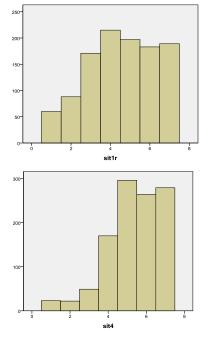
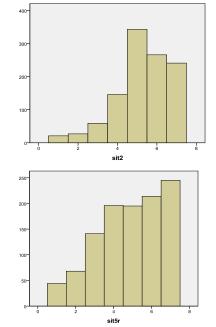
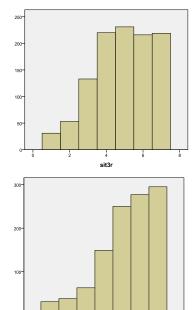
CFA Example Using Forgiveness of Situations (N = 1103)

The Forgiveness of Situations Subscale includes 6 items, 3 of which are reverse-coded, on a 7-point scale:


- 1. When things go wrong for reasons that can't be controlled, I get stuck in negative thoughts about it. (R)
 - 2. With time I can be understanding of bad circumstances in my life.
 - 3. If I am disappointed by uncontrollable circumstances in my life, I continue to think negatively about them. (R)
 - 4. I eventually make peace with bad situations in my life.
 - 5. It's really hard for me to accept negative situations that aren't anybody's fault. (R)
 - 6. Eventually I let go of negative thoughts about bad circumstances that are beyond anyone's control.


Response Anchors: 1 = Almost Always False of Me, 2=?, 3 = More Often False of Me, 4 = ?, 5 = More Often True of Me, 6 = ?, 7 = Almost Always True of Me


		.,	moorranay		•	
Observed Correlation Matrix	R1	2	R3	4	R5	6
R1	1.000					
2	0.240	1.000				
R3	0.647	0.317	1.000			
4	0.300	0.570	0.369	1.000		
R5	0.453	0.255	0.482	0.289	1.000	
6	0.297	0.457	0.356	0.448	0.304	1.000
Means	4.547	5.289	4.896	5.359	4.860	5.321
Variances	3.049	1.903	2.543	1.967	2.945	2.341
Observed Covariance Matrix	R1	2	R3	4	R5	6
R1	3.049	-		•		Ū
2	0.577	1.903				
R3	1.802	0.697	2.543			
4	0.734	1.103	0.824	1.967		
R5	1.358	0.604	1.319	0.695	2.945	
6	0.795	0.965	0.868	0.962	0.798	2.341

To do CFA analysis, you only really need means, variances, and either correlations or covariances among items: **Covariance**_{y1,y2} = **Correlation**_{y1,y2} * **SD**(**Y**₁) ***SD**(**Y**₂) OR **Correlation**_{y1,y2} = **Covariance**_{y1,y2} / **SD**(**Y**₁) ***SD**(**Y**₂)

Distributions of item responses - do these look "normal enough" to you?

sit6

Mplus Code to Read in Data:

TITLE: DATA:	CFA of Situation Factor FILE IS Study2.dat; ! Don't need path if in sar FORMAT IS free; ! Default TYPE IS INDIVIDUAL; ! Default	ne directory
VARIABLE:	NAMES ARE PersonID Self1 Self2r Self3 Self4r Self5 Se Other1r Other2 Other3r Other4 Other5r Other Sit1r Sit2 Sit3r Sit4 Sit5r Sit6 Selfsub Othsub Sitsub HFSsum;	
	USEVARIABLES ARE Sit1r Sit2 Sit3r Sit4 Sit5r Sit6; MISSING ARE ALL (99999); IDVARIABLE IS PersonID;	! Every variable in MODEL ! Identify missing values ! Identify person ID variable
ANALYSIS:	TYPE IS GENERAL; ! Default ESTIMATOR IS MLR; ! Robust ML	
SAVEDATA:	SAVE = FSCORES; FILE = FactorScores.dat; ! To save f	actor scores
PLOT:	TYPE = PLOT1 PLOT2 PLOT3; ! To get all plots (e.g., f	actor score distributions)
OUTPUT :	MODINDICES (6.635)! Voodoo suggestions to improve tSTDYX! Fully standardized solutionRESIDUAL! Standardized and normalized resFSDETERMINACY;! Correlation of factor scores with	- iduals for local fit
MODEL:	(model syntax goes here, to be changed for each model a	s shown below)

Model 1. Fully Z-Scored Factor Model Identification (Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated)

The following code refers to EVERY model parameter for completeness:

```
!Model 1 - Fully Z-Scored Factor Identification Approach
! Item factor loadings --> @=fixed, *=free → * REQUIRED for first item if free
Sit BY Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
! Item intercepts --> [ ] indicates means or intercepts, @=fixed, *=free
[Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*];
! Item error variances --> just list item by itself, @=fixed, *=free
Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
! Factor variance --> just list factor by itself, @=fixed, *=free
Sit@1;
! Factor mean --> [ ] indicates means or intercepts, @=fixed, *=free
[Sit@0];
```

In reality, all you'd need to write to define this model is:

```
! Item factor loadings --> @=fixed, *=free → * REQUIRED for first item if free
Sit BY Sit1r* Sit2 Sit3r Sit4 Sit5r Sit6;
! Factor variance --> just list factor by itself, @=fixed, *=free
Sit@1;
```

By default, all intercepts are estimated separately and the factor mean is fixed at 0. By default, all residual variances for the items are estimated separately, too. By default, factor variances and covariances are estimated freely.

Model 1. Fully Z-Scored Factor Model Identification (Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated)

UNSTANDARDIZED MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
FACTOR LOADINGS	(regression slop	pes of ite	m response	on factor)	
SIT BY					
SIT1R	1.234	0.069	17.906	0.000	
SIT2	0.702	0.074	9.441	0.000	
SIT3R	1.241	0.063	19.846	0.000	
SIT4	0.784	0.069	11.334	0.000	
SIT5R	1.023	0.053	19.179	0.000	
SIT6	0.819	0.069	11.942	0.000	
Means (of Factor	:)				
999 = "cannot be	computed" - her	re, becaus	e the para	meter is fixed	d to 0 already
SIT	0.000	0.000	999.000	999.000	-
Intercepts (of 1	tems) - HERE, Al	RE ACTUAL	ITEM MEANS	BECAUSE FACTO	OR MEAN IS ZERO
SIT1R	4.547			0.000	
SIT2	5.289		127.347		
SIT3R	4.896		101.959		
SIT4	5.359		126.895		
SIT5R	4.860		94.060		
SIT6	5.321		115.493		
Variances (of Fa	ator)				
•	e computed" - he:	re becaus	o the nara	meter is fixed	to 1 already
SIT			999.000		a do i direday
011	1.000	0.000			
Residual Variar	nces (variance o	f e's)			
SIT1R	1.526	0.149	10.217	0.000	
SIT2	1.409	0.128	11.014	0.000	
SIT3R	1.004	0.135	7.456	0.000	
SIT4	1.352	0.127	10.672	0.000	
SIT5R	1.899	0.118	16.025	0.000	
SIT6	1.671	0.159	10.517	0.000	

Making use of the unstandardized model estimates:

Writing out the model-individual predicted values:

$$\begin{split} Y_1 &= \mu_1 + \lambda_1 F + e_1 \\ Y_1 &= 4.547 + 1.234 F + e_1 \end{split}$$

Writing out the model-predicted item variances and covariances:

 $Var(Y_1) = (\lambda_1^2) Var(F) + Var(e_1)$ Var(Y_1) = (1.234²)*(1) + 1.526 = 3.049 (= original item variance)

 $Cov(Y_1, Y_2) = \lambda_1^* Var(F)^* \lambda_2$ $Cov(Y_1, Y_2) = (1.234)^* (1)^* (.702) = .866$

(actual covariance = .577, so the model over-predicted how related items 1 and 2 should be)

- . . .

