
Simple, Marginal, and Interaction 
Effects in General Linear Models

EPSY 905: Fundamentals of Multivariate Modeling
Online Lecture #3
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Today’s Class

• Centering and Coding Predictors

• Interpreting Parameters in the Model for the Means

• Main Effects Within Interactions

• GLM Example 1: “Regression” vs. “ANOVA”
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Today’s Example: GLM as “Regression” vs. “ANOVA”

• Study examining effect of new instruction method (where New: 0=Old, 1=New) on test 
performance (% correct) in college freshmen vs. seniors (where Senior: 0=Freshmen, 
1=Senior), n = 25 per group

• !"#$% = '( + '*+",-./% + '01"2% + '3+",-./%1"2% + "%
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Test Mean 
(SD), 45 = 67

8

Freshmen Seniors Marginal
(Mean)

Old Method 80.20 
(2.60),[0.52]

82.36 
(2.92),[0.59]

81.28 
(2.95),[0.42]

New Method 87.96 
(2.24),[0.45]

87.08 
(2.90),[0.58]

87.52 
(2.60),[0.37]

Marginal
(Mean)

84.08 
(4.60),[0.65]

84.72
(3.74),[0.53]

84.40 
(4.18),[0.42]



CENTERING AND CODING PREDICTORS

Interactions



The Two Sides of a Model

!" = $% + $'(" + $)*" + $+("*" + ,"

• Model for the Means (Predicted Values):
• Each person’s expected (predicted) outcome is a function of his/her values on x and z (and their 

interaction), each measured once per person
• Estimated parameters are called fixed effects (here, $%, $', $), and $+); although they have a sampling 

distribution, they are not random variables
• The number of fixed effects will show up in formulas as k (so k = 4 here)

• Model for the Variance:
• ," ∼ / 0, 23) à ONE residual (unexplained) deviation
• ," has a mean of 0 with some estimated constant variance 23), is normally distributed, is unrelated to x 

and z, and is unrelated across people (across all observations, just people here)
• Estimated parameter is the residual variance only (in the model above)

Interactions

For now we focus entirely on the fixed effects in the model for the means…

Our focus today



Representing the Effects of Predictor Variables

• From now on, we will think carefully about exactly how the 
predictor variables are entered into the model for the means 
(i.e., by which a predicted outcome is created for each person)

• Why don’t people always care? Because the scale of predictors:
Ø Does NOT affect the amount of outcome variance accounted for (R2)
Ø Does NOT affect the outcomes values predicted by the model for the means

(so long as the same predictor fixed effects are included)

• Why should this matter to us? 
Ø Because the Intercept = expected outcome value when X = 0
Ø Can end up with nonsense values for intercept if X = 0 isn’t in the data
Ø We will almost always need to deliberately adjust the scale of the predictor 

variables so that they have 0 values that could be observed in our data
Ø Is much bigger deal in models with random effects (MLM) or GLM once 

interactions are included (… stay tuned)
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Adjusting the Scale of Predictor Variables

• For continuous (quantitative) predictors, we will make the intercept 
interpretable by centering:

Ø Centering = subtract a  constant from each person’s variable value so that 
the 0 value falls within the range of the new centered predictor variable

Ø Typical à Center around predictor’s mean: !"#$"%"&	() = () − ()
w Intercept is then expected outcome for “average X1 person”

Ø Better à Center around meaningful constant C: !"#$"%"&	() = () − !
w Intercept is then expected outcome for person with that constant (even 0 may be ok)

• For categorical (grouping) predictors, either we or the program will 
make the intercept interpretable by creating a reference group:
Ø Reference group is given a 0 value on all predictor variables created from the 

original grouping variable, such that the intercept is the expected outcome for 
that reference group specifically

Ø Accomplished via “dummy coding” or “reference group coding” 
à Two-group example using Gender:    0 = Men, 1 = Women 

(or  0 = Women, 1 = Men)
Interactions



Adjusting the Scale of Predictor Variables

• For more than two groups, need: dummy codes = #groups − 1
Ø Four-group example: Control, Treatment1, Treatment2, Treatment3
Ø Variables: d1= 0, 1, 0, 0  à difference between Control and T1 

d2= 0, 0, 1, 0  à difference between Control and T2
d3= 0, 0, 0, 1  à difference between Control and T3

