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CFA Example Using Forgiveness of Situations (N = 1103) 
 

The Forgiveness of Situations Subscale includes 6 items, 3 of which are reverse-coded, on a 7-point scale: 
1. When things go wrong for reasons that can’t be controlled, I get stuck in negative thoughts about it. (R) 
2. With time I can be understanding of bad circumstances in my life. 
3. If I am disappointed by uncontrollable circumstances in my life, I continue to think negatively about them. (R) 
4. I eventually make peace with bad situations in my life. 
5. It’s really hard for me to accept negative situations that aren’t anybody’s fault. (R) 
6. Eventually I let go of negative thoughts about bad circumstances that are beyond anyone’s control. 

 
Response Anchors: 1 = Almost Always False of Me, 2=?, 3 = More Often False of Me, 4 = ?, 
                                 5 = More Often True of Me, 6 = ?, 7 = Almost Always True of Me 
Observed	Correlation	Matrix	 R1	 2	 R3	 4	 R5	 6	
	 R1	 1.000	 	 	 	 	 	
	 2	 0.240	 1.000	 	 	 	 	
	 R3	 0.647	 0.317	 1.000	 	 	 	
	 4	 0.300	 0.570	 0.369	 1.000	 	 	
	 R5	 0.453	 0.255	 0.482	 0.289	 1.000	 	
	 6	 0.297	 0.457	 0.356	 0.448	 0.304	 1.000	
	 	 	 	 	 	 	 	
	 Means	 4.547	 5.289	 4.896	 5.359	 4.860	 5.321	
	 Variances	 3.049	 1.903	 2.543	 1.967	 2.945	 2.341	

 
Observed	Covariance	Matrix	 R1	 2	 R3	 4	 R5	 6	
	 R1	 3.049	 	 	 	 	 	
	 2	 0.577	 1.903	 	 	 	 	
	 R3	 1.802	 0.697	 2.543	 	 	 	
	 4	 0.734	 1.103	 0.824	 1.967	 	 	
	 R5	 1.358	 0.604	 1.319	 0.695	 2.945	 	
	 6	 0.795	 0.965	 0.868	 0.962	 0.798	 2.341	

To do CFA analysis, you only really need means, variances, and either correlations or covariances among items: 
Covariancey1,y2 = Correlationy1,y2 * SD(Y1) *SD(Y2)   OR    Correlationy1,y2 = Covariancey1,y2 / SD(Y1) *SD(Y2)    
 
Distributions of item responses – do these look “normal enough” to you? 
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Mplus Code to Read in Data: 
 
TITLE:       CFA of Situation Factor 
DATA:        FILE IS Study2.dat;  ! Don’t need path if in same directory 
             FORMAT IS free;  ! Default 
             TYPE IS INDIVIDUAL;  ! Default 
 
VARIABLE:    NAMES ARE PersonID Self1 Self2r Self3 Self4r Self5 Self6r 
                       Other1r Other2 Other3r Other4 Other5r Other6 
                       Sit1r Sit2 Sit3r Sit4 Sit5r Sit6 
                       Selfsub Othsub Sitsub HFSsum;   ! Every variable in DATASET 
 
             USEVARIABLES ARE Sit1r Sit2 Sit3r Sit4 Sit5r Sit6; ! Every variable in MODEL 
             MISSING ARE ALL (99999);     ! Identify missing values 

IDVARIABLE IS PersonID;     ! Identify person ID variable 
  
ANALYSIS:    TYPE IS GENERAL;  ! Default 
             ESTIMATOR IS MLR;  ! Robust ML  
 
SAVEDATA: SAVE = FSCORES; FILE = FactorScores.dat;  ! To save factor scores 
  
PLOT:      TYPE = PLOT1 PLOT2 PLOT3; ! To get all plots (e.g., factor score distributions) 
 
OUTPUT:     MODINDICES (6.635)  ! Voodoo suggestions to improve the model at p <.01 

      STDYX    ! Fully standardized solution 
      RESIDUAL  ! Standardized and normalized residuals for local fit 
 FSDETERMINACY; ! Correlation of factor scores with “true” factor scores 

 
MODEL:      (model syntax goes here, to be changed for each model as shown below) 
 
Model 1. Fully Z-Scored Factor Model Identification  
(Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated) 
 
The following code refers to EVERY model parameter for completeness: 
 
!Model 1 – Fully Z-Scored Factor Identification Approach 
 
    ! Item factor loadings --> @=fixed, *=free à * REQUIRED for first item if free 
        Sit BY Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 
 
    ! Item intercepts --> [ ] indicates means or intercepts, @=fixed, *=free 
        [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*]; 
 
    ! Item error variances --> just list item by itself, @=fixed, *=free 
        Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 
 
    ! Factor variance --> just list factor by itself, @=fixed, *=free 
        Sit@1; 
 
    ! Factor mean --> [ ] indicates means or intercepts, @=fixed, *=free 
        [Sit@0]; 
 
In reality, all you’d need to write to define this model is: 
 
    ! Item factor loadings --> @=fixed, *=free à * REQUIRED for first item if free 
        Sit BY Sit1r* Sit2 Sit3r Sit4 Sit5r Sit6; 
 
    ! Factor variance --> just list factor by itself, @=fixed, *=free 
        Sit@1; 
 
By default, all intercepts are estimated separately and the factor mean is fixed at 0. 
By default, all residual variances for the items are estimated separately, too. 
By default, factor variances and covariances are estimated freely.
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Model 1. Fully Z-Scored Factor Model Identification  
(Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated) 
 
UNSTANDARDIZED MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
FACTOR LOADINGS (regression slopes of item response on factor) 
SIT      BY 
    SIT1R              1.234      0.069     17.906      0.000 
    SIT2               0.702      0.074      9.441      0.000 
    SIT3R              1.241      0.063     19.846      0.000 
    SIT4               0.784      0.069     11.334      0.000 
    SIT5R              1.023      0.053     19.179      0.000 
    SIT6               0.819      0.069     11.942      0.000 
 
Means (of Factor) 
999 = “cannot be computed” – here, because the parameter is fixed to 0 already 
    SIT                0.000      0.000    999.000    999.000  
 
Intercepts (of Items) – HERE, ARE ACTUAL ITEM MEANS BECAUSE FACTOR MEAN IS ZERO 
    SIT1R              4.547      0.053     86.474      0.000 
    SIT2               5.289      0.042    127.347      0.000 
    SIT3R              4.896      0.048    101.959      0.000 
    SIT4               5.359      0.042    126.895      0.000 
    SIT5R              4.860      0.052     94.060      0.000 
    SIT6               5.321      0.046    115.493      0.000 
 
Variances (of Factor) 
999 = “cannot be computed” – here, because the parameter is fixed to 1 already 
    SIT                1.000      0.000    999.000    999.000 
 
 Residual Variances (variance of e’s) 
    SIT1R              1.526      0.149     10.217      0.000 
    SIT2               1.409      0.128     11.014      0.000 
    SIT3R              1.004      0.135      7.456      0.000 
    SIT4               1.352      0.127     10.672      0.000 
    SIT5R              1.899      0.118     16.025      0.000 
    SIT6               1.671      0.159     10.517      0.000 

 
Making use of the unstandardized model estimates: 
 
Writing out the model—individual predicted values: 
 
Y1 = μ1 + λ1F + e1    

Y1 = 4.547 + 1.234F + e1 

 
Writing out the model—predicted item variances and covariances: 
 
Var(Y1) = (λ1

2) Var(F) + Var(e1) 

Var(Y1) = (1.2342)*(1) + 1.526 = 3.049 (= original item variance) 

 
Cov(Y1,Y2) = λ1*Var(F)* λ2 

Cov(Y1,Y2) = (1.234)*(1)*(.702) = .866  

(actual covariance = .577, so the model over-predicted how related items 1 and 2 should be) 
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STDYX STANDARDIZED MODEL RESULTS (FULLY STANDARDIZED WITH RESPECT TO X & Y) 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
FACTOR LOADINGS (correlations of item response with factor) 
Square these to get reliability (proportion “true variance”) per item 
 SIT      BY 
    SIT1R              0.707      0.035     19.983      0.000 
    SIT2               0.509      0.053      9.545      0.000 
    SIT3R              0.778      0.034     22.655      0.000 
    SIT4               0.559      0.048     11.641      0.000 
    SIT5R              0.596      0.029     20.528      0.000 
    SIT6               0.535      0.047     11.392      0.000 
 
 Means (of Factor) 
    SIT                0.000      0.000    999.000    999.000 
 
 Intercepts (of Items) à is intercept / SD(Y) à not usually reported 
    SIT1R              2.604      0.057     45.888      0.000 
    SIT2               3.834      0.111     34.394      0.000 
    SIT3R              3.070      0.072     42.921      0.000 
    SIT4               3.821      0.111     34.441      0.000 
    SIT5R              2.832      0.066     43.095      0.000 
    SIT6               3.477      0.101     34.573      0.000 
 
 Variances (of Factor) à will always be 1 in a standardized solution 
    SIT                1.000      0.000    999.000    999.000 
 
 Residual Variances (standardized variance of e’s) 
    SIT1R              0.500      0.050     10.009      0.000 
    SIT2               0.741      0.054     13.628      0.000 
    SIT3R              0.395      0.053      7.388      0.000 
    SIT4               0.687      0.054     12.786      0.000 
    SIT5R              0.645      0.035     18.619      0.000 
    SIT6               0.714      0.050     14.187      0.000 
 
R-SQUARE (equals 1-residual variance OR standardized loading squared) 
    SIT1R              0.500      0.050      9.991      0.000 
    SIT2               0.259      0.054      4.772      0.000 
    SIT3R              0.605      0.053     11.327      0.000 
    SIT4               0.313      0.054      5.821      0.000 
    SIT5R              0.355      0.035     10.264      0.000 
    SIT6               0.286      0.050      5.696      0.000 
 
The standardized solution will look identical across methods of model identification with respect to the factor loadings, 
error variances, and R-square values for the items. The standardized intercepts will change because they depend on 
the unstandardized intercepts (but nobody reports them anyway). 
 