				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
	(correlations of				
	get reliability	(proport	ion "true va	ariance") per item	L
SIT BY					
SIT1R	0.707	0.035	19.983	0.000	
SIT2	0.509	0.053	9.545	0.000	
SIT3R	0.778	0.034	22.655	0.000	
SIT4	0.559	0.048	11.641	0.000	
SIT5R	0.596	0.029	20.528	0.000	
SIT6	0.535	0.047	11.392	0.000	
Means (of Fact	or)				
SIT	0.000	0.000	999.000	999.000	
Intercepts (of	Items) \rightarrow is int	ercept /		t usually reported	1
SIT1R	2.604	0.057	45.888	0.000	
SIT2	3.834	0.111	34.394	0.000	
SIT3R	3.070	0.072	42.921	0.000	
SIT4	3.821	0.111		0.000	
SIT5R	2.832	0.066	43.095	0.000	
SIT6	3.477	0.101	34.573	0.000	
Variances (of	Factor) \rightarrow will a	lways be		dardized solution	
SIT	1.000	0.000	999.000	999.000	
Residual Varia	nces (standardize	d varian	ce of e's)		
SIT1R	0.500	0.050	10.009	0.000	
SIT2	0.741	0.054	13.628	0.000	
SIT3R	0.395	0.053	7.388	0.000	
SIT4	0.687	0.054	12.786	0.000	
SIT5R	0.645	0.035	18.619	0.000	
SIT6	0.714	0.050	14.187	0.000	
				d loading squared)	
SIT1R	0.500	0.050	9.991	0.000	
SIT2	0.259	0.054	4.772	0.000	
SIT3R	0.605	0.053	11.327	0.000	
SIT4	0.313	0.054	5.821	0.000	
SIT5R	0.355	0.035	10.264	0.000	
SIT6	0.286	0.050	5.696	0.000	

The standardized solution will look identical across methods of model identification with respect to the factor loadings, error variances, and R-square values for the items. The standardized intercepts will change because they depend on the unstandardized intercepts (but nobody reports them anyway).

Making use of the standardized model estimates:

Writing out the model – predicted item correlations:

 $Corr(Y_1, Y_2) = \lambda_1^* Var(F)^* \lambda_2$

 $Corr(Y_1, Y_2) = (.707)^*(1)^*(.509) = .360$

(actual correlation = .240, so the model over-predicted how related 1 and 2 should be)

Next up: two equivalent ways of getting the same model, but with different scaling (i.e., different means of identification...)

Now let's see the model parameters when using the marker item for model identification instead... Model 2. Marker Item Loading = 1, Factor Mean = 0 (Factor Variance, All Intercepts Estimated)

Sit BY Sitlr@1 [Sitlr* Sit2* S Sitlr* Sit2* S	Sit2* Sit3r* it3r* Sit4* S	Sit4* Si Sit5r* Si	t5r* Sit6*; t6*];	<pre>0 - MOST COMMON APPROACH AND DEFAULT IN MPLUS ! Loadings (#1 fixed=1) ! Intercepts (all free) ! Residual variances (all free) ! Factor contacted (free)</pre>
Sit*; [Sit@0];				! Factor variance (free) ! Factor mean (fixed=0)
[01060],				. ructor mean (rrkeu-0)
UNSTANDARDIZED MO	DEL RESULTS			
	Retimete	0.5		Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
FACTOR LOADINGS (re	gression slop	es of it	em response	on factor)
Here, loading for S	IT1R is not t	cested be	cause it is	fixed=1
SIT BY				
SIT1R	1.000	0.000	999.000	999.000
SIT2	0.569	0.083	6.830	0.000
SIT3R	1.005	0.035	28.555	0.000
SIT4	0.636	0.082	7.741	0.000
SIT5R	0.829	0.053	15.698	0.000
SIT6	0.664	0.081	8.143	0.000
Means (of Factor)				
SIT	0.000	0.000	999.000	999.000
011	0.000	0.000	555.000	555.000
Intercepts (of Ite	ms) - EXPECTI	ED Y WHEN	FACTOR $= 0$,	or for mean of factor in sample
SIT1R	4.547	0.053	86.474	0.000
SIT2	5.289		127.347	0.000
SIT3R	4.896	0.048	101.960	0.000
SIT4	5.359	0.042	126.896	0.000
SIT5R	4.860	0.052	94.060	0.000
SIT6	5.321	0.046	115.492	0.000
Vanianana (af Each	~ ~)			
Variances (of Fact	1.523	0.170	0 054	0.000
Residual Variances			8.954	0.000
SIT1R	1.526	0.149	10.217	0.000
SIT2	1.409	0.149	11.014	0.000
SIT3R	1.004	0.120	7.456	0.000
SIT4	1.352	0.133	10.673	0.000
SII4 SIT5R	1.899	0.127	16.026	0.000
SIT6	1.671	0.110	10.517	0.000
JII U	T • 0 / T	0.139	TO.JT/	0.000
Yet another equival Model 3. Marker Iter				the factor… actor Variance and Mean Estimated)

```
! Model 3 -- Marker Item Loading and Intercept
      Sit BY Sit1r@1 Sit2* Sit3r* Sit4* Sit5r* Sit6*; ! Loadings (1 fixed=1)
      [Sit1r@0 Sit2* Sit3r* Sit4* Sit5r* Sit6*];
                                                                                           ! Intercepts (1 fixed=0)
       Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
                                                                                            ! Residual variances (all free)
      Sit*;
                                                                                            ! Factor variance (free)
      [Sit*];
                                                                                            ! Factor mean (free)
Means (of Factor) \rightarrow Note is mean of marker item 1
                                     4.547 0.053 86.474
                                                                                           0.000
      SIT
Intercepts (of Items) - EXPECTED Y WHEN FACTOR = 0
HERE, WHICH IS WHEN ITEM 1 = 0 \rightarrow beyond scale of item, so values are very low

        SIT1R
        0.000
        0.000
        999.000
        999.000

        SIT2
        2.701
        0.383
        7.046
        0.000

        SIT3R
        0.325
        0.171
        1.899
        0.058

        SIT4
        2.469
        0.380
        6.504
        0.000

        SIT5R
        1.092
        0.246
        4.431
        0.000

        SIT6
        2.304
        0.369
        6.250
        0.000

      SIT4
SIT5R
```

Calculating model degrees of freedom:

Total df = [v(v+1) / 2] + v = 27Spent by model = 18 Leftover df = 9

Model fit information for a single-factor model (same regardless of factor scaling method):

Number of Free Parameters 18 \rightarrow is # of estimated parameters ("free" to be not 0) Loglikelihood - use for testing differences in model fit across nested models -11536.404 \rightarrow this is for your specified model H0 Value 1.4158 \rightarrow indicates how far off from normal=1 HO Scaling Correction Factor for MLR -11322.435 \rightarrow this is for a saturated (perfect) model H1 Value 1.4073 \rightarrow indicates how far off from normal=1 H1 Scaling Correction Factor for MLR Information Criteria → "smaller is better" - use for nested or non-nested model comparisons 23108.808 \rightarrow AIC = (-2*LL_{H0}) + (2*estimated parameters) Akaike (AIC)

```
Bayesian (BIC)23198.912 \rightarrow BIC = (-2*LL_{H0}) + (LN N*estimated parameters)Sample-Size Adjusted BIC<br/>(n* = (n + 2) / 24)23141.739 \rightarrow BIC replacing N with (N + 2) / 24
```