• Potential pit-falls:
Ø All predictors representing the effect of group (e.g., d1, d2, d3) MUST be in 

the model at the same time for these specific interpretations to be correct!
Ø Model parameters resulting from these dummy codes will not directly tell 

you about differences among non-reference groups (…but stay tuned) 

• Other examples of things people do to categorical predictors:
Ø “Contrast/effect coding”à Gender: −0.5 = Men, 0.5 = Women (or vice-versa)
Ø Test other contrasts among multiple groups à four-group example above:

Variable:  contrast1= −1, 0.33, 0.33, 0.34 à Control vs. Any Treatment?

Interactions

Done for you in 
GLM software J



Categorical Predictors: Manual Coding

• Model:  !" = $% + $'(1" + $*(2" + $,(3" + ."
Ø “Treatgroup” variable:  Control=0, Treat1=1, Treat2=2, Treat3=3

Ø New variables d1= 0, 1, 0, 0  à difference between Control and T1 

to be created d2= 0, 0, 1, 0  à difference between Control and T2

for the model: d3= 0, 0, 0, 1  à difference between Control and T3

• How does the model give us all possible group differences? 

By determining each group’s mean, and then the difference…

• The model for the 4 groups directly provides 3 differences 

(control vs. each treatment), and indirectly provides another 

3 differences (differences between treatments)

Interactions

Control Mean
(Reference)

Treatment 1 Mean Treatment 2 Mean Treatment 3
Mean

/0 /0+/1213 /0+/4243 /0+/5253



Group Differences from Dummy Codes

• Model:  !" = $% + $'(1" + $*(2" + $,(3" + ."

Alt Group Ref Group Difference
• Control vs. T1 = ($%+$')		−		($%) 																		= $'
• Control vs. T2 = ($%+$*)		−		($%) 																		= $*
• Control vs. T3 = ($%+$,)		−		($%) 																		= $,
• T1 vs. T2 =         ($%+$*) 	−	($%+$') 										= $* − $'
• T1 vs. T3 =         ($%+$,) 	−	($%+$') 										= $, − $'
• T2 vs. T3 =         ($%+$,) 	−	($%+$*) 										= $, − $*

Interactions

Control Mean
(Reference)

Treatment 1 Mean Treatment 2 Mean Treatment 3
Mean

34 34+35657 34+38687 34+39697



Estimating (Univariate) Linear Models in R

Interactions

Alt Group Ref Group Difference
1. Control vs. T1 = ("#+"%)		−		("#) 																		= "%
2. Control vs. T2 = ("#+"*)		−		("#) 																		= "*
3. Control vs. T3 = ("#+"+)		−		("#) 																		= "+
4. T1 vs. T2 =         ("#+"*)	−	("#+"%) 										= "* − "%
5. T1 vs. T3 =         ("#+"+)	−	("#+"%) 										= "+ − "%
6. T2 vs. T3 =         ("#+"+)	−	("#+"*) 										= "+ − "*
#R Syntax for Estimating 4-Group Linear Model

#  For Predicting Y in data frame called mydata

library(multcomp)

model01 = lm(y~d1+d2+d3,data=mydata)

summary(model01) #  shows model results

mean1 = matrix(c(1,0,0,0),1); rownames(mean1) = c(“Control Mean”)

mean2 = matrix(c(1,1,0,0),1); rownames(mean2) = c(“T1 Mean”)

mean3 = matrix(c(1,0,1,0),1); rownames(mean3) = c(“T2 Mean”)

mean4 = matrix(c(1,0,0,1),1); rownames(mean4) = c(“T3 Mean”)

contrast1 = mean2-mean1; rownames(contrast1) = c(“Control vs. T1”)

contrast2 = mean3-mean1; rownames(contrast2) = c(“Control vs. T2”)

contrast3 = mean4-mean1; rownames(contrast3) = c(“Control vs. T3”)

contrast4 = mean3-mean2; rownames(contrast4) = c(“T1 vs. T2”)

contrast5 = mean4-mean2; rownames(contrast5) = c(“T1 vs. T3”)

contrast6 = mean4-mean3; rownames(contrast6) = c(“T2 vs. T3”)

mycontrasts = rbind(mean1,mean2,mean3,mean4,contrast1,contrast2,contrast3,contrast4,

contrast5,contrast6)

values = glht(model01,linfct=mycontrasts)

summary(values)

Note the order of the equations: 
the reference group mean 

is subtracted from
the alternative group mean.