Making use of the standardized model estimates: 
 
Writing out the model – predicted item correlations: 
 
Corr(Y1,Y2) = λ1*Var(F)* λ2 

Corr(Y1,Y2) = (.707)*(1)*(.509) = .360  

(actual correlation = .240, so the model over-predicted how related 1 and 2 should be) 
 

 
Next up: two equivalent ways of getting the same model, but with different scaling  
(i.e., different means of identification…)
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Now let’s see the model parameters when using the marker item for model identification instead… 

Model 2. Marker Item Loading = 1, Factor Mean = 0 (Factor Variance, All Intercepts Estimated) 
 
! Model 2 -- Marker Item Loading with Factor Mean = 0 – MOST COMMON APPROACH AND DEFAULT IN MPLUS 
    Sit BY Sit1r@1 Sit2* Sit3r* Sit4* Sit5r* Sit6*;     ! Loadings (#1 fixed=1) 
    [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*];           ! Intercepts (all free) 
     Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*;            ! Residual variances (all free) 
    Sit*;                                               ! Factor variance (free)    
    [Sit@0];                                            ! Factor mean (fixed=0) 
 
UNSTANDARDIZED MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
FACTOR LOADINGS (regression slopes of item response on factor) 
Here, loading for SIT1R is not tested because it is fixed=1 
 SIT      BY 
    SIT1R              1.000      0.000    999.000    999.000 
    SIT2               0.569      0.083      6.830      0.000 
    SIT3R              1.005      0.035     28.555      0.000 
    SIT4               0.636      0.082      7.741      0.000 
    SIT5R              0.829      0.053     15.698      0.000 
    SIT6               0.664      0.081      8.143      0.000 
 
 Means (of Factor) 
    SIT                0.000      0.000    999.000    999.000 
 
 Intercepts (of Items) – EXPECTED Y WHEN FACTOR = 0, or for mean of factor in sample  
    SIT1R              4.547      0.053     86.474      0.000 
    SIT2               5.289      0.042    127.347      0.000 
    SIT3R              4.896      0.048    101.960      0.000 
    SIT4               5.359      0.042    126.896      0.000 
    SIT5R              4.860      0.052     94.060      0.000 
    SIT6               5.321      0.046    115.492      0.000 
 
 Variances (of Factor) 
    SIT                1.523      0.170      8.954      0.000 
 Residual Variances (variances of e’s) 
    SIT1R              1.526      0.149     10.217      0.000 
    SIT2               1.409      0.128     11.014      0.000 
    SIT3R              1.004      0.135      7.456      0.000 
    SIT4               1.352      0.127     10.673      0.000 
    SIT5R              1.899      0.118     16.026      0.000 
    SIT6               1.671      0.159     10.517      0.000 

 
Yet another equivalent alternative method for scaling the factor… 
Model 3. Marker Item Loading = 1 and Intercept = 0 (Factor Variance and Mean Estimated) 
 
! Model 3 -- Marker Item Loading and Intercept 
    Sit BY Sit1r@1 Sit2* Sit3r* Sit4* Sit5r* Sit6*;     ! Loadings (1 fixed=1) 
    [Sit1r@0 Sit2* Sit3r* Sit4* Sit5r* Sit6*];          ! Intercepts (1 fixed=0) 
     Sit1r*  Sit2* Sit3r* Sit4* Sit5r* Sit6*;           ! Residual variances (all free) 
    Sit*;                                               ! Factor variance (free)    
    [Sit*];                                             ! Factor mean (free) 
 
Means (of Factor) à Note is mean of marker item 1 
    SIT                4.547      0.053     86.474      0.000 
 
Intercepts (of Items) – EXPECTED Y WHEN FACTOR = 0  
HERE, WHICH IS WHEN ITEM 1 = 0 à beyond scale of item, so values are very low 
    SIT1R              0.000      0.000    999.000    999.000 
    SIT2               2.701      0.383      7.046      0.000 
    SIT3R              0.325      0.171      1.899      0.058 
    SIT4               2.469      0.380      6.504      0.000 
    SIT5R              1.092      0.246      4.431      0.000 
    SIT6               2.304      0.369      6.250      0.000
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Calculating model degrees of freedom: 
Total df =  [v(v+1) / 2] + v = 27 
Spent by model = 18 
Leftover df = 9    

 
Model fit information for a single-factor model (same regardless of factor scaling method): 
 
Number of Free Parameters               18  à is # of estimated parameters (“free” to be not 0) 
 
Loglikelihood – use for testing differences in model fit across nested models 
 
  H0 Value                      -11536.404  à this is for your specified model 
  H0 Scaling Correction Factor      1.4158  à indicates how far off from normal=1 
       for MLR 
  H1 Value                      -11322.435  à this is for a saturated (perfect) model 
  H1 Scaling Correction Factor      1.4073  à indicates how far off from normal=1 
       for MLR 
 
Information Criteria à “smaller is better” – use for nested or non-nested model comparisons 
 
   Akaike (AIC)                   23108.808  à AIC = (-2*LLH0) + (2*estimated parameters) 
   Bayesian (BIC)                 23198.912  à BIC = (-2*LLH0) + (LN N*estimated parameters) 
   Sample-Size Adjusted BIC       23141.739  à BIC replacing N with (N + 2) / 24 
      (n* = (n + 2) / 24) 
 
 
Chi-Square Test of Model Fit (Significance is bad here) à for your specified model 
 
    Value                            307.799 
    Degrees of Freedom                     9 à leftover after estimating our one-factor model 
    P-Value                           0.0000 
    Scaling Correction Factor       1.3903 à indicates how far off from normal=1 
        for MLR           > 1 = leptokurtic distribution (too-fat tails) 
       < 1 = platykurtotic distribution (too-thin tails) 
 
*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used 
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 
    and ULSMV difference testing is done using the DIFFTEST option. 
_________________________________________________________________________________________________ 

 
Where does this χ2 value for “model fit” come from? A rescaled −2LL model comparison of this one-
factor model (H0) against the saturated model (H1) that perfectly reproduces the data covariances: 
 
Step 1: Original −2ΔLL = −2*(LLfewer – LLmore) = −2(−11,536.404 + 11,322.435) = 427.938 
 
Step 2: Scaling correction = [ (#parmsfewer*scalefewer) – (#parmsmore*scalemore)  ] / (#parmsfewer – #parmsmore) 
                                          = [ (18 * 1.4158) – (27 * 1.4073) ] / (18 – 27) =  −12.501 / −9 = 1.3903 
 
Step 3: Rescaled −2ΔLL = −2ΔLL / scaling correction = 427.938 / 1.903 = 307.803  à ~matches model χ2  
Step 4: Difference in df = #parmsmore – #parmsfewer = 27 – 18 = 9 
 
How to fit the saturated (Unstructured) Baseline Model: Item means, variances, and covariances in 
original data 
 
! Saturated Model 
    ! Item means --> [ ] indicates means or intercepts, @=fixed, *=free 
        [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*]; 
    ! Item variances --> just list item by itself, @=fixed, *=free 
        Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 
    ! Item covariances --> just list all by all, @=fixed, *=free 
        Sit1r  Sit2  Sit3r  Sit4  Sit5r  Sit6  WITH  

 Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 
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Model fit information for the saturated model 
 
Number of Free Parameters                       27 à all possible means, variances, covariances 
 
Loglikelihood 
          H0 Value                      -11322.435 
          H0 Scaling Correction Factor      1.4073 
            for MLR 
          H1 Value                      -11322.435 
          H1 Scaling Correction Factor      1.4073 
            for MLR 
 
Information Criteria 
          Akaike (AIC)                   22698.870 
          Bayesian (BIC)                 22834.027 
          Sample-Size Adjusted BIC       22748.268 
            (n* = (n + 2) / 24) 
 
Chi-Square Test of Model Fit 
          Value                              0.000* 
          Degrees of Freedom                     0 
          P-Value                           0.0000 
          Scaling Correction Factor         1.0000 
            for MLR 
_______________________________________________________________________________________________ 
 

Now back to the rest of the one-factor model fit statistics: 
 
RMSEA (Root Mean Square Error Of Approximation)(want close to 0 = saturated model) 
 
    Estimate                           0.173 
    90 Percent C.I.             0.157  0.190 
    Probability RMSEA <= .05           0.000 à so RMSEA does NOT overlap .05 (is signif > .05) 
 
 
CFI/TLI (want close to 1 = saturated model) 
 
    CFI                                0.732 
    TLI                                0.553 
 
SRMR (Standardized Root Mean Square Residual)(want close to 0 = saturated model) 
 
   Value                              0.086 
 
Chi-Square Test of Model Fit for the Baseline Model à for the “no covariances” model 
 
     Value                           1128.693   
     Degrees of Freedom                    15 
     P-Value                           0.0000 
_______________________________________________________________________________________________ 

 
Where does this χ2 value for “fit of the baseline model” come from? A rescaled −2LL model 
comparison of the independence model with NO covariances to the saturated model: 
 
Step 1: Original −2ΔLL = −2*(LLfewer – LLmore) = −2(−12,312.952 + 11,322.435) = 1,981.034 
 
Step 2: Scaling correction = [ (#parmsfewer*scalefewer) – (#parmsmore*scalemore)  ] / (#parmsfewer – #parmsmore) 
                                          = [ (12 * 0.9725) – (27 * 1.4073) ] / (12 – 27) =  –26.372 / −15 = 1.7551 
 
Step 3: Rescaled −2ΔLL = −2ΔLL / scaling correction = 1,981.034 / 1.7551 = 1,128.704  à ~matches baseline χ2  
Step 4: Difference in df = #parmsmore – #parmsfewer = 27 – 12 = 15 
 
What’s the point? This baseline model fit test tells us whether there are any covariances at all  
(i.e., whether it even makes sense to try to fit latent factors to predict them). 
 