Chi-Square Test of Model Fit (Significance is bad here) \rightarrow for your specified model

Value	307.799
Degrees of Freedom	9 $ ightarrow$ leftover after estimating our one-factor model
P-Value	0.0000
Scaling Correction Factor	1.3903 $ ightarrow$ indicates how far off from normal=1
for MLR	> 1 = leptokurtic distribution (too-fat tails)
	< 1 = platykurtotic distribution (too-thin tails)

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

Where does this χ^2 value for "model fit" come from? A rescaled -2LL model comparison of this one-factor model (H0) against the saturated model (H1) that perfectly reproduces the data covariances:

Step 1: Original $-2\Delta LL = -2^*(LL_{fewer} - LL_{more}) = -2(-11,536.404 + 11,322.435) = 427.938$

Step 2: Scaling correction = [($\# parms_{fewer} * scale_{fewer}$) - ($\# parms_{more} * scale_{more}$)] / ($\# parms_{fewer} - \# parms_{more}$) = [(18 * 1.4158) - (27 * 1.4073)] / (18 - 27) = -12.501 / -9 = 1.3903

Step 3: Rescaled $-2\Delta LL = -2\Delta LL$ / scaling correction = 427.938 / 1.903 = **307.803** \rightarrow ~matches model χ^2 Step 4: Difference in df = #parms_{more} – #parms_{fewer} = 27 - 18 = **9**

How to fit the saturated (Unstructured) Baseline Model: Item means, variances, and covariances in original data

```
! Saturated Model
 ! Item means --> [ ] indicates means or intercepts, @=fixed, *=free
    [Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*];
 ! Item variances --> just list item by itself, @=fixed, *=free
    Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
 ! Item covariances --> just list all by all, @=fixed, *=free
    Sit1r Sit2 Sit3r Sit4 Sit5r Sit6 WITH
    Sit1r* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
```

Model fit information for the saturated model

Number of Free Parameters

27 \rightarrow all possible means, variances, covariances

Loglikelihood HO Value HO Scaling Correction Factor	-11322.435 1.4073	
for MLR H1 Value H1 Scaling Correction Factor for MLR	-11322.435 1.4073	Note that H0 and H1 are now the same! Our H0 model IS the H1 saturated model.
Information Criteria		
Akaike (AIC)	22698.870	
Bayesian (BIC)	22834.027	
Sample-Size Adjusted BIC $(n^* = (n + 2) / 24)$	22748.268	
Chi-Square Test of Model Fit		
Value	0.000*	
Degrees of Freedom	0	
P-Value	0.0000	
Scaling Correction Factor for MLR	1.0000	

Now back to the rest of the one-factor model fit statistics:

RMSEA (Root Mean Square Error Of Approximation) (want close to 0 = saturated model)

Estimate 90 Percent C.I. Probability RMSEA <= .05	0.173 0.157 0.190 0.000 → so RMSEA does NOT overlap .05 (is signif > .05)
CFI/TLI (want close to 1 = satur	ated model)
CFI TLI	0.732 0.553
SRMR (Standardized Root Mean Squ	mare Residual) (want close to $0 = $ saturated model)
Value	0.086
Chi-Square Test of Model Fit for	r the Baseline Model $ ightarrow$ for the "no covariances" model
Value Degrees of Freedom P-Value	1128.693 15 0.0000

Where does this χ^2 value for "fit of the baseline model" come from? A rescaled -2LL model comparison of the independence model with NO covariances to the saturated model:

Step 1: Original $-2\Delta LL = -2^*(LL_{fewer} - LL_{more}) = -2(-12,312.952 + 11,322.435) = 1,981.034$

Step 2: Scaling correction = [($\# parms_{fewer} * scale_{fewer}$) - ($\# parms_{more} * scale_{more}$)] / ($\# parms_{fewer} - \# parms_{more}$) = [(12 * 0.9725) - (27 * 1.4073)] / (12 - 27) = -26.372 / -15 = 1.7551

Step 3: Rescaled $-2\Delta LL = -2\Delta LL$ / scaling correction = 1,981.034 / 1.7551 = **1,128.704** \rightarrow ~matches baseline χ^2 Step 4: Difference in df = #parms_{more} – #parms_{fewer} = 27 – 12 = **15**

What's the point? This baseline model fit test tells us whether there are any covariances at all (i.e., whether it even makes sense to try to fit latent factors to predict them).

How to fit the Independence (Null) Baseline Model: Item means and variances, but NO covariances

```
! Independence Model
  ! Item means --> [ ] indicates means or intercepts, @=fixed, *=free
    [Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*];
  ! Item variances --> just list item by itself, @=fixed, *=free
    Sitlr* Sit2* Sit3r* Sit4* Sit5r* Sit6*;
```

Model fit information for the independence model

Number of Free Parameters 12 Loglikelihood -12312.952 HO Value H0 Scaling Correction Factor 0.9725 for MLR H1 Value -11322.435 H1 Scaling Correction Factor 1.4073 for MLR Information Criteria Akaike (AIC) 24649.904 Bayesian (BIC) 24709.974 Sample-Size Adjusted BIC 24671.859 $(n^* = (n + 2) / 24)$ Chi-Square Test of Model Fit Value 1128.692* Note that the model fit is the same as Degrees of Freedom 15 the "baseline" model fit given before. P-Value 0.0000 1.7552 Scaling Correction Factor for MLR The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. $\mbox{MLM},\mbox{ MLM}$ and \mbox{WLSM} chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option. RMSEA (Root Mean Square Error Of Approximation) Although not 0 this is the worst possible

	Rel'aste	0,050		Although not 0, this is the worst possible
	Estimate	0.259		RMSEA while still allowing separate
	90 Percent C.I.	0.247	0.272	
	Probability RMSEA <= .05	0.000		means and variances per item in these
				data. RMSEA is a parsimony-corrected
CFI/TLI				absolute fit index (so, its fit is relative to
	CFI	0.000		the saturated model).
	TLI	0.000		
		0.000		
				CFI and TLI are 0 because they are
Chi-Squar	e Test of Model Fit for the Baselin	e Model		"incremental fit" indices relative to the
	Value 11	28.693		
	Degrees of Freedom	15		independence model (which this is).
	5			
	P-Value	0.0000		CDMD is also an abaslute fit index
				SRMR is also an absolute fit index
SRMR (Sta	ndardized Root Mean Square Residual)		(relative to saturated model), so this is
	Value	0.300		
	value	0.300		the worst it gets for these data, too.

So global fit for the one-factor model is not so good... (RMSEA = .173, CFI = .732) What do the voo-doo modification indices suggest we do to fix it?

