear predictor”

> Interactions will still

+ Will still modify the conditional main effects
+ Simple main effects are effects when interacting variables =0
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WRAPPING UP
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Wrapping Up

. Generalized linear models are models for outcomes with
distributions that are not necessarily normal

- The estimation process is largely the same: maximum
likelihood is still the gold standard as it provides estimates
with understandable properties

. Learning about each type of distribution and link takes
time:

> They all are unique and all have slightly different ways of mapping outcome
data onto your model

. Logistic regression is one of the more frequently used
generalized models — binary outcomes are common
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