The ~ is the equals sign: to the 
left goes the DV. To the right go 
the IVs (a + indicates additive 

effects of IVs).

The values come from place-
holder numbers put in the 

correct positions for the betas.

The ghlt function is from the 
multcomp package.



What the Intercept β0 Should Mean to You…

The model for the means will 
describe what happens to the 
predicted outcome Y 

“as X increases” or
“as Z increases” 

and so forth…

But you won’t know what Y is 
actually supposed to be unless 
you know where the predictor 
variables are starting from!

Therefore, the intercept is the 
“YOU ARE HERE” sign in the 
map of your data… so it should 
be somewhere in the map*!

* There is no wrong way to center (or not), only weird…
Interactions



Continuous Predictors

• For continuous (quantitative) predictors, we (not R) will make the 
intercept interpretable by centering

Ø Centering = subtract a  constant (e.g., sample mean, other meaningful 
reference value) from each person’s variable value so that the 0 value falls 
within the range of the new centered predictor variable

Ø Predicted group means at specific levels of continuous predictors 
can be found using the same procedure (e.g., if X1 SD=5, means at ±1 SD):

Interactions



MAIN EFFECTS WITHIN INTERACTIONS

Interactions



Interactions: 				"# = %& + %()# + %*+# + %,)#+# + -#
• Interaction = Moderation: the effect of a predictor depends on the 

value of the interacting predictor
Ø Either predictor can be “the moderator” (interpretive distinction only) 

• Interactions can always be evaluated for any combination of 
categorical and continuous predictors, although traditionally…

Ø In “ANOVA”: By default, all possible interactions are estimated
w Software does this for you; oddly enough, nonsignificant interactions usually still are kept in 

the model (even if only significant interactions are interpreted)

Ø In “ANCOVA”: Continuous predictors (“covariates”) do not get to be part of interaction 
terms à make the “homogeneity of regression assumption”

w There is no reason to assume this – it is a testable hypothesis!

Ø In “Regression”: No default – effects of predictors are as you specify them
w Requires most thought, but gets annoying because in regression programs you usually have 

to manually create the interaction as an observed variable: 
w e.g.,  XZinteraction = centeredX * centeredZ

Interactions

Done for you in GLM software



Main Effects of Predictors within Interactions in GLM

• Main effects of predictors within interactions should remain in the model regardless of 
whether or not they are significant

Ø An interaction is an over-additive (enhancing) or under-additive (dampening) effect, so what it is 
additive to must be included

• The role of a two-way interaction is to adjust its main effects… 

• However, the idea of a “main effect” no longer applies… each main effect is conditional on 
the interacting predictor = 0

• e.g., Model of Y = W, X, Z, X*Z:
Ø The effect of W is still a “main effect” because it is not part of an interaction
Ø The effect of X is now the conditional main effect of X specifically when Z=0 
Ø The effect of Z is now the conditional main effect of Z specifically when X=0 

• The trick is keeping track of what 0 means for every interacting predictor, which depends 
on the way each predictor is being represented, as determined by you, or by the software 
without you!