Note that H0 and H1 are now the same! 
Our H0 model IS the H1 saturated model. 
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How to fit the Independence (Null) Baseline Model: Item means and variances, but NO covariances 
 
! Independence Model 
    ! Item means --> [ ] indicates means or intercepts, @=fixed, *=free 
        [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*]; 
    ! Item variances --> just list item by itself, @=fixed, *=free 
        Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*; 

 
Model fit information for the independence model 
 
Number of Free Parameters                       12 
 
Loglikelihood 
          H0 Value                      -12312.952 
          H0 Scaling Correction Factor      0.9725 
            for MLR 
          H1 Value                      -11322.435 
          H1 Scaling Correction Factor      1.4073 
            for MLR 
 
Information Criteria 
          Akaike (AIC)                   24649.904 
          Bayesian (BIC)                 24709.974 
          Sample-Size Adjusted BIC       24671.859 
            (n* = (n + 2) / 24) 
 
Chi-Square Test of Model Fit 
          Value                           1128.692* 
          Degrees of Freedom                    15 
          P-Value                           0.0000 
          Scaling Correction Factor         1.7552 
            for MLR 
 
*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used 
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 
    and ULSMV difference testing is done using the DIFFTEST option. 
 
RMSEA (Root Mean Square Error Of Approximation) 
          Estimate                           0.259 
          90 Percent C.I.                    0.247  0.272 
          Probability RMSEA <= .05           0.000 
 
CFI/TLI 
          CFI                                0.000 
          TLI                                0.000 
 
Chi-Square Test of Model Fit for the Baseline Model 
          Value                           1128.693 
          Degrees of Freedom                    15 
          P-Value                           0.0000 
 
SRMR (Standardized Root Mean Square Residual) 
          Value                              0.300

Note that the model fit is the same as 
the “baseline” model fit given before. 

Although not 0, this is the worst possible 
RMSEA while still allowing separate 
means and variances per item in these 
data. RMSEA is a parsimony-corrected 
absolute fit index (so, its fit is relative to 
the saturated model).  
 
CFI and TLI are 0 because they are 
“incremental fit” indices relative to the 
independence model (which this is). 
 
SRMR is also an absolute fit index 
(relative to saturated model), so this is 
the worst it gets for these data, too. 
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So global fit for the one-factor model is not so good… (RMSEA = .173, CFI = .732) 
What do the voo-doo modification indices suggest we do to fix it? 
 
MODEL MODIFICATION INDICES 
Minimum M.I. value for printing the modification index    6.635 
EPC = EXPECTED PARAMETER CHANGE 
 
                                    M.I.    E.P.C.   Std E.P.C.   StdYX E.P.C.  
 
WITH Statements (SUGGESTED ERROR COVARIANCES for unknown multidimensionality) 
 
SIT2     WITH SIT1R               49.618    -0.464     -0.464       -0.316 
SIT3R    WITH SIT1R              143.624     1.023      1.023        0.827 
SIT3R    WITH SIT2                34.877    -0.357     -0.357       -0.300 
SIT4     WITH SIT1R               36.280    -0.403     -0.403       -0.280 
SIT4     WITH SIT2               161.318     0.702      0.702        0.509 
SIT4     WITH SIT3R               29.202    -0.336     -0.336       -0.288 
SIT6     WITH SIT1R               24.079    -0.358     -0.358       -0.224 
SIT6     WITH SIT2                63.893     0.486      0.486        0.317 
SIT6     WITH SIT3R               22.386    -0.319     -0.319       -0.246 
SIT6     WITH SIT4                46.541     0.415      0.415        0.276 
 
Another approach—how about we examine local fit and see where the problems seem to be?  
The means and variances of the items will be perfectly reproduced, so that’s not an issue…  
misfit results from the difference between the observed and model-predicted covariances. 
 
Mplus gives us the “residual” (defined as observed – predicted) or “leftover” covariance matrix, but it is scale 
dependent and thus not so helpful. We can calculate the residual correlation matrix (see spreadsheet): 
 
Residual	Correlation	Matrix	 R1	 2	 R3	 4	 R5	 6	
	 R1	 	 	 	 	 	 	
	 2	 -0.120	 	 	 	 	 	
	 R3	 0.097	 -0.079	 	 	 	 	
	 4	 -0.095	 0.285	 -0.066	 	 	 	
	 R5	 0.032	 -0.048	 0.018	 -0.044	 	 	
	 6	 -0.081	 0.185	 -0.060	 0.149	 -0.015	 	
 
Mplus also gives us “normalized” residuals, which can be thought of as z-scores for how large the residual 
leftover covariance is in absolute terms. Because the denominator decreases with sample size, however, 
these values may be inflated in large samples, so look for relatively large values. 
 
“Normalized” Residuals for Inter-Item Covariances = (observed – predicted) / SD(observed) 
 
Normalized Residuals for Covariances/Correlations/Residual Correlations 
                SIT1R         SIT2          SIT3R         SIT4          SIT5R        SIT6 
              ________      ________      ________      ________      ________     ________ 
 SIT1R          0.000 
 SIT2          -3.503         0.000 
 SIT3R          2.977        -2.253         0.000 
 SIT4          -2.928         6.560        -1.959         0.000 
 SIT5R          0.960        -1.434         0.548        -1.372         0.000 
 SIT6          -2.345         4.721        -1.756         3.925        -0.444        0.000 
 
NEGATIVE NORMALIZED RESIDUAL à Less related than you predicted (don’t want to be together) 
POSITIVE   NORMALIZED RESIDUAL à More related than you predicted (want to be more together) 
 
Why might the normalized residuals (leftover correlations) for the positive-worded items be larger than for 
the negatively-worded items?  
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These results suggest that wording valence is playing a larger role in the pattern of covariance 
across items than what the one-factor model predicts. Rather than adding voo-doo covariances 
among the residuals for specific items, how about a two-factor model based on wording instead? 
 
Model 4. Fully Z-Scored, 2-Factor Model 
 
! Model 4 -- Fully Z-Scored 2-Factor Model 
    SitP BY Sit2*  Sit4*  Sit6*;               ! SitP loadings (all free) 
    SitN BY Sit1r* Sit3r* Sit5r*;              ! SitN loadings (all free) 
    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 
    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  
    Sit2*   Sit4*  Sit6*;                      ! SitP residual variances (all free) 
    Sit1r*  Sit3r* Sit5r*;                     ! SitN residual variances (all free) 
    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 
    SitP WITH SitN*;                           ! Factor covariance (free) 
    [SitP@0 SitN@0];                           ! Factor means (fixed=0)  
 
MODEL FIT INFORMATION 
 
Number of Free Parameters                 19 
 
Loglikelihood 
    H0 Value                      -11340.140 
    H0 Scaling Correction Factor      1.4017 
         for MLR 
    H1 Value                      -11322.435 
    H1 Scaling Correction Factor      1.4073 
         for MLR 
 
Information Criteria 
    Akaike (AIC)                   22718.281 
    Bayesian (BIC)                 22813.391 
    Sample-Size Adjusted BIC       22753.042 
       (n* = (n + 2) / 24) 
 
Chi-Square Test of Model Fit 
    Value                             24.924* 
    Degrees of Freedom                     8 
    P-Value                           0.0016 
    Scaling Correction Factor         1.4207 
          for MLR 
 
*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used 
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 
    and ULSMV difference testing is done using the DIFFTEST option. 
 
RMSEA (Root Mean Square Error Of Approximation) 
    Estimate                           0.044 
    90 Percent C.I.             0.025  0.064 
    Probability RMSEA <= .05           0.667 
 
CFI/TLI 
    CFI                                0.985 
    TLI                                0.972 
 
Chi-Square Test of Model Fit for the Baseline Model 
    Value                           1128.693 
    Degrees of Freedom                    15 
    P-Value                           0.0000 
 
SRMR (Standardized Root Mean Square Residual) 
    Value                              0.029 
 
 

Is the 2-factor model better than the 1-factor 
model? How do we know?  
 