MODEL MODIFICATION INDICES Minimum M.I. value for printing the modification index 6.635 EPC = EXPECTED PARAMETER CHANGE							
			M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.	
WITH Sta	tements (SUGGESTED ERROR	COVARIANCE	S for unk	nown multidim	ensionality)	
SIT2	WITH SIT:	1R	49.618	-0.464	-0.464	-0.316	
SIT3R	WITH SIT	lR	143.624	1.023	1.023	0.827	
SIT3R	WITH SIT:	2	34.877	-0.357	-0.357	-0.300	
SIT4	WITH SIT:	1R	36.280	-0.403	-0.403	-0.280	
SIT4	WITH SIT:	2	161.318	0.702	0.702	0.509	
SIT4	WITH SIT:	3R	29.202	-0.336	-0.336	-0.288	
SIT6	WITH SIT:	lR	24.079	-0.358	-0.358	-0.224	
SIT6	WITH SIT:	2	63.893	0.486	0.486	0.317	
SIT6	WITH SIT:	3r	22.386	-0.319	-0.319	-0.246	
SIT6	WITH SIT	1	46.541	0.415	0.415	0.276	

Another approach—how about we examine local fit and see where the problems seem to be? The means and variances of the items will be perfectly reproduced, so that's not an issue... *misfit results from the difference between the observed and model-predicted covariances.*

Mplus gives us the "residual" (defined as observed – predicted) or "leftover" covariance matrix, but it is scale dependent and thus not so helpful. We can calculate the residual correlation matrix (see spreadsheet):

Residual Correlation Matrix	R1	2	R3	4	R5	6
R1						
2	-0.120					
R3	0.097	-0.079				
4	-0.095	0.285	-0.066			
R5	0.032	-0.048	0.018	-0.044		
6	-0.081	0.185	-0.060	0.149	-0.015	

Mplus also gives us "normalized" residuals, which can be thought of as z-scores for how large the residual leftover covariance is in absolute terms. Because the denominator decreases with sample size, however, these values may be inflated in large samples, so look for *relatively* large values.

"Normalized" Residuals for Inter-Item Covariances = (observed – predicted) / SD(observed)

Normalized	Residuals for O	Covariances/Co	rrelations/Res	idual Correlat	ions	
	SIT1R	SIT2	SIT3R	SIT4	SIT5R	SIT6
SIT1R	0.000					
		0 000				
SIT2	-3.503	0.000				
SIT3R	2.977	-2.253	0.000			
SIT4	-2.928	6.560	-1.959	0.000		
SIT5R	0.960	-1.434	0.548	-1.372	0.000	
SIT6	-2.345	4.721	-1.756	3.925	-0.444	0.000

NEGATIVE NORMALIZED RESIDUAL \rightarrow Less related than you predicted (don't want to be together) **POSITIVE** NORMALIZED RESIDUAL \rightarrow More related than you predicted (want to be more together)

Why might the normalized residuals (leftover correlations) for the positive-worded items be larger than for the negatively-worded items?

These results suggest that wording valence is playing a larger role in the pattern of covariance across items than what the one-factor model predicts. Rather than adding voo-doo covariances among the residuals for specific items, how about a two-factor model based on wording instead?

Model 4. Fully Z-Scored, 2-Factor Model

Value

```
! Model 4 -- Fully Z-Scored 2-Factor Model
    SitP BY Sit2* Sit4* Sit6*;
                                               ! SitP loadings (all free)
    SitN BY Sit1r* Sit3r* Sit5r*;
                                               ! SitN loadings (all free)
    [Sit2* Sit4* Sit6*];
                                               ! SitP intercepts (all free)
    [Sit1r* Sit3r* Sit5r*];
                                              ! SitN intercepts (all free)
    Sit2* Sit4* Sit6*;
                                              ! SitP residual variances (all free)
    Sit1r* Sit3r* Sit5r*;
                                               ! SitN residual variances (all free)
    SitP@1; SitN@1;
                                               ! Factor variances (fixed=1)
    SitP WITH SitN*;
                                               ! Factor covariance (free)
    [SitP@0 SitN@0];
                                               ! Factor means (fixed=0)
MODEL FIT INFORMATION
                                               Is the 2-factor model better than the 1-factor
                                               model? How do we know?
                                          19
Number of Free Parameters
                                               Rescaled likelihood ratio test
Loglikelihood
   HO Value
                                  -11340.140
                                                (-2LL rescaled difference test):
                                    1.4017
   H0 Scaling Correction Factor
        for MLR
                                                1. -2\Delta LL = -2^* difference in LL:
   H1 Value
                                  -11322.435
                                                  -2^{*}(-11,536.404 + 11,340.140) = 392.528
    H1 Scaling Correction Factor 1.4073
         for MLR
                                                2. difference scaling correction:
Information Criteria
                                                 (parms_1*scale_1) - (parms_2*scale_2) / (parms_1 - parms_2)
                                  22718.281
   Akaike (AIC)
                                  22813.391
                                                  (18*1.4158) - (19*1.4017) / (18 - 19) = 1.1479
   Bayesian (BIC)
    Sample-Size Adjusted BIC
                                  22753.042
       (n^* = (n + 2) / 24)
                                                3. rescaled difference = -2\Delta LL / scaling correction:
                                                  392.528 / 1.1479 = 341.953
Chi-Square Test of Model Fit
   Value
                                     24.924*
                                        8
                                               4. compare rescaled difference to \chi^2 with df = \Deltadf :
    Degrees of Freedom
    P-Value
                                      0.0016
                                                  critical \chi^2 for df =1 is 3.84, so because 341.953
                                      1.4207
   Scaling Correction Factor
                                                  is > 3.84, the model fit significantly improved
         for MLR
   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
    for chi-square difference testing in the regular way. MLM, MLR and WLSM
    chi-square difference testing is described on the Mplus website. MLMV, WLSMV,
    and ULSMV difference testing is done using the DIFFTEST option.
RMSEA (Root Mean Square Error Of Approximation)
   Estimate
                                      0.044
    90 Percent C.I.
                               0.025 0.064
   Probability RMSEA <= .05
                                      0.667
CFT/TLT
   CFT
                                       0.985
    TLI
                                       0.972
Chi-Square Test of Model Fit for the Baseline Model
                                    1128.693
    Value
    Degrees of Freedom
                                          15
   P-Value
                                      0.0000
SRMR (Standardized Root Mean Square Residual)
```

0.029

UNSTANDARDIZED	RESULTS
----------------	---------

UNSTANDARDIZED	RESULTS				
SITP BY	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	On
-	1 007	0 0 5 0	10 407	0 000	(Si
SIT2	1.007	0.052	19.487	0.000	Si
SIT4	1.064	0.050	21.195		2*
SIT6	0.956	0.053	18.203	0.000	1 -
SITN BY					
SIT1R	1.325	0.048	27.698	0.000	<u>On</u>
SIT3R	1.349	0.044	30.514	0.000	(
SIT5R	1.009	0.055	18.358	0.000	
SITP WITH SITN =	= factor covaria	nce (= co	rrelation i	f variances=1) (
	0.564	0.041	13.776	0.000	
Means					(
SITP	0.000	0.000	999.000	999.000	`
SITN	0.000	0.000	999.000	999.000	
					<u>On</u>
Intercepts					(
SIT1R	4.547	0.053	86.474	0.000	Ìì
SIT2	5.289	0.042			
SIT3R	4.896	0.048			(
SIT4	5.359	0.040			
		0.042	94.060	0.000	1
SIT5R	4.860				
SIT6	5.321	0.046	115.492	0.000	
Variances					
	1 000	0 000	000 000	000 000	
SITP			999.000		
SITN	1.000	0.000	999.000	999.000	
Deciduel Menior					
Residual Variand		0 1 0 2	10 547	0 000	
SIT1R	1.294	0.103	12.547		
SIT2	0.888	0.097			
SIT3R	0.724	0.092	7.857		
SIT4	0.835	0.093			
SIT5R	1.926	0.119			
SIT6	1.428	0.134	10.684	0.000	
STDYX STANDARD	IZED RESULTS				
				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
SITP BY					
SIT2	0.730	0.032	22.794	0.000	
SIT4	0.759	0.029	25.995	0.000	
SIT6	0.625	0.035	17.949	0.000	
SITN BY					
SIT1R	0.759	0.022	34.072	0.000	
SIT3R	0.846	0.021	39.657	0.000	
SIT5R	0.588	0.030	19.651	0.000	
SITP WITH					
SITN	0.564	0.041	13.776	0.000	
Residual Variand	ces				
SIT1R	0.425	0.034	12.567	0.000	
SIT2	0.467	0.047	9.976	0.000	
SIT3R	0.285	0.036	7.895	0.000	
SIT4	0.425	0.044	9.589	0.000	
SIT5R	0.654	0.035	18.576	0.000	
SIT6	0.610	0.043	14.029	0.000	
	0.010	5.515			
R-SQUARE					
SIT1R	0.575	0.034	17.036	0.000	
SIT2	0.533	0.047	11.397	0.000	
SIT3R	0.715	0.036	19.829	0.000	
SIT4	0.575	0.044	12.998	0.000	
SIT5R	0.346	0.035	9.826	0.000	
SIT6	0.340	0.033	8.974	0.000	
0110	0.000	0.010	0.0/1	0.000	