Interactions



Model-Implied Simple Main Effects

• Original:  GPAp =  β0 +(β1*Attp)+ (β2*Edp) +  (β3*Attp*Edp) + ep

GPAp = 30 + (1*Attp) +  (2*Edp) + (0.5*Attp*Edp) + ep

• Given any values of the predictor variables, the model equation 
provides predictions for:

Ø Value of outcome (model-implied intercept for non-zero predictor values)
Ø Any conditional (simple) main effects implied by an interaction term
Ø Simple Main Effect = what it is + what modifies it

• Step 1: Identify all terms in model involving the predictor of interest
Ø e.g., Effect of Attitudes comes from: β1*Attp + β3*Attp*Edp

• Step 2: Factor out common predictor variable
Ø Start with [β1*Attp + β3*Attp*Edi] à [Attp (β1+ β3*Edp)] à Attp (new β1) 
Ø Value given by ( ) is then the model-implied coefficient for the predictor

• Step 3: ESTIMATEs calculate model-implied simple effect and SE
Ø Let’s try it for a new reference point of attitude = 3 and education = 12

Interactions



Interactions: Why 0 Matters

• Y = Student achievement (GPA as percentage grade out of 100)
X = Parent attitudes about education (measured on 1-5 scale) 
Z = Father’s education level (measured in years of education)

• Model: GPAp =  β0 + β1*Attp + β2*Edp +  β3*Attp*Edp + ep

GPAp = 30 +   2*Attp +  1*Edp + 0.5*Attp*Edp + ep

• Interpret β0: Expected GPA for 0 attitude and 0 years of education

• Interpret β1: Increase in GPA per unit attitude for 0 years of education

• Interpret β2: Increase in GPA per year education for 0 attitude

• Interpret β3: Attitude as Moderator: Effect of education (slope) increases by .5 
for each additional unit of attitude (more positive)

Education as Moderator: Effect of attitude (slope) increases by .5 
for each additional year of education (more positive)

• Predicted GPA for attitude of 3 and Ed of 12?
66 = 30 + 2*(3)  +  1*(12)  +  0.5*(3)*(12) 

Interactions



Interactions: Why 0 Matters

• Y = Student achievement (GPA as percentage grade out of 100)
X = Parent attitudes about education (still measured on 1-5 scale) 
Z = Father’s education level (0 = 12 years of education)

• Model:               GPAp =  β0 + β1*Attp + β2*Edp +  β3*Attp*Edp + ep

• Old Equation:   GPAp = 30 +   2*Attp +  1*Edp − 0 + 0.5*Attp*Edp − 0 + ep

• New Equation: GPAp = 42 +   8*Attp +  1*Edp − 12 + 0.5*Attp*Edp − 12 + ep

• Why did β0 change? 0 = 12 years of education

• Why did β1 change? Conditional on Education = 12 (new zero)

• Why did β2 stay the same? Attitude is the same

• Why did β3 stay the same? Nothing beyond to modify two-way interaction 

(effect is unconditional)

• Which fixed effects would have changed if we centered attitudes at 3 
but left education uncentered at 0 instead?

Interactions



Getting the Model to Tell Us What We Want…

• Model equation already says what Y (the intercept) should be…
Original Model:  GPAp =  β0 + β1*Attp + β2*Edp +  β3*Attp*Edp + ep

GPAp = 30 +   2*Attp +  1*Edp + 0.5*Attp*Edp + ep
Ø The intercept is always conditional on when predictors = 0

• But the model also tells us any conditional main effect for any combination of values for the 
model predictors

Ø Using intuition: Main Effect = what it is + what modifies it

Ø Using calculus (first derivative of model with respect to each effect): 

Effect of Attitudes =  β1 + β3*Edp = 2+ 0.5*Edp
Effect of Education =  β2 + β3*Attp = 1 + 0.5*Attp

Effect of Attitudes*Education  = β3 = 0.5
Ø Now we can use these new equations to determine what the conditional main effects would be given 

other predictor values besides true 0…
…let’s do so for a reference point of attitude = 3 and education = 12

Interactions



Getting the Model to Tell Us What We Want…

Old Equation using uncentered predictors:
GPAp =  β0 + β1*Attp + β2*Edp +  β3*Attp*Edp + ep

GPAp = 30 +   2*Attp +   1*Edp + 0.5*Attp*Edp + ep

New equation using centered predictors: 
GPAp = 66 + 8*(Attp−3) +  2.5*(Edp−12) + .5*(Attp−3)*(Edp−12) + ep

• β0: expected value of GPA when Attp=3 and Edp=12
β0 = 66

• β1: effect of Attitudes
β1 = 2 + 0.5*Edp = 2 + 0.5*12 = 8

• β2: effect of Education

β2 = 1 + 0.5*Attp = 1 + .5*3 = 2.5

• β3: two-way interaction of Attitudes and Education:

β3 = 0.5

Interactions



Testing the Significance of Model-Implied Fixed Effects

• We now know how to calculate any conditional main effect: 
Effect of interest = what it is + what modifies it
Effect of Attitudes =  β1 + β3*Ed for example...