Rescaled likelihood ratio test  
(−2LL rescaled difference test): 
 
1. −2ΔLL = −2* difference in LL:  
    −2*(−11,536.404 + 11,340.140) = 392.528 
 
2. difference scaling correction: 
  (parms1*scale1) − (parms2*scale2) / (parms1 – parms2) 
    (18*1.4158)  – (19*1.4017)  / (18 – 19) = 1.1479 
 
3. rescaled difference = −2ΔLL / scaling correction:  
    392.528 / 1.1479 = 341.953 
 
4. compare rescaled difference to χ2 with df = Δdf : 
    critical χ2 for df =1 is 3.84, so because 341.953 
    is > 3.84, the model fit significantly improved 
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UNSTANDARDIZED RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
SITP     BY 
    SIT2               1.007      0.052     19.487      0.000 
    SIT4               1.064      0.050     21.195      0.000 
    SIT6               0.956      0.053     18.203      0.000  
SITN     BY 
    SIT1R              1.325      0.048     27.698      0.000 
    SIT3R              1.349      0.044     30.514      0.000 
    SIT5R              1.009      0.055     18.358      0.000 
 
SITP WITH SITN = factor covariance (= correlation if variances=1) 

   0.564      0.041     13.776      0.000 
Means 
    SITP               0.000      0.000    999.000    999.000 
    SITN               0.000      0.000    999.000    999.000 
 
Intercepts 
    SIT1R              4.547      0.053     86.474      0.000 
    SIT2               5.289      0.042    127.347      0.000 
    SIT3R              4.896      0.048    101.959      0.000 
    SIT4               5.359      0.042    126.896      0.000 
    SIT5R              4.860      0.052     94.060      0.000 
    SIT6               5.321      0.046    115.492      0.000 
  
Variances 
    SITP               1.000      0.000    999.000    999.000 
    SITN               1.000      0.000    999.000    999.000 
 
Residual Variances 
    SIT1R              1.294      0.103     12.547      0.000 
    SIT2               0.888      0.097      9.173      0.000 
    SIT3R              0.724      0.092      7.857      0.000 
    SIT4               0.835      0.093      9.003      0.000 
    SIT5R              1.926      0.119     16.128      0.000 
    SIT6               1.428      0.134     10.684      0.000 
 
STDYX STANDARDIZED RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 SITP     BY 
    SIT2               0.730      0.032     22.794      0.000 
    SIT4               0.759      0.029     25.995      0.000 
    SIT6               0.625      0.035     17.949      0.000 
 SITN     BY 
    SIT1R              0.759      0.022     34.072      0.000 
    SIT3R              0.846      0.021     39.657      0.000 
    SIT5R              0.588      0.030     19.651      0.000 
 
SITP     WITH 
    SITN               0.564      0.041     13.776      0.000 
 
Residual Variances 
    SIT1R              0.425      0.034     12.567      0.000 
    SIT2               0.467      0.047      9.976      0.000 
    SIT3R              0.285      0.036      7.895      0.000 
    SIT4               0.425      0.044      9.589      0.000 
    SIT5R              0.654      0.035     18.576      0.000 
    SIT6               0.610      0.043     14.029      0.000 
 
R-SQUARE 
    SIT1R              0.575      0.034     17.036      0.000 
    SIT2               0.533      0.047     11.397      0.000 
    SIT3R              0.715      0.036     19.829      0.000 
    SIT4               0.575      0.044     12.998      0.000 
    SIT5R              0.346      0.035      9.826      0.000 
    SIT6               0.390      0.043      8.974      0.000 

Omega = (Sum of loadings)2 / 
(Sum of loadings)2 +  
 Sum of error variances +  
 2* Sum of error covariances 
 
Omega for Positive Factor = .744    
   (1.007+1.064+0.956)2 / 
   (1.007+1.064+0.956)2 + 
   (0.888+0.835+1.428) + 2*0  
 
   (alpha was .746) 
 
Omega for Negative Factor = .775 
   (1.325+1.349+1.009)2 / 
   (1.325+1.349+1.009)2 + 
   (1.294+0.724+1.926) + 2*0  
 
   (alpha was .780) 
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Wouldn’t it be nice if Mplus would compute Omegas for you? It can, if you (a) label the parameters it 
needs to do the math, and (b) create new terms for the Omega estimates via MODEL CONSTRAINT: 
 
Model 4. Fully Z-Scored, 2-Factor Model again, now with parameter labels  
 
! Model 4 -- Fully Z-Scored 2-Factor Model 
    SitP BY Sit2*  Sit4*  Sit6*  (L1-L3);      ! SitP loadings (all free) 
    SitN BY Sit1r* Sit3r* Sit5r* (L4-L6);      ! SitN loadings (all free) 
    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 
    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  
    Sit2*   Sit4*  Sit6*  (E1-E3);             ! SitP residual variances (all free) 
    Sit1r*  Sit3r* Sit5r* (E4-E6);             ! SitN residual variances (all free) 
    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 
    SitP WITH SitN*;                           ! Factor covariance (free) 
    [SitP@0 SitN@0];                           ! Factor means (fixed=0)  
 
MODEL CONSTRAINT:  ! Calculate omega model-based reliability per factor 
    NEW(OmegaP OmegaN); 
    OmegaP = ((L1+L2+L3)**2) / (((L1+L2+L3)**2) + (E1+E2+E3)); 
    OmegaN = ((L4+L5+L6)**2) / (((L4+L5+L6)**2) + (E4+E5+E6)); 
 
Output now provided in unstandardized solution: 
 
New/Additional Parameters 
    OMEGAP             0.744      0.020     37.956      0.000 
    OMEGAN             0.775      0.014     56.803      0.000 
 
Any more local fit problems? Let’s see… 
 
Residuals of covariance matrix (so unstandardized estimate of how far off each covariance is): 
                SIT1R         SIT2          SIT3R         SIT4          SIT5R        SIT6 
              ________      ________      ________      ________      ________     ________ 
 SIT1R          0.000 
 SIT2          -0.176         0.000 
 SIT3R          0.016        -0.069         0.000 
 SIT4          -0.062         0.031         0.015         0.000 
 SIT5R          0.021         0.030        -0.042         0.089         0.000 
 SIT6           0.080         0.003         0.140        -0.055         0.254        0.000 
 
“Normalized” residuals (z-like statistic for how far off each covariance is): 
                SIT1R         SIT2          SIT3R         SIT4          SIT5R         SIT6 
              ________      ________      ________      ________      ________      ________ 
 SIT1R          0.000 
 SIT2          -2.125         0.000 
 SIT3R          0.172        -0.896         0.000 
 SIT4          -0.768         0.370         0.192         0.000 
 SIT5R          0.212         0.382        -0.464         1.128         0.000 
 SIT6           0.869         0.031         1.658        -0.676         2.847         0.000 
 
Any suggested voo-doo? (only available when not using MODEL CONSTRAINT, though)    
        
MODEL MODIFICATION INDICES 
Minimum M.I. value for printing the modification index    6.635 
 
                            M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C. 
 
BY Statements – these are cross-loadings 
 
SITN     BY SIT2            9.775    -0.224     -0.224       -0.162 
SITN     BY SIT6           10.828     0.245      0.245        0.160 
 
WITH Statements – these are error covariances 
 
SIT4     WITH SIT2         10.830     0.332      0.332        0.386 
SIT6     WITH SIT4          9.773    -0.273     -0.273       -0.250 
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Because we have no real theoretical or defendable reason to fit any of these suggested parameters, 
we will not add any new parameters. This will be about as good as it gets.  
 
Let’s examine the estimated distribution of the factor scores for each factor:  
 
SUMMARY OF FACTOR SCORES 
     FACTOR SCORE INFORMATION (COMPLETE-DATA PATTERN) 
           FACTOR DETERMINACIES 
           SITP       0.882 
           SITN       0.908 
 
SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES 
     SAMPLE STATISTICS 
           Means 
              SITP          SITP_SE       SITN          SITN_SE 
              ________      ________      ________      ________ 
 1              0.000         0.472         0.000         0.418 
           Covariances 
              SITP          SITP_SE       SITN          SITN_SE 
              ________      ________      ________      ________ 
 SITP           0.777 
 SITP_SE        0.000         0.000 
 SITN           0.533         0.000         0.825 
 SITN_SE        0.000         0.000         0.000         0.000 
           Correlations 
              SITP          SITP_SE       SITN          SITN_SE 
              ________      ________      ________      ________ 
 SITP           1.000 
 SITP_SE      999.000         1.000 
 SITN           0.665       999.000         1.000 
 SITN_SE      999.000       999.000       999.000         1.000 

 

 

 
The positive factor scores have 
an estimated mean of 0 with a 
variance of 0.78 instead of 1.00.  
 
The SE for each person’s factor 
score is .472. Treating factor 
scores as observed variables is 
like saying SE = 0. 
 
Positive factor score =  
Score ± 2*.472 = Score ± .944 

 

 
The negative factor scores have 
an estimated mean of 0 with a 
variance of 0.825 instead of 1.00.  
 
The SE for each person’s factor 
score is .418, so ± .836. 
 
The negative factor scores retain 
more variance (and have a 
smaller SE) because there is 
more information in them, due to 
higher factor loadings (greater 
reliability) of their items. 

Although the correlation between 
the factors was originally .56,  
the correlation between the 
estimated factor scores is .67 
instead due to shrinkage. 
 