$\frac{Omega}{(Sum of loadings)^2} / (Sum of loadings)^2 + Sum of error variances + 2* Sum of error covariances$
$\frac{\text{Omega for Positive Factor = .744}}{(1.007+1.064+0.956)^2 / (1.007+1.064+0.956)^2 + (0.888+0.835+1.428) + 2*0}$
(alpha was .746)
$\frac{\text{Omega for Negative Factor} = .775}{(1.325+1.349+1.009)^2 / (1.325+1.349+1.009)^2 + (1.294+0.724+1.926) + 2*0}$
(alpha was .780)

Wouldn't it be nice if Mplus would compute Omegas for you? It can, if you (a) label the parameters it needs to do the math, and (b) create new terms for the Omega estimates via MODEL CONSTRAINT:

Model 4. Fully Z-Scored, 2-Factor Model again, now with parameter labels

```
! Model 4 -- Fully Z-Scored 2-Factor Model
SitP BY Sit2* Sit4* Sit6* (L1-L3); ! SitP loadings (all free)
SitN BY SitIr* Sit3r* Sit5r* (L4-L6); ! SitN loadings (all free)
[Sit2* Sit4* Sit6*]; ! SitP intercepts (all free)
[Sit1r* Sit3r* Sit5r*]; ! SitN intercepts (all free)
Sit2* Sit4* Sit6* (E1-E3); ! SitP residual variances (all free)
Sit1r* Sit3r* Sit5r* (E4-E6); ! SitN residual variances (all free)
SitP@1; SitN@1; ! Factor variances (fixed=1)
SitP@1 SitN@0]; ! Factor means (fixed=0)
MODEL CONSTRAINT: ! Calculate omega model-based reliability per factor
NEW (OmegaP OmegaN);
OmegaP = ((L1+L2+L3)**2) / (((L1+L2+L3)**2) + (E1+E2+E3));
```

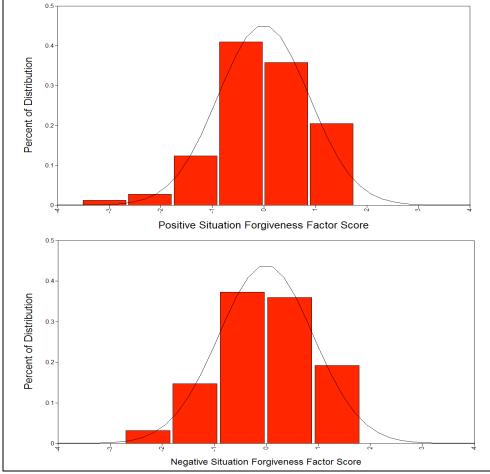
OmegaN = ((L4+L5+L6)**2) / (((L4+L5+L6)**2) + (E4+E5+E6));

Output now provided in unstandardized solution:

New/Additional	Parameters			
OMEGAP	0.744	0.020	37.956	0.000
OMEGAN	0.775	0.014	56.803	0.000

Any more local fit problems? Let's see...

Residuals	of covariance n	natrix (so unst	andardized est	imate of how fa	ar off each cov	ariance is):
	SIT1R	SIT2	SIT3R	SIT4	SIT5R	SIT6
SIT1R	0.000					
SIT2	-0.176	0.000				
SIT3R	0.016	-0.069	0.000			
SIT4	-0.062	0.031	0.015	0.000		
SIT5R	0.021	0.030	-0.042	0.089	0.000	
SIT6	0.080	0.003	0.140	-0.055	0.254	0.000
"Normalize	ed" residuals (z	-like statistic fo	or how far off e	ach covariance	e is):	
	SIT1R	SIT2	SIT3R	SIT4	SIT5R	SIT6
SIT1R	0.000					
SIT2	-2.125	0.000				
SIT3R	0.172	-0.896	0.000			
SIT4	-0.768	0.370	0.192	0.000		
SIT5R	0.212	0.382	-0.464	1.128	0.000	
SIT6	0.869	0.031	1.658	-0.676	2.847	0.000


Any suggested voo-doo? (only available when not using MODEL CONSTRAINT, though)

	DDIFICATION INDICE M.I. value for pr	-	modifica	tion index	6.635
		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
BY State	ements - these are	cross-load	dings		
SITN SITN	BY SIT2 BY SIT6	9.775 10.828	-0.224 0.245	-0.224 0.245	-0.162 0.160
WITH Sta	atements - these a	re error co	ovariance	s	
SIT4 SIT6	WITH SIT2 WITH SIT4		0.332 -0.273	0.332 -0.273	0.386 -0.250

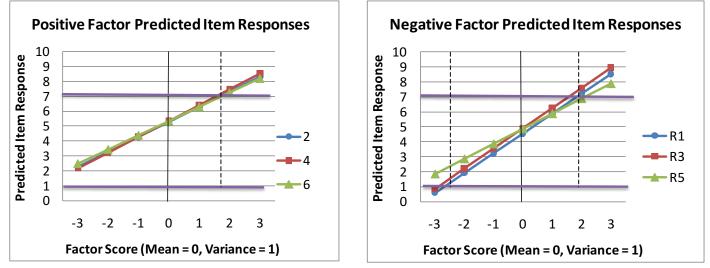
Because we have no real theoretical or defendable reason to fit any of these suggested parameters, we will not add any new parameters. This will be about as good as it gets.

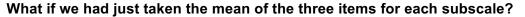
Let's examine the estimated distribution of the factor scores for each factor:

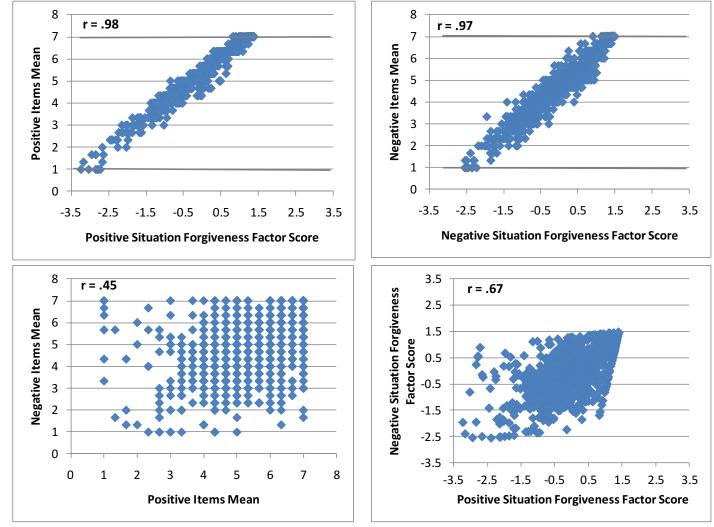
	F FACTOR SCORES DR SCORE INFORMA FACTOR DETERMI SITP 0.8 SITN 0.9	NACIES 82	between t scores, is	determinacy, the correlation he estimated and true factor .882 for the positive factor for the negative factor.	
	ATISTICS FOR EST LE STATISTICS Means	IMATED FACTOR	SCORES		actor score SE = 0.472 factor score SE = 0.418
	SITP	SITP_SE	SITN	SITN_SE	
1	0.000 Covariances	0.472	0.000	0.418	
	SITP	SITP_SE	SITN	SITN_SE	
SITP	0.777				
SITP_SE	0.000	0.000			
SITN	0.533	0.000	0.825		
SITN_SE	0.000	0.000	0.000	0.000	
	Correlations				
	SITP	SITP_SE	SITN	SITN_SE	Although the correlation between
SITP	1.000				the factors was originally .56,
SITP SE	999.000	1.000			the correlation between the
SITN_SI	0.665	999.000	1.000		estimated factor scores is .67
SITN_SE	999.000	999.000	999.000	1.000	instead due to shrinkage.