• But if we want to test whether that new effect is ≠ 0, we also need its standard error (SE
needed to get Wald test T-value à p-value)

• Even if the conditional main effect is not directly given by the model, its estimate and SE are 
still implied by the model

• 3 options to get the new conditional main effect estimate and SE 
(in order of least to most annoying):

1. Ask the software to give it to you using your original model
(e.g., glht in R, ESTIMATE in SAS, TEST in SPSS, NEW in Mplus)
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Testing the Significance of Model-Implied Fixed Effects

2. Re-center your predictors to the interacting value of interest 
(e.g., make attitudes=3 the new 0 for attitudes) and re-estimate
your model; repeat as needed for each value of interest

3. Hand calculations (what the program is doing for you in option #1)

For example: Effect of Attitudes =  β1 + β3*Ed
• SE2 = sampling variance of estimate à e.g., Var(β1) = SEβ1

2

• SEβ1
2 = Var(β1) +  Var(β3)*Ed  +  2Cov(β1,β3)*Ed

• Values come from “asymptotic (sampling) covariance matrix”
• Variance of a sum of terms always includes covariance among them
• Here, this is because what each main effect estimate could be is 

related to what the other main effect estimates could be
• Note that if a main effect is unconditional, its SE2 = Var(β) only 

Interactions

Stay tuned for why 



GLM EXAMPLE 1:
“REGRESSION” VS. “ANOVA”
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GLM via Dummy-Coding in “Regression”
#MODEL #1 -- Using 0/1 coding instead of factors

model1 = lm(Test~Senior+New+Senior*New,data=data01)

summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  80.2000     0.5364 149.513  < 2e-16 ***

Senior        2.1600     0.7586   2.847  0.00539 ** 

New           7.7600     0.7586  10.229  < 2e-16 ***

Senior:New -3.0400     1.0728  -2.834  0.00561 ** 

Interactions

#MODEL #1 – ANOVA Table

anova(model1)

Analysis of Variance Table

Response: Test

Df Sum Sq Mean Sq F value    Pr(>F)    

Senior      1  10.24   10.24   1.4235  0.235762    

New         1 973.44  973.44 135.3253 < 2.2e-16 ***

Senior:New 1  57.76   57.76   8.0297  0.005609 ** 

Residuals  96 690.56    7.19                       

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note: these ANOVA table is 
displaying marginal tests for 
the main effects. Marginal tests 
are for the main effect only and 
are not conditional on any 
interacting variables.



Getting Each of the Means as a Contrast
mean1 = matrix(c(1,0,0,0),1); rownames(mean1)="Freshman-Old"

mean2 = matrix(c(1,0,1,0),1); rownames(mean2)="Freshman-New"

mean3 = matrix(c(1,1,0,0),1); rownames(mean3)="Senior-Old"

mean4 = matrix(c(1,1,1,1),1); rownames(mean4)="Senior-New"

meansvec = rbind(mean1,mean2,mean3,mean4)

means = glht(model1,linfct=meansvec)

summary(means)

Interactions

glht requests predicted outcomes from model for the means:
!"#$%& = () + (+,"-./0& + (12"3& + (4,"-./0&2"3&

• Freshmen-Old:   !"#$& = () + (+0 + (10 + (40 ∗ 0
• Freshmen-New: !"#$& = () + (+0 + (11 + (40 ∗ 0
• Senior-Old:         !"#$& = () + (+1 + (10 + (41 ∗ 0
• Senior-New:       !"#$& = () + (+1 + (11 + (41 ∗ 1

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = Test ~ Senior + New + Senior * New, data = 
data01)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)    