The factor determinacy, the correlation 
between the estimated and true factor 
scores, is .882 for the positive factor 
and .908 for the negative factor. 
 
Positive factor score SE = 0.472 
Negative factor score SE = 0.418 
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Model-predicted item responses by factor scores with dashed lines for floor and ceiling effects: 
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What if we had just taken the mean of the three items for each subscale? 
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There are problems with either of these observed variable approaches: The mean of the items appears to have less 
variability (i.e., fewer possible scores) and assumes that all items should be weighted equally and have no error. The 
estimated factor scores do not have the same properties as estimated for the factor in the model (i.e., less variance 
for each factor, higher correlation among the factors).  
What to do instead of either of these? Stay tuned for how to use plausible values. 
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Another example: Formal Tests of CTT Assumptions 
 
We will test the CTT assumption of tau-equivalence (equal factor loadings), one factor at a time.  
If those hold, we can then test the assumption of parallel items (equal error variances, too). 
 
First, tau-equivalence of the negative factor only: 
 
! Model 5 -- Tau-Equivalent Negative Items Only 2-Factor Model 
    SitP BY Sit2*  Sit4*  Sit6*;               ! SitP loadings (all free) 
    SitN BY Sit1r* Sit3r* Sit5r* (NegLoad);    ! SitN loadings (all held equal) 
    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 
    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  
    Sit2*  Sit4*  Sit6*;                       ! SitP residual variances (all free) 
    Sit1r* Sit3r* Sit5r*;                      ! SitN residual variances (all free) 
    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 
    SitP WITH SitN*;                           ! Factor covariance (free) 
    [SitP@0 SitN@0];                           ! Factor means (fixed=0) 
 
UNSTANDARDIZED MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
SITP     BY 
    SIT2               1.007      0.052     19.491      0.000 
    SIT4               1.063      0.050     21.202      0.000 
    SIT6               0.957      0.052     18.257      0.000 
 
 SITN     BY 
    SIT1R              1.254      0.032     38.957      0.000 
    SIT3R              1.254      0.032     38.957      0.000 
    SIT5R              1.254      0.032     38.957      0.000 
 
 SITP     WITH 
    SITN               0.575      0.041     13.855      0.000 
 
 Residual Variances 
    SIT1R              1.335      0.083     16.150      0.000 
    SIT2               0.889      0.096      9.217      0.000 
    SIT3R              0.857      0.069     12.337      0.000 
    SIT4               0.837      0.092      9.045      0.000 
    SIT5R              1.806      0.115     15.716      0.000 
    SIT6               1.425      0.134     10.630      0.000 
 
STANDARDIZED STYDX MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
SITP     BY 
    SIT2               0.730      0.032     22.840      0.000 
    SIT4               0.758      0.029     26.037      0.000 
    SIT6               0.626      0.035     17.958      0.000 
 
 SITN     BY 
    SIT1R              0.735      0.016     46.189      0.000 
    SIT3R              0.805      0.016     50.774      0.000 
    SIT5R              0.682      0.015     45.076      0.000 
 
 Residual Variances 
    SIT1R              0.459      0.023     19.604      0.000 
    SIT2               0.467      0.047     10.017      0.000 
    SIT3R              0.353      0.025     13.835      0.000 
    SIT4               0.425      0.044      9.633      0.000 
    SIT5R              0.535      0.021     25.887      0.000 
    SIT6               0.609      0.044     13.969      0.000 
 
Why are the standardized factor loadings for the negative factor not held equal like the unstandardized 
loadings are? 
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Fit of previous 2-factor model: 
 
Number of Free Parameters                 19 
 
Loglikelihood 
    H0 Value                      -11340.140 
    H0 Scaling Correction Factor      1.4017 
         for MLR 
    H1 Value                      -11322.435 
    H1 Scaling Correction Factor      1.4073 
         for MLR 
 
RMSEA (Root Mean Square Error Of Approximation) 
    Estimate                           0.044 
    90 Percent C.I.             0.025  0.064 
    Probability RMSEA <= .05           0.667 
 
CFI/TLI 
     CFI                                0.985 
     TLI                                0.972 
 

Fit of tau-equivalent negative items 2-factor model: 
 
Number of Free Parameters                  17 
 
Loglikelihood 
     H0 Value                      -11357.612 
     H0 Scaling Correction Factor      1.4474 
            for MLR 
     H1 Value                      -11322.435 
     H1 Scaling Correction Factor      1.4073 
            for MLR  
 
RMSEA (Root Mean Square Error Of Approximation) 
      Estimate                           0.062 
      90 Percent C.I.             0.046  0.079 
      Probability RMSEA <= .05           0.102 
 
CFI/TLI 
     CFI                                0.962 
     TLI                                0.943 
 

Does the assumption of tau-equivalence hold for the negative items? How do we know? 
 
 
 
Second, tau-equivalence of the factor loadings for the positive factor only: 
 
! Model 6 -- Tau-Equivalent Positive Items Only 2-Factor Model 
    SitP BY Sit2*  Sit4*  Sit6* (PosLoad);     ! SitP loadings (all held equal) 
    SitN BY Sit1r* Sit3r* Sit5r*;              ! SitN loadings (all free) 
    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 
    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  
    Sit2*  Sit4*  Sit6*;                       ! SitP residual variances (all free) 
    Sit1r* Sit3r* Sit5r*;                      ! SitN residual variances (all free) 
    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 
    SitP WITH SitN*;                           ! Factor covariance (free) 
    [SitP@0 SitN@0];                           ! Factor means (fixed=0) 
 
Number of Free Parameters                 17 
 
Loglikelihood 
    H0 Value                      -11341.773 
    H0 Scaling Correction Factor      1.4187 
          for MLR 
    H1 Value                      -11322.435 
    H1 Scaling Correction Factor      1.4073 
          for MLR 

 
RMSEA (Root Mean Square Error Of Approximation) 
    Estimate                           0.040 
    90 Percent C.I.             0.023  0.058 
    Probability RMSEA <= .05           0.797 
 
CFI/TLI 
    CFI                                0.984 
    TLI                                0.976 
 
 
 

Does the assumption of tau-equivalence hold 
for the positive items? How do we know? 
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UNSTANDARDIZED MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
SITP     BY 
    SIT2               1.014      0.036     28.389      0.000 
    SIT4               1.014      0.036     28.389      0.000 
    SIT6               1.014      0.036     28.389      0.000 
 
 SITN     BY 
    SIT1R              1.325      0.048     27.727      0.000 
    SIT3R              1.349      0.044     30.531      0.000 
    SIT5R              1.010      0.055     18.370      0.000 
 
 SITP     WITH 
    SITN               0.567      0.040     14.131      0.000 
 
 Residual Variances 
    SIT1R              1.295      0.103     12.580      0.000 
    SIT2               0.881      0.083     10.587      0.000 
    SIT3R              0.725      0.092      7.873      0.000 
    SIT4               0.886      0.075     11.767      0.000 
    SIT5R              1.925      0.119     16.117      0.000 
    SIT6               1.384      0.118     11.737      0.000 
 
STANDARDIZED STDYX MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
SITP     BY 
    SIT2               0.734      0.023     32.593      0.000 
    SIT4               0.733      0.021     35.611      0.000 
    SIT6               0.653      0.022     29.743      0.000 
 
 SITN     BY 
    SIT1R              0.759      0.022     34.139      0.000 
    SIT3R              0.846      0.021     39.706      0.000 
    SIT5R              0.588      0.030     19.663      0.000 
 
 SITP     WITH 
    SITN               0.567      0.040     14.131      0.000 
 
 Residual Variances 
    SIT1R              0.425      0.034     12.598      0.000 
    SIT2               0.461      0.033     13.965      0.000 
    SIT3R              0.285      0.036      7.910      0.000 
    SIT4               0.463      0.030     15.350      0.000 
    SIT5R              0.654      0.035     18.562      0.000 
    SIT6               0.574      0.029     20.019      0.000 
 
 
 
Given that tau-equivalence held for the positive factor, we can also test the assumption of parallel 
items as equal residual variances (in addition to equal factor loadings): 
 
! Model 7 -- Parallel Items on Positive Only 2-Factor Model 
    SitP BY Sit2*  Sit4*  Sit6*  (PosLoad);    ! SitP loadings (all held equal) 
    SitN BY Sit1r* Sit3r* Sit5r*;              ! SitN loadings (all free) 
    [Sit2*  Sit4*  Sit6*];                     ! SitP intercepts (all free) 
    [Sit1r* Sit3r* Sit5r*];                    ! SitN intercepts (all free)  
    Sit2*  Sit4*  Sit6*          (PosError);   ! SitP residual variances (all held equal) 
    Sit1r* Sit3r* Sit5r*;                      ! SitN residual variances (all free) 
    SitP@1; SitN@1;                            ! Factor variances (fixed=1) 
    SitP WITH SitN*;                           ! Factor covariance (free) 
    [SitP@0 SitN@0];                           ! Factor means (fixed=0) 
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Number of Free Parameters                       15 
 
Loglikelihood 
          H0 Value                      -11361.960 
          H0 Scaling Correction Factor      1.3443 
            for MLR 
          H1 Value                      -11322.435 
          H1 Scaling Correction Factor      1.4073 
            for MLR 
 