The positive factor scores have an estimated mean of 0 with a variance of 0.78 instead of 1.00.

The SE for each person's factor score is .472. Treating factor scores as observed variables is like saying SE = 0.


Positive factor score = Score ± 2*.472 = Score ± .944


The negative factor scores have an estimated mean of 0 with a variance of 0.825 instead of 1.00.


The SE for each person's factor score is .418, so \pm .836.

The negative factor scores retain more variance (and have a smaller SE) because there is more information in them, due to higher factor loadings (greater reliability) of their items.

There are problems with either of these observed variable approaches: The **mean of the items** appears to have less variability (i.e., fewer possible scores) and assumes that all items should be weighted equally and have no error. The **estimated factor scores** do not have the same properties as estimated for the factor in the model (i.e., less variance for each factor, higher correlation among the factors).

What to do instead of either of these? Stay tuned for how to use plausible values.

Another example: Formal Tests of CTT Assumptions

We will test the CTT assumption of tau-equivalence (equal factor loadings), one factor at a time. If those hold, we can then test the assumption of parallel items (equal error variances, too).

First, tau-equivalence of the negative factor only:

```
! Model 5 -- Tau-Equivalent Negative Items Only 2-Factor Model
SitP BY Sit2* Sit4* Sit6*; ! SitP loadings (all free)
SitN BY Sit1r* Sit3r* Sit5r* (NegLoad); ! SitN loadings (all held equal)
[Sit2* Sit4* Sit6*]; ! SitP intercepts (all free)
[Sit1r* Sit3r* Sit5r*]; ! SitN intercepts (all free)
Sit2* Sit4* Sit6*; ! SitP residual variances (all free)
Sit1r* Sit3r* Sit5r*; ! SitN residual variances (all free)
SitP@1; SitN@1; ! Factor variances (fixed=1)
[SitP@0 SitN@0]; ! Factor means (fixed=0)
```

UNSTANDARDIZED MODEL RESULTS

ONDIMDI					
					Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
SITP	BY				
SIT2	21	1.007	0.052	19.491	0.000
-					
SIT4		1.063	0.050	21.202	0.000
SIT6		0.957	0.052	18.257	0.000
SITN	BY				
SIT1F	ર	1.254	0.032	38.957	0.000
SIT3F	2	1.254	0.032	38.957	0.000
SIT5F		1.254	0.032	38.957	0.000
SILJE	\	1.234	0.032	30.937	0.000
SITP	WITH				
SITN		0.575	0.041	13.855	0.000
Residual	Variances	5			
SIT1F	2	1.335	0.083	16.150	0.000
SIT2		0.889	0.096	9.217	0.000
-					
SIT3F	<	0.857	0.069	12.337	0.000
SIT4		0.837	0.092	9.045	0.000
SIT5F	ર	1.806	0.115	15.716	0.000
SIT6		1.425	0.134	10.630	0.000

STANDARDIZED STYDX MODEL RESULTS

0 111101110		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
SITP	BY				
SIT2		0.730	0.032	22.840	0.000
SIT4		0.758	0.029	26.037	0.000
SIT6		0.626	0.035	17.958	0.000
SITN	BY				
SIT1F	ર	0.735	0.016	46.189	0.000
SIT3F	ર	0.805	0.016	50.774	0.000
SIT5F	ર	0.682	0.015	45.076	0.000
Residual	Variances				
SIT1F		0.459	0.023	19.604	0.000
SIT2	-	0.467	0.047	10.017	0.000
SIT3F	ર	0.353	0.025	13.835	0.000
SIT4		0.425	0.044	9.633	0.000
SIT5F	ર	0.535	0.021	25.887	0.000
SIT6		0.609	0.044	13.969	0.000

Why are the standardized factor loadings for the negative factor not held equal like the unstandardized loadings are?

Fit of previous 2-factor model:	Fit of tau-equivalent negative items 2-factor model:
Number of Free Parameters 19	Number of Free Parameters 17
Loglikelihood H0 Value -11340.140 H0 Scaling Correction Factor 1.4017 for MLR H1 Value -11322.435 H1 Scaling Correction Factor 1.4073 for MLR	Loglikelihood H0 Value -11357.612 H0 Scaling Correction Factor 1.4474 for MLR H1 Value -11322.435 H1 Scaling Correction Factor 1.4073 for MLR
RMSEA (Root Mean Square Error Of Approximation)Estimate0.04490 Percent C.I.0.025Probability RMSEA <= .05	RMSEA (Root Mean Square Error Of Approximation)Estimate0.06290 Percent C.I.0.0460.0460.079Probability RMSEA <= .05
CFI/TLI CFI 0.985 TLI 0.972	CFI/TLI CFI 0.962 TLI 0.943

Does the assumption of tau-equivalence hold for the negative items? How do we know?

Second, tau-equivalence of the factor loadings for the positive factor only:

```
! Model 6 -- Tau-Equivalent Positive Items Only 2-Factor Model
    SitP BY Sit2* Sit4* Sit6* (PosLoad); ! SitP loadings (all held equal)
   SitP BY SIt2* SIt3* Sit5r*;
SitN BY Sit1r* Sit3r* Sit5r*;
[Sit2* Sit4* Sit6*];
[Sit1r* Sit3r* Sit5r*];
                                                ! SitN loadings (all free)
                                                ! SitP intercepts (all free)
                                                ! SitN intercepts (all free)
    Sit2* Sit4* Sit6*;
                                                ! SitP residual variances (all free)
    Sit1r* Sit3r* Sit5r*;
                                                ! SitN residual variances (all free)
    SitP@1; SitN@1;
                                                ! Factor variances (fixed=1)
    SitP WITH SitN*;
                                                ! Factor covariance (free)
    [SitP@O SitN@O];
                                                ! Factor means (fixed=0)
Number of Free Parameters
                                          17
Loglikelihood
    H0 Value
                                   -11341.773
    HO Scaling Correction Factor 1.4187
                                                     Does the assumption of tau-equivalence hold
          for MLR
                                                     for the positive items? How do we know?
    H1 Value
                                   -11322.435
    H1 Scaling Correction Factor 1.4073
          for MLR
RMSEA (Root Mean Square Error Of Approximation)
    Estimate
                                        0.040
                                0.023 0.058
    90 Percent C.I.
    Probability RMSEA <= .05
                                        0.797
CFI/TLI
    CFT
                                        0.984
    TLI
                                        0.976
```