Freshman-Old == 0  80.2000     0.5364   149.5   <2e-16 ***
Freshman-New == 0  87.9600     0.5364   164.0   <2e-16 ***
Senior-Old == 0    82.3600     0.5364   153.5   <2e-16 ***
Senior-New == 0    87.0800     0.5364   162.3   <2e-16 ***



Dummy-Coded “Regression”: Mapping Results to Data

Interactions

Test Mean [SE] Freshmen Seniors Marginal

Old Method 80.20 [0.52] 82.36 [0.59] 81.28 [0.42]

New Method 87.96 [0.45] 87.08 [0.58] 87.52 [0.37]

Marginal 84.08 [0.65] 84.72 [0.53] 84.40 [0.42]

Parameter Estimate Standard 
Error

Intercept for Freshmen-Old 80.20 0.54
Intercept for Freshmen-New 87.96 0.54
Intercept for Senior-Old 82.36 0.54
Intercept for Senior-New 87.08 0.54

glht table

Parameter Estimate Standard 
Error t Value Pr > |t|

Intercept (β0) 80.20 0.54 149.51 <.0001
Senior (β1) 2.16 0.76 2.85 0.0054
New (β2) 7.76 0.76 10.23 <.0001
Senior*New (β3) -3.04 1.07 -2.83 0.0056

FIXED EFFECTS

β0 β1

β2 β3



Dummy-Coded “Regression”: Model-Implied Main Effects
effect1 = matrix(c(0,1,0,0),1); rownames(effect1) = "Senior Effect: Old"

effect2 = matrix(c(0,1,0,1),1); rownames(effect2) = "Senior Effect: New"

effect3 = matrix(c(0,0,1,0),1); rownames(effect3) = "New Effect: Freshmen"

effect4 = matrix(c(0,0,1,1),1); rownames(effect4) = "New Effect: Seniors"

effectsvec = rbind(effect1,effect2,effect3,effect4)

effects = glht(model1,linfct=effectsvec)

summary(effects)

Interactions

glht requests conditional main effects from model for the means:
Model for the Means: !"#$%& = () + (+,"-./0& + (12"3& + (4,"-./0&2"3&

Main Effect = what it is + what modifies it
• Senior Effect for Old Method:   (+ + (4 ∗ 0
• Senior Effect for New Method:   (+ + (4 ∗ 1
• New Method Effect for Freshmen:   (1 + (4 ∗ 0
• New Method Effect for Seniors:   (1 + (4 ∗ 1

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = Test ~ Senior + New + Senior * New, data = data01)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)    

Senior Effect: Old == 0     2.1600     0.7586   2.847   0.0194 *  
Senior Effect: New == 0    -0.8800     0.7586  -1.160   0.5939    
New Effect: Freshmen == 0   7.7600     0.7586  10.229   <0.001 ***
New Effect: Seniors == 0    4.7200     0.7586   6.222   <0.001 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)



Dummy-Coded “Regression”: Model-Implied Main Effects

Interactions

Test Mean [SE] Freshmen Seniors Marginal

Old Method 80.20 [0.52] 82.36 [0.59] 81.28 [0.42]

New Method 87.96 [0.45] 87.08 [0.58] 87.52 [0.37]

Marginal 84.08 [0.65] 84.72 [0.53] 84.40 [0.42]

glht commands table

Parameter Estimate Standard 
Error

t
Value

Pr >
|t|

Intercept (β0) 80.20 0.54 149.51 <.0001
Senior (β1) 2.16 0.76 2.85 0.0054
New (β2) 7.76 0.76 10.23 <.0001
Senior*New (β3) -3.04 1.07 -2.83 0.0056

FIXED EFFECTS table

β0 β1

β2 β3

Effect of Senior for New: β1 + β3(Newp); Effect of New for Seniors: β2 + β3(Seniorp) 

Parameter Estimate Standard 
Error

t
Value

Pr >
|t|

Senior Effect: Old 2.16 0.76 2.85 0.0054
Senior Effect: New -0.88 0.76 -1.16 0.2489
New Effect: Freshmen 7.76 0.76 10.23 <.0001
New Effect: Seniors 4.72 0.76 6.22 <.0001