 
RMSEA (Root Mean Square Error Of Approximation) 
          Estimate                           0.056 
          90 Percent C.I.             0.041  0.072 
          Probability RMSEA <= .05           0.244 
 
CFI/TLI 
          CFI                                0.963 
          TLI                                0.954 
 
UNSTANDARDIZED MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
SITP     BY 
    SIT2               1.005      0.035     28.455      0.000 
    SIT4               1.005      0.035     28.455      0.000 
    SIT6               1.005      0.035     28.455      0.000 
 
 SITN     BY 
    SIT1R              1.325      0.048     27.816      0.000 
    SIT3R              1.347      0.044     30.623      0.000 
    SIT5R              1.011      0.055     18.408      0.000 
 
 SITP     WITH 
    SITN               0.581      0.040     14.581      0.000 
 
 Residual Variances 
    SIT1R              1.294      0.102     12.645      0.000 
    SIT2               1.060      0.061     17.452      0.000 
    SIT3R              0.728      0.091      7.992      0.000 
    SIT4               1.060      0.061     17.452      0.000 
    SIT5R              1.922      0.119     16.095      0.000 
    SIT6               1.060      0.061     17.452      0.000 
 
STANDARDIZED STDYX MODEL RESULTS 
 
 SITP     BY 
    SIT2               0.698      0.019     37.365      0.000 
    SIT4               0.698      0.019     37.365      0.000 
    SIT6               0.698      0.019     37.365      0.000 
 
 SITN     BY 
    SIT1R              0.759      0.022     34.339      0.000 
    SIT3R              0.845      0.021     40.011      0.000 
    SIT5R              0.589      0.030     19.713      0.000 
 
 SITP     WITH 
    SITN               0.581      0.040     14.581      0.000 
 
 Residual Variances 
    SIT1R              0.424      0.034     12.652      0.000 
    SIT2               0.512      0.026     19.616      0.000 
    SIT3R              0.286      0.036      8.024      0.000 
    SIT4               0.512      0.026     19.616      0.000 
    SIT5R              0.653      0.035     18.520      0.000 
    SIT6               0.512      0.026     19.616      0.000

Does the assumption of parallel items hold for 
the positive items? How do we know? 
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Example write-up describing these analyses… 
 
(Note: You may borrow the phrasing contained in this example to describe various aspects of your 
analyses, but your own results sections will not mimic this example exactly—they should be customized to 
describe the how and the why of what you did, specifically). 
 
(Descriptive information for the sample and items would have already been given in the method section…) 
 
The reliability and dimensionality of six items each assessing forgiveness of situations was assessed in a 
sample of 1,103 persons with a confirmatory factor analysis using robust maximum likelihood estimation 
(MLR) in Mplus v. 7.4 (Muthén & Muthén, 1998-2015). All models were identified by setting any latent factor 
means to 0 and latent factor variances to 1, such that all item intercepts, item factor loadings, and item 
residual variances were then estimated. The six items utilized a seven-point response scale, and three 
items were reverse-coded prior to analysis such that higher values then indicated greater levels of 
forgiveness of situations for all items. Model fit statistics reported in Table 1 include the obtained model χ2, 
its scaling factor (in which values different than 1.000 indicate deviations from normality), its degrees of 
freedom, and its p-value (in which non-significance is desirable for good fit), CFI, or Comparative Fit Index 
(in which values higher than .95 are desirable for good fit), and the RMSEA, or Root Mean Square Error of 
Approximation, point estimate and 90% confidence interval (in which values lower than .06 are desirable for 
good fit). As reported in Table 2, nested model comparisons were conducted using the rescaled −2ΔLL with 
degrees of freedom equal to the rescaled difference in the number of parameters between models (i.e., a 
rescaled likelihood ratio test). The specific models examined are described in detail below. 
 
Although a one-factor model was initially posited to account for the pattern of covariance across these six 
items, it resulted in poor fit, as shown in Table 1. Although each item had a significant factor loading (with 
standardized loadings ranging from .509 to .778), a single latent factor did not adequately describe the 
pattern of relationship across these six items as initially hypothesized. Sources of local misfit were identified 
using the normalized residual covariance matrix, available via the RESIDUAL output option in Mplus, in 
which individual values were calculated as: (observed covariance – expected covariance) / SD(observed 
covariance). Relatively large positive residual covariances were observed among items 2, 4, and 6 (the 
positively-worded items), indicating that these items were more related than was predicted by the single-
factor model. Modification indices, available via the MODINDICES output option in Mplus, corroborated this 
pattern, further suggesting additional remaining relationships among the negatively-worded items as well.  
 
The necessity of separate latent factors for the positively-worded and negatively-worded items was tested 
by specifying a two-factor model in which the positively-worded items 2, 4, and 6 indicated a forgiveness 
factor, and in which negatively-worded items 1, 3, and 5 indicated a not unforgiveness factor, and in which 
the two factors were allowed to correlate. The two-factor model fit was acceptable by every criterion except 
the significant χ2, likely due to the large sample. In addition, the two-factor model fit significantly better than 
the one-factor model, as reported in Table 2, indicating that the estimated correlation between the two 
factors of .564 was significantly less than 1.000. Thus, the six items appeared to measure two separate but 
related constructs. Further examination of local fit via normalized residual covariances and modification 
indices yielded no interpretable remaining relationships, and thus this two-factor model was retained.  
 
Table 3 provides the estimates and their standard errors for the item factor loadings, intercepts, and 
residual variances from both the unstandardized and standardized solutions. All factor loadings and the 
factor covariance were statistically significant. As shown in Table 3, standardized loadings for the 
forgiveness factor items ranged from .625 to .759 (with R2 values for the amount of item variance accounted 
for by the factor ranging from .390 to .575), and standardized loadings for the not unforgiveness factor 
ranged from .588 to .846 (with R2 values of .346 to .715), suggesting the factor loadings were practically 
significant as well. Omega model-based reliability was calculated for each factor as described in Brown 
(2006) as the squared sum of the factor loadings divided by the squared sum of the factor loadings plus the 
sum of the error variances plus twice the sum of the error covariances (although no error covariances were 
included here). Omega was .744 for the forgiveness factor and .775 for the not unforgiveness factor, 
suggesting marginal reliability for both of the three-item scales. 
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The resulting distribution of the factors was examined by requesting empirical Bayes estimates of the 
individual scores for each factor, as shown in Figure 1. Factor determinacy estimates, available via the 
FSDETERMINACY output option in Mplus, were .882 and .908, respectively, for the forgiveness and not 
unforgiveness factors (with standard errors for the factor scores of .472 and .418), indicating that the 
estimated factor scores were strongly related to their model-based counterparts. In addition, Figure 2 shows 
the predicted response for each item as a linear function of the latent factor based on the estimated model 
parameters. As shown, the predicted item response goes above the highest response option just before a 
latent factor score of 2 (i.e., 2 SDs above the mean), resulting in a ceiling effect for both sets of factor 
scores, as also shown in Figure 1. In addition, for the not unforgiveness factor, the predicted item response 
goes below the lowest response option just before a latent factor score of -3 (i.e., 3 SDs below the mean), 
resulting in a floor effect for the not unforgiveness factor, as also shown in Figure 1. 
 
The extent to which the items within each factor could be seen as exchangeable was then examined via an 
additional set of nested model comparisons, as reported in Table 1 (for fit) and Table 2 (for comparisons of 
fit). First, the assumption of tau-equivalence (i.e., true-score equivalence, equal discrimination across items) 
was examined by constraining the factor loadings to be equal within a factor. For the not unforgiveness 
factor, the tau-equivalent model fit was acceptable but was significantly worse than the original two-factor 
model fit (i.e., in which all loadings were estimated freely). For the forgiveness factor, however, the tau-
equivalent model fit was acceptable and was not significantly worse than the original two-factor model fit. 
Thus, the assumption of tau-equivalence held for the forgiveness factor items only. Finally, the assumption 
of parallel items (i.e., equal factor loadings and equal residual variances, or equal reliability across items) 
was examined for the forgiveness factor items only, and the resulting model fit was acceptable but was 
significantly worse than the tau-equivalent forgiveness factor model fit. Thus, the assumption of parallel 
items did not hold for the forgiveness factor items. In summary, while the not unforgiveness factor items 
were not exchangeable, the forgiveness factor items were exchangeable with respect to their factor 
loadings only (i.e., equal discrimination, but not equal residual variances or reliability). 
 