UNSTANDARDIZED MODEL RESULTS

	Estir	mate	S.E.	Est./S.E.	Two-Tailed P-Value
SITP H	ЗҮ				
SIT2	1	.014	0.036	28.389	0.000
SIT4			0.036	28.389	0.000
SIT6		.014	0.036	28.389	0.000
SITN	ВҮ	0.05		0.5 505	0.000
SIT1R			0.048	27.727	0.000
SIT3R			0.044	30.531	0.000
SIT5R	1	.010	0.055	18.370	0.000
SITP	WITH				
SITN	0	.567	0.040	14.131	0.000
Residual	Variances				
SIT1R	1	.295	0.103	12.580	0.000
SIT2	0	.881	0.083	10.587	0.000
SIT3R	0	.725	0.092	7.873	0.000
SIT4	0	.886	0.075	11.767	0.000
SIT5R	1	.925	0.119	16.117	0.000
SIT6		.384	0.118	11.737	0.000
STANDARDI	ZED STDYX MODEL	RESULTS			
STANDARDI	ZED STDYX MODEL	RESULTS			Two-Tailed
-	Estir		S.E.	Est./S.E.	Two-Tailed P-Value
-	Estir	mate	S.E.	Est./S.E.	
-	Estir	mate	S.E. 0.023	Est./S.E. 32.593	
SITP H	Estir BY 0	mate .734			P-Value
SITP H SIT2	Estin BY 0 0	mate .734	0.023	32.593	P-Value 0.000
SITP F SIT2 SIT4 SIT6	Estin BY 0 0 0	mate .734 .733	0.023 0.021	32.593 35.611	P-Value 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN	Estin BY 0 0 0 BY	mate .734 .733 .653	0.023 0.021 0.022	32.593 35.611 29.743	P-Value 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R	Estin BY 0 0 0 BY 0	mate .734 .733 .653 .759	0.023 0.021 0.022	32.593 35.611 29.743 34.139	P-Value 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R SIT3R	Estin BY 0 0 0 BY 0 0 0	mate .734 .733 .653 .759 .846	0.023 0.021 0.022 0.022 0.022	32.593 35.611 29.743 34.139 39.706	P-Value 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R	Estin BY 0 0 0 BY 0 0 0	mate .734 .733 .653 .759	0.023 0.021 0.022	32.593 35.611 29.743 34.139	P-Value 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R	Estin BY 0 0 0 BY 0 0 0 0	mate .734 .733 .653 .759 .846	0.023 0.021 0.022 0.022 0.022	32.593 35.611 29.743 34.139 39.706	P-Value 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP	Estin 3Y 0 0 0 0 8Y 0 0 0 0 0 0	mate .734 .733 .653 .759 .846 .588	0.023 0.021 0.022 0.022 0.021 0.030	32.593 35.611 29.743 34.139 39.706 19.663	P-Value 0.000 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R	Estin 3Y 0 0 0 0 8Y 0 0 0 0 0 0	mate .734 .733 .653 .759 .846	0.023 0.021 0.022 0.022 0.022	32.593 35.611 29.743 34.139 39.706	P-Value 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN	Estin 3Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mate .734 .733 .653 .759 .846 .588	0.023 0.021 0.022 0.022 0.021 0.030	32.593 35.611 29.743 34.139 39.706 19.663	P-Value 0.000 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual	Estin O O BY O O WITH O Variances	mate .734 .733 .653 .759 .846 .588	0.023 0.021 0.022 0.022 0.021 0.030 0.040	32.593 35.611 29.743 34.139 39.706 19.663 14.131	P-Value 0.000 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R	Estin O O O BY O WITH O Variances O	mate .734 .733 .653 .759 .846 .588 .567 .425	0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034	32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598	P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R SIT2	Estin 3Y 0 0 0 0 0 0 0 0 0 0 0 0 0	mate .734 .733 .653 .759 .846 .588 .567 .425 .461	0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034 0.033	32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598 13.965	P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R SIT2 SIT3R	Estin 0 0 0 0 8Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mate .734 .733 .653 .759 .846 .588 .567 .425 .461 .285	0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034 0.033 0.036	32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598 13.965 7.910	P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R SIT2 SIT3R SIT4	Estin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mate .734 .733 .653 .759 .846 .588 .567 .425 .461 .285 .463	0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034 0.033 0.036 0.030	32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598 13.965 7.910 15.350	P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SITP F SIT2 SIT4 SIT4 SIT6 SITN SIT1R SIT3R SIT5R SITP SITN Residual SIT1R SIT2 SIT3R	Estin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mate .734 .733 .653 .759 .846 .588 .567 .425 .461 .285	0.023 0.021 0.022 0.022 0.021 0.030 0.040 0.034 0.033 0.036	32.593 35.611 29.743 34.139 39.706 19.663 14.131 12.598 13.965 7.910	P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Given that tau-equivalence held for the positive factor, we can also test the assumption of parallel items as equal residual variances (in addition to equal factor loadings):

! Model 7 Parallel Items on Positive Only 2	2-Factor Model
SitP BY Sit2* Sit4* Sit6* (PosLoad);	! SitP loadings (all held equal)
SitN BY Sit1r* Sit3r* Sit5r*;	! SitN loadings (all free)
[Sit2* Sit4* Sit6*];	! SitP intercepts (all free)
<pre>[Sit1r* Sit3r* Sit5r*];</pre>	! SitN intercepts (all free)
Sit2* Sit4* Sit6* (PosError);	! SitP residual variances (all held equal)
Sit1r* Sit3r* Sit5r*;	! SitN residual variances (all free)
SitP@1; SitN@1;	<pre>! Factor variances (fixed=1)</pre>
SitP WITH SitN*;	! Factor covariance (free)
[SitP@O SitN@O];	! Factor means (fixed=0)

Number of Free Parameters

Loglikelik	nood		-
	HO Value -	-1136	1.960
	HO Scaling Correction Factor for MLR	1	.3443
	H1 Value -	-1132	2.435
	H1 Scaling Correction Factor for MLR	1	.4073
RMSEA (Roc	ot Mean Square Error Of Approxim	natic	n)
	Estimate		0.056
	90 Percent C.I. 0.0)41	0.072
	Probability RMSEA <= .05		0.244
CFI/TLI			
	CFI		0.963
	TLI		0.954

he assumption o sitive items? Hov	f parallel items hold for v do we know?

UNSTANDARDIZED MODEL RESULTS

UNSTANDARDIZED MODI	L RESULTS			
				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
SITP BY				
SIT2	1.005	0.035	28.455	0.000
SIT4	1.005	0.035	28.455	0.000
SIT6	1.005	0.035	28.455	0.000
SITN BY				
SIT1R	1.325	0.048	27.816	0.000
SIT3R	1.347	0.044	30.623	0.000
SIT5R	1.011	0.055	18.408	0.000
SITP WITH				
SITN	0.581	0.040	14.581	0.000
Residual Variance:	5			
SIT1R	1.294	0.102	12.645	0.000
SIT2	1.060	0.061	17.452	0.000
SIT3R	0.728	0.091	7.992	0.000
SIT4	1.060	0.061	17.452	0.000
SIT5R	1.922	0.119	16.095	0.000
SIT6	1.060	0.061	17.452	0.000
STANDARDIZED STDYX	MODEL RESULTS	5		

SITP	BY				
SIT2		0.698	0.019	37.365	0.000
SIT4		0.698	0.019	37.365	0.000
SIT6		0.698	0.019	37.365	0.000
SITN	BY				
SIT1F	ર	0.759	0.022	34.339	0.000
SIT3B	ર	0.845	0.021	40.011	0.000
SIT5B	ર	0.589	0.030	19.713	0.000
SITP	WITH				
SITN		0.581	0.040	14.581	0.000
Residual	l Variances				
SIT1H	ર	0.424	0.034	12.652	0.000
SIT2		0.512	0.026	19.616	0.000
SIT3B	ર	0.286	0.036	8.024	0.000
SIT4		0.512	0.026	19.616	0.000
SIT4 SIT5E	2	0.512 0.653	0.026 0.035	19.616 18.520	0.000

Example write-up describing these analyses...