β2 + β3

β1 + β3



GLM via “ANOVA” instead – in R with Factors

• So far we’ve used “regression” to analyze our 2x2 design:
Ø We manually dummy-coded the predictors 
Ø SAS treats them as “continuous” predictors, so it uses our variables as is

• More commonly, a factorial design like this would use an ANOVA approach to the GLM
Ø It is the *same model* accomplished with less code

#MODEL #2 -- Using factors (R coded)

model2 = lm(Test~SeniorF+NewF+SeniorF*NewF,data=data01)

summary(model2)

anova(model2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)     80.2000     0.5364 149.513  < 2e-16 ***

SeniorF1         2.1600     0.7586   2.847  0.00539 ** 

NewF1            7.7600     0.7586  10.229  < 2e-16 ***

SeniorF1:NewF1  -3.0400     1.0728  -2.834  0.00561 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Analysis of Variance Table

Response: Test

Df Sum Sq Mean Sq F value    Pr(>F)    

SeniorF 1  10.24   10.24   1.4235  0.235762    

NewF 1 973.44  973.44 135.3253 < 2.2e-16 ***

SeniorF:NewF 1  57.76   57.76   8.0297  0.005609 ** 

Residuals    96 690.56    7.19                       

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Interactions



2 Kinds of “Conditional” Main Effects

• “Simple” conditional main effects
Ø Specifically for a “0” value in the interacting predictor, where the meaning of “0” is usually chosen 

deliberately with the goal of inferring about a particular kind of person (or group of persons)
Ø e.g., the “simple” main effect of Education for Attitudes = 3

the “simple” main effect of Attitudes for Education = 12 years
Ø e.g., the “simple” effect of Old vs. New Instruction for Seniors

the “simple” effect of Freshman vs. Senior for New Instruction 
Ø These are given in the summary() function output of R

• “Marginal” (omnibus) main effects
Ø What is done for you without asking in ANOVA! The fixed effects solution is not given by default (and not 

often examined at all); the omnibus F-tests are almost always used to interpret “main effects” instead
Ø Tries to produce the “average” main effect in the sample, marginalizing over other predictors 
Ø Consequently, a “0” person may not even be logically possible…
Ø These are given in the anova() function output of R
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SUMMARY
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Purpose of Today’s Lecture…

• To examine exactly what we can learn from our model output
Ø Meaning of estimated fixed effects; how to get model-implied fixed effects
Ø Interpretation of omnibus significance tests

• To understand why results from named GLM variants may differ:
Ø Regression/ANOVA/ANCOVA are all the same GLM

w Linear model for the means + and a normally-distributed residual error term
w You can fit main effects and interactions among any kind of predictors; whether they should be there is always 

a testable hypothesis in a GLM

• When variants of the GLM provide different results, it’s because:
Ø Your predictor variables are being recoded (if using CLASS/BY statements)
Ø Simple conditional main effects and marginal conditional main effects do not mean the same thing (so 

they will not agree when in an interaction)
Ø By default your software picks your model for the means for you:

w “Regression” = whatever you tell it, exactly how you tell it
w “ANOVA” = marginal main effects + all interactions for categorical predictors
w “ANCOVA” = marginal main effects + all interactions for categorical predictors; continuous predictors only get 

to have main effects
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SAS vs. SPSS for General Linear Models

How do I tell it… R
What my DV is The first command in lm(Y~X): Before the ~

I have continuous predictors 
(or to leave them alone!!)

Assumed by default (can tell if you use 
class(data$variable)) function and find predictors
are numeric

I have categorical predictors 
(and to dummy-code them for me)

class(data$variable) function says factor

What fixed effects I want glht() function from multcomp package

To show me my fixed effects solution (Est, SE, t-value, p-value) summary() function applied to lm() object

To give me means per group glht() function or use factor type

To estimate model-implied effects glht() function

• Analyses using least squares (i.e., any GLM) can be estimated 
equivalently in SAS PROC GLM or SPSS GLM (“univariate”)… 
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