Tables would be built as seen in the excel workbook: 
 
Table 1 à “Model Fit Table 1” worksheet 
Table 2 à “MLR Comparisons Table 2” worksheet 
Table 3 à “Model Estimates Table 3” worksheet 
 
Figures would be built as seen in this example: 
 
Figure 1 à Can be built in Mplus  
Figure 2 à Can be built using “Factor Model Predictions” worksheet  
 
References: 
 
Muthén, L. K., & Muthén, B.O. (1998-2015). Mplus User’s Guide. Seventh Edition. Los Angeles, CA: 
Muthén & Muthén. 
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CFA Example Using Forgiveness of Situations (N = 1103) using SAS MIXED 
 

SAS Code to Read in Mplus Data: 
 
* Import data from Mplus, becomes var1-var23 without names at top; 
PROC IMPORT OUT=work.Situation DATAFILE= "&example.\Study2.dat" DBMS=TAB REPLACE; 
     GETNAMES=NO; DATAROW=1; RUN; 
 
* Rename variables; 
DATA Situation; SET Situation; 
 ARRAY old(23) var1-var23; 
 ARRAY new(23) PersonID Self1 Self2r Self3 Self4r Self5 Self6r 
                   Other1r Other2 Other3r Other4 Other5r Other6 
                   Sit1r Sit2 Sit3r Sit4 Sit5r Sit6 
                   Selfsub Othsub Sitsub HFSsum; 
 DO i=1 TO 23; new(i)=old(i); IF new(i)=99999 THEN new(i)=.; END; 
 DROP i var1-var23; RUN; 
 
* Stack situation items; 
DATA SituationStacked; SET Situation; 
 ARRAY aitem(6)  Sit1r Sit2 Sit3r Sit4 Sit5r Sit6; 
 DO i=1 TO 6; itemnum=i; response=aitem(i); OUTPUT; END; DROP i; RUN; 
 
Independence (Null) Baseline Model: Item means and variances, but NO covariances 
 
TITLE "Independence (Null) CFA Model in MIXED"; 
PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 
 CLASS PersonID itemnum; 
 MODEL response = itemnum / SOLUTION NOINT NOTEST; 
 REPEATED itemnum / TYPE=TOEPH(1) SUBJECT=PersonID R; RUN; 
 
                      Estimated R Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      3.0493 
   2                  1.9028 
   3                              2.5431 
   4                                          1.9672 
   5                                                      2.9451 
   6                                                                  2.3412 
 
                 Covariance Parameter Estimates 
Cov                                Standard         Z 
Parm       Subject     Estimate       Error     Value      Pr > Z 
Var(1)     PersonID      3.0493      0.1298     23.48      <.0001 
Var(2)     PersonID      1.9028     0.08102     23.48      <.0001 
Var(3)     PersonID      2.5431      0.1083     23.48      <.0001 
Var(4)     PersonID      1.9672     0.08377     23.48      <.0001 
Var(5)     PersonID      2.9451      0.1254     23.48      <.0001 
Var(6)     PersonID      2.3412     0.09969     23.48      <.0001 
 
                            Information Criteria 
Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 
    24625.9       12    24649.9    24650.0    24672.6    24710.0    24722.0 
 
                        Solution for Fixed Effects 
                                   Standard 
Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 
itemnum     1            4.5467     0.05258    5509      86.47      <.0001 
itemnum     2            5.2892     0.04153    5509     127.35      <.0001 
itemnum     3            4.8957     0.04802    5509     101.96      <.0001 
itemnum     4            5.3590     0.04223    5509     126.90      <.0001 
itemnum     5            4.8604     0.05167    5509      94.06      <.0001 
itemnum     6            5.3209     0.04607    5509     115.49      <.0001 
 
Saturated (Unstructured) Baseline Model: Item means, variances, and covariances in original data 
 
TITLE "Saturated (Unstructured) CFA Model in MIXED"; 
PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 
 CLASS PersonID itemnum; 
 MODEL response = itemnum / SOLUTION NOINT NOTEST; 

The R matrix shows the 
unconditional variances per 
item—repeated in the next 
piece of output as Var(item).  
Note that this independence 
model predicts no 
covariances between items. 

The fixed effects show the 
unconditional means per item. 

Model fit is given as −2LL 
rather than LL (but otherwise is 
the same as given from Mplus). 

TYPE=TOEPH(1) predicts a 
diagonal matrix (would be the 
same as TYPE=UN(1). 

TYPE=UN(6) predicts a fully-
estimated matrix without any 
constraints whatsoever. 
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 REPEATED itemnum / TYPE=UN(6) SUBJECT=PersonID R RCORR; RUN; 
 
                      Estimated R Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      3.0493      0.5772      1.8022      0.7339      1.3583      0.7946 
   2      0.5772      1.9028      0.6974      1.1029      0.6043      0.9652 
   3      1.8022      0.6974      2.5431      0.8244      1.3191      0.8676 
   4      0.7339      1.1029      0.8244      1.9672      0.6947      0.9618 
   5      1.3583      0.6043      1.3191      0.6947      2.9451      0.7982 
   6      0.7946      0.9652      0.8676      0.9618      0.7982      2.3412 
 
                Estimated R Correlation Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      1.0000      0.2396      0.6472      0.2997      0.4533      0.2974 
   2      0.2396      1.0000      0.3170      0.5700      0.2553      0.4573 
   3      0.6472      0.3170      1.0000      0.3686      0.4820      0.3555 
   4      0.2997      0.5700      0.3686      1.0000      0.2886      0.4482 
   5      0.4533      0.2553      0.4820      0.2886      1.0000      0.3040 
   6      0.2974      0.4573      0.3555      0.4482      0.3040      1.0000 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm    Subject     Estimate       Error     Value        Pr Z 
UN(1,1)     PersonID      3.0493      0.1298     23.48      <.0001 
UN(2,1)     PersonID      0.5772     0.07458      7.74      <.0001 
UN(2,2)     PersonID      1.9028     0.08102     23.48      <.0001 
UN(3,1)     PersonID      1.8022     0.09988     18.04      <.0001 
UN(3,2)     PersonID      0.6974     0.06948     10.04      <.0001 
UN(3,3)     PersonID      2.5431      0.1083     23.48      <.0001 
UN(4,1)     PersonID      0.7339     0.07699      9.53      <.0001 
UN(4,2)     PersonID      1.1029     0.06705     16.45      <.0001 
UN(4,3)     PersonID      0.8244     0.07178     11.49      <.0001 
UN(4,4)     PersonID      1.9672     0.08377     23.48      <.0001 
UN(5,1)     PersonID      1.3583     0.09907     13.71      <.0001 
UN(5,2)     PersonID      0.6043     0.07356      8.21      <.0001 
UN(5,3)     PersonID      1.3191     0.09148     14.42      <.0001 
UN(5,4)     PersonID      0.6947     0.07543      9.21      <.0001 
UN(5,5)     PersonID      2.9451      0.1254     23.48      <.0001 
UN(6,1)     PersonID      0.7946     0.08393      9.47      <.0001 
UN(6,2)     PersonID      0.9652     0.06988     13.81      <.0001 
UN(6,3)     PersonID      0.8676     0.07798     11.13      <.0001 
UN(6,4)     PersonID      0.9618     0.07081     13.58      <.0001 
UN(6,5)     PersonID      0.7982     0.08264      9.66      <.0001 
UN(6,6)     PersonID      2.3412     0.09969     23.48      <.0001 
 
                            Information Criteria 
Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 
    22644.9       27    22698.9    22699.1    22750.0    22834.0    22861.0 
 
                        Solution for Fixed Effects 
                                   Standard 
Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 
itemnum     1            4.5467     0.05258    5509      86.47      <.0001 
itemnum     2            5.2892     0.04153    5509     127.35      <.0001 
itemnum     3            4.8957     0.04802    5509     101.96      <.0001 
itemnum     4            5.3590     0.04223    5509     126.90      <.0001 
itemnum     5            4.8604     0.05167    5509      94.06      <.0001 
itemnum     6            5.3209     0.04607    5509     115.49      <.0001 
Model 1. Fully Z-Scored Factor Model Identification  
(Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated) 
 
TITLE "Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; 
PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 
 CLASS PersonID itemnum; 
 MODEL response = itemnum / SOLUTION NOINT NOTEST; 
 REPEATED itemnum / TYPE=FA(1) SUBJECT=PersonID R RCORR; 
RUN; 
 
                      Estimated R Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      3.0493      0.8670      1.5313      0.9682      1.2626      1.0108 
   2      0.8670      1.9028      0.8716      0.5511      0.7187      0.5753 
   3      1.5313      0.8716      2.5431      0.9733      1.2692      1.0161 
   4      0.9682      0.5511      0.9733      1.9672      0.8025      0.6424 
   5      1.2626      0.7187      1.2692      0.8025      2.9451      0.8378 

The R matrix shows the 
unconditional variances and 
covariances for the items. 
 
RCORR is the unconditional 
correlation matrix. 
 
Note THIS IS THE DATA—
the only discrepancies you’d 
see relative to descriptive 
statistics would be from 
missing data, as these are ML 
estimates (that assume MAR 
rather than MCAR as in 
listwise deletion). 

The fixed effects again show the 
unconditional means per item. 

TYPE=FA(1) creates the covariance 
matrix that would be predicted by a 
single-factor model. 

The R matrix shows the 
predicted variances and 
covariances for the items. 
 
RCORR is the single-factor 
predicted correlation matrix. 
 
THIS IS NO LONGER THE 
DATA. So the objective is to 
see how close this predicted 
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   6      1.0108      0.5753      1.0161      0.6424      0.8378      2.3412 
 
                Estimated R Correlation Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      1.0000      0.3600      0.5499      0.3953      0.4213      0.3783 
   2      0.3600      1.0000      0.3962      0.2848      0.3036      0.2726 
   3      0.5499      0.3962      1.0000      0.4351      0.4638      0.4164 
   4      0.3953      0.2848      0.4351      1.0000      0.3334      0.2994 
   5      0.4213      0.3036      0.4638      0.3334      1.0000      0.3191 
   6      0.3783      0.2726      0.4164      0.2994      0.3191      1.0000 
 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm    Subject     Estimate       Error     Value        Pr Z 
 
FA(1)       PersonID      1.5259     0.09440     16.16      <.0001 
FA(2)       PersonID      1.4093     0.07096     19.86      <.0001 
FA(3)       PersonID      1.0038     0.07755     12.94      <.0001 
FA(4)       PersonID      1.3518     0.07071     19.12      <.0001 
FA(5)       PersonID      1.8986     0.09312     20.39      <.0001 
FA(6)       PersonID      1.6706     0.08330     20.05      <.0001 
 
FA(1,1)     PersonID      1.2342     0.05332     23.15      <.0001 
FA(2,1)     PersonID      0.7025     0.04720     14.88      <.0001 
FA(3,1)     PersonID      1.2407     0.04783     25.94      <.0001 
FA(4,1)     PersonID      0.7845     0.04679     16.76      <.0001 
FA(5,1)     PersonID      1.0230     0.05202     19.67      <.0001 
FA(6,1)     PersonID      0.8190     0.05019     16.32      <.0001 
 
                            Information Criteria 
Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 
    23072.8       18    23108.8    23108.9    23142.9    23198.9    23216.9 
 
                        Solution for Fixed Effects 
                                   Standard 
Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 
itemnum     1            4.5467     0.05258    5509      86.47      <.0001 
itemnum     2            5.2892     0.04153    5509     127.35      <.0001 
itemnum     3            4.8957     0.04802    5509     101.96      <.0001 
itemnum     4            5.3590     0.04223    5509     126.90      <.0001 
itemnum     5            4.8604     0.05167    5509      94.06      <.0001 
itemnum     6            5.3209     0.04607    5509     115.49      <.0001

The FA(item) terms are the item residual 
variances. The FA(item, factor) terms are 
the item factor loadings. 
 So the total variance per item is given by: 
loading2(1) + error variance, as shown in 
the R matrix above. 
 
Item 1 = 1.2342^2 + 1.5259 = 3.0493 
 
The covariance between items is given 
by their loadings multiplied together. 
 
Item 1 and 2 cov = 1.2342*0.7025 = 
0.8670 

The fixed effects now show the 
intercepts per item conditional on 
factor = 0 (which then are equal 
to the original item means). 
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Tau-Equivalent Items Single-Factor Model with Marker Item Factor Model Identification  
(Factor Variance = ?, Factor Mean = 0, All Loadings Equal at 1) 
 
TITLE "Tau-Equivalent Items Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; 
PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 
 CLASS PersonID itemnum; 
 MODEL response = itemnum / SOLUTION NOINT NOTEST; 
 RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID  G V VCORR; 
 REPEATED itemnum / TYPE=TOEPH(1) SUBJECT=PersonID R; RUN; 
                      Estimated R Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      2.0017 
   2                  1.1357 
   3                              1.4550 
   4                                          1.0866 
   5                                                      2.0552 
   6                                                                  1.4565 
           Estimated G Matrix 
                     Person 
 Row    Effect       ID            Col1 
   1    Intercept       1        0.9127 
                      Estimated V Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      2.9143      0.9127      0.9127      0.9127      0.9127      0.9127 
   2      0.9127      2.0483      0.9127      0.9127      0.9127      0.9127 
   3      0.9127      0.9127      2.3677      0.9127      0.9127      0.9127 
   4      0.9127      0.9127      0.9127      1.9993      0.9127      0.9127 
   5      0.9127      0.9127      0.9127      0.9127      2.9679      0.9127 
   6      0.9127      0.9127      0.9127      0.9127      0.9127      2.3691 
                Estimated V Correlation Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      1.0000      0.3735      0.3474      0.3781      0.3103      0.3473 
   2      0.3735      1.0000      0.4144      0.4510      0.3702      0.4143 
   3      0.3474      0.4144      1.0000      0.4195      0.3443      0.3853 
   4      0.3781      0.4510      0.4195      1.0000      0.3747      0.4194 
   5      0.3103      0.3702      0.3443      0.3747      1.0000      0.3442 
   6      0.3473      0.4143      0.3853      0.4194      0.3442      1.0000 
 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm    Subject     Estimate       Error     Value      Pr > Z 
UN(1,1)     PersonID      0.9127     0.04938     18.48      <.0001 
Var(1)      PersonID      2.0017     0.09613     20.82      <.0001 
Var(2)      PersonID      1.1357     0.05929     19.15      <.0001 
Var(3)      PersonID      1.4550     0.07304     19.92      <.0001 
Var(4)      PersonID      1.0866     0.05703     19.05      <.0001 
Var(5)      PersonID      2.0552     0.09729     21.13      <.0001 
Var(6)      PersonID      1.4565     0.07161     20.34      <.0001 
 
                            Information Criteria 
Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 
    23131.1       13    23157.1    23157.1    23181.7    23222.2    23235.2 
 
                        Solution for Fixed Effects 
                                   Standard 
Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 
itemnum     1            4.5467     0.05140    5510      88.45      <.0001 
itemnum     2            5.2892     0.04309    5510     122.74      <.0001 
itemnum     3            4.8957     0.04633    5510     105.67      <.0001 
itemnum     4            5.3590     0.04257    5510     125.87      <.0001 
itemnum     5            4.8604     0.05187    5510      93.70      <.0001 
itemnum     6            5.3209     0.04635    5510     114.81      <.0001 
Parallel Items Single-Factor Model with Marker Item Factor Model Identification  
(Factor Variance = ?, Factor Mean = 0, All Loadings = 1 and All Error Variances Equal) 
 
TITLE "Parallel Items Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED"; 
PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; 
 CLASS PersonID itemnum; 
 MODEL response = itemnum / SOLUTION NOINT NOTEST; 
 RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID G V VCORR; 
 REPEATED itemnum / TYPE=VC SUBJECT=PersonID R; RUN; 
 

A random intercept creates a constant 
source of covariance across all items. 

The R matrix shows the item 
residual variances. 
 
The G matrix shows the 
variance due to the factor for 
all items. 
 
V is the predicted covariance 
matrix from putting G and R 
back together, and VCORR is 
the predicted correlation 
matrix. 
 
 

The fixed effects still show the 
intercepts per item conditional on 
factor = 0 (which then are equal 
to the original item means). 

A random intercept creates a constant 
source of covariance across all items. 
A Type=VC R matrix means equal 
residual variance across items. 
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                      Estimated R Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      1.5180 
   2                  1.5180 
   3                              1.5180 
   4                                          1.5180 
   5                                                      1.5180 
   6                                                                  1.5180 
           Estimated G Matrix 
                     Person 
 Row    Effect       ID            Col1 
   1    Intercept       1        0.9401 
                      Estimated V Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      2.4581      0.9401      0.9401      0.9401      0.9401      0.9401 
   2      0.9401      2.4581      0.9401      0.9401      0.9401      0.9401 
   3      0.9401      0.9401      2.4581      0.9401      0.9401      0.9401 
   4      0.9401      0.9401      0.9401      2.4581      0.9401      0.9401 
   5      0.9401      0.9401      0.9401      0.9401      2.4581      0.9401 
   6      0.9401      0.9401      0.9401      0.9401      0.9401      2.4581 
 
                Estimated V Correlation Matrix for PersonID 1 
 Row        Col1        Col2        Col3        Col4        Col5        Col6 
   1      1.0000      0.3825      0.3825      0.3825      0.3825      0.3825 
   2      0.3825      1.0000      0.3825      0.3825      0.3825      0.3825 
   3      0.3825      0.3825      1.0000      0.3825      0.3825      0.3825 
   4      0.3825      0.3825      0.3825      1.0000      0.3825      0.3825 
   5      0.3825      0.3825      0.3825      0.3825      1.0000      0.3825 
   6      0.3825      0.3825      0.3825      0.3825      0.3825      1.0000 
 
                  Covariance Parameter Estimates 
                                    Standard         Z 
Cov Parm    Subject     Estimate       Error     Value      Pr > Z 
UN(1,1)     PersonID      0.9401     0.05103     18.42      <.0001 
itemnum     PersonID      1.5180     0.02891     52.51      <.0001 
 
                            Information Criteria 
Neg2LogLike    Parms        AIC       AICC       HQIC        BIC       CAIC 
    23254.0        8    23270.0    23270.1    23285.2    23310.1    23318.1 
 
                        Solution for Fixed Effects 
                                   Standard 
Effect      itemnum    Estimate       Error      DF    t Value    Pr > |t| 
itemnum     1            4.5467     0.04721    5510      96.31      <.0001 
itemnum     2            5.2892     0.04721    5510     112.04      <.0001 
itemnum     3            4.8957     0.04721    5510     103.71      <.0001 
itemnum     4            5.3590     0.04721    5510     113.52      <.0001 
itemnum     5            4.8604     0.04721    5510     102.96      <.0001 
itemnum     6            5.3209     0.04721    5510     112.71      <.0001 
 
Unfortunately, multiple factor models in MIXED appear to be EFA models instead of CFA models, so 
no examples of two-factor models are given. 

The R matrix shows the item 
residual variances. 
 
The G matrix shows the 
variance due to the factor for 
all items. 
 
V is the predicted covariance 
matrix from putting G and R 
back together, and VCORR is 
the predicted correlation 
matrix. 
 
This type of predicted 
covariance matrix has a special 
name: compound symmetry. 
 
 

The fixed effects still show the 
intercepts per item conditional on 
factor = 0 (which then are equal 
to the original item means). 