(Note: You may borrow the phrasing contained in this example to describe various aspects of your analyses, but your own results sections will not mimic this example exactly—they should be <u>customized</u> to describe the how and the why of what <u>you</u> did, specifically).

(Descriptive information for the sample and items would have already been given in the method section...)

The reliability and dimensionality of six items each assessing forgiveness of situations was assessed in a sample of 1,103 persons with a confirmatory factor analysis using robust maximum likelihood estimation (MLR) in Mplus v. 7.4 (Muthén & Muthén, 1998-2015). All models were identified by setting any latent factor means to 0 and latent factor variances to 1, such that all item intercepts, item factor loadings, and item residual variances were then estimated. The six items utilized a seven-point response scale, and three items were reverse-coded prior to analysis such that higher values then indicated greater levels of forgiveness of situations for all items. Model fit statistics reported in Table 1 include the obtained model χ^2 , its scaling factor (in which values different than 1.000 indicate deviations from normality), its degrees of freedom, and its *p*-value (in which non-significance is desirable for good fit), CFI, or Comparative Fit Index (in which values higher than .95 are desirable for good fit), and the RMSEA, or Root Mean Square Error of Approximation, point estimate and 90% confidence interval (in which values lower than .06 are desirable for good fit). As reported in Table 2, nested model comparisons were conducted using the rescaled $-2\Delta LL$ with degrees of freedom equal to the rescaled difference in the number of parameters between models (i.e., a rescaled likelihood ratio test). The specific models examined are described in detail below.

Although a one-factor model was initially posited to account for the pattern of covariance across these six items, it resulted in poor fit, as shown in Table 1. Although each item had a significant factor loading (with standardized loadings ranging from .509 to .778), a single latent factor did not adequately describe the pattern of relationship across these six items as initially hypothesized. Sources of local misfit were identified using the normalized residual covariance matrix, available via the RESIDUAL output option in Mplus, in which individual values were calculated as: (observed covariance – expected covariance) / SD(observed covariance). Relatively large positive residual covariances were observed among items 2, 4, and 6 (the positively-worded items), indicating that these items were more related than was predicted by the single-factor model. Modification indices, available via the MODINDICES output option in Mplus, corroborated this pattern, further suggesting additional remaining relationships among the negatively-worded items as well.

The necessity of separate latent factors for the positively-worded and negatively-worded items was tested by specifying a two-factor model in which the positively-worded items 2, 4, and 6 indicated a *forgiveness* factor, and in which negatively-worded items 1, 3, and 5 indicated a *not unforgiveness* factor, and in which the two factors were allowed to correlate. The two-factor model fit was acceptable by every criterion except the significant χ^2 , likely due to the large sample. In addition, the two-factor model fit significantly better than the one-factor model, as reported in Table 2, indicating that the estimated correlation between the two factors of .564 was significantly less than 1.000. Thus, the six items appeared to measure two separate but related constructs. Further examination of local fit via normalized residual covariances and modification indices yielded no interpretable remaining relationships, and thus this two-factor model was retained.

Table 3 provides the estimates and their standard errors for the item factor loadings, intercepts, and residual variances from both the unstandardized and standardized solutions. All factor loadings and the factor covariance were statistically significant. As shown in Table 3, standardized loadings for the forgiveness factor items ranged from .625 to .759 (with R² values for the amount of item variance accounted for by the factor ranging from .390 to .575), and standardized loadings for the not unforgiveness factor ranged from .588 to .846 (with R² values of .346 to .715), suggesting the factor loadings were practically significant as well. Omega model-based reliability was calculated for each factor as described in Brown (2006) as the squared sum of the factor loadings divided by the squared sum of the factor loadings plus the sum of the error variances plus twice the sum of the error covariances (although no error covariances were included here). Omega was .744 for the forgiveness factor and .775 for the not unforgiveness factor, suggesting marginal reliability for both of the three-item scales.

The resulting distribution of the factors was examined by requesting empirical Bayes estimates of the individual scores for each factor, as shown in Figure 1. Factor determinacy estimates, available via the FSDETERMINACY output option in Mplus, were .882 and .908, respectively, for the forgiveness and not unforgiveness factors (with standard errors for the factor scores of .472 and .418), indicating that the estimated factor scores were strongly related to their model-based counterparts. In addition, Figure 2 shows the predicted response for each item as a linear function of the latent factor based on the estimated model parameters. As shown, the predicted item response goes above the highest response option just before a latent factor score of 2 (i.e., 2 SDs above the mean), resulting in a ceiling effect for both sets of factor scores, as also shown in Figure 1. In addition, for the not unforgiveness factor, the predicted item response goes below the lowest response option just before a latent factor score of -3 (i.e., 3 SDs below the mean), resulting in a floor effect for the not unforgiveness factor, as also shown in Figure 1.

The extent to which the items within each factor could be seen as exchangeable was then examined via an additional set of nested model comparisons, as reported in Table 1 (for fit) and Table 2 (for comparisons of fit). First, the assumption of tau-equivalence (i.e., true-score equivalence, equal discrimination across items) was examined by constraining the factor loadings to be equal within a factor. For the not unforgiveness factor, the tau-equivalent model fit was acceptable but was significantly worse than the original two-factor model fit (i.e., in which all loadings were estimated freely). For the forgiveness factor, however, the tau-equivalent model fit and was not significantly worse than the original two-factor model fit. Thus, the assumption of tau-equivalence held for the forgiveness factor items only. Finally, the assumption of parallel items (i.e., equal factor loadings and equal residual variances, or equal reliability across items) was examined for the forgiveness factor items only, and the resulting model fit was acceptable but was significantly worse than the tau-equivalent forgiveness factor model fit. Thus, the assumption of parallel items did not hold for the forgiveness factor items. In summary, while the not unforgiveness factor items were not exchangeable, the forgiveness factor items were exchangeable with respect to their factor loadings only (i.e., equal discrimination, but not equal residual variances or reliability).

Tables would be built as seen in the excel workbook:

Table 1 \rightarrow "Model Fit Table 1" worksheet Table 2 \rightarrow "MLR Comparisons Table 2" worksheet Table 3 \rightarrow "Model Estimates Table 3" worksheet

Figures would be built as seen in this example:

Figure 1 \rightarrow Can be built in Mplus

Figure 2 \rightarrow Can be built using "Factor Model Predictions" worksheet

References:

Muthén, L. K., & Muthén, B.O. (1998-2015). *Mplus User's Guide*. Seventh Edition. Los Angeles, CA: Muthén & Muthén.

CFA Example Using Forgiveness of Situations (N = 1103) using SAS MIXED

SAS Code to Read in Mplus Data:

```
* Import data from Mplus, becomes var1-var23 without names at top;
PROC IMPORT OUT=work.Situation DATAFILE= "&example.\Study2.dat" DBMS=TAB REPLACE;
     GETNAMES=NO; DATAROW=1; RUN;
* Rename variables;
DATA Situation; SET Situation;
      ARRAY old(23) var1-var23;
      ARRAY new(23) PersonID Self1 Self2r Self3 Self4r Self5 Self6r
                    Other1r Other2 Other3r Other4 Other5r Other6
                    Sit1r Sit2 Sit3r Sit4 Sit5r Sit6
                    Selfsub Othsub Sitsub HFSsum;
      DO i=1 TO 23; new(i)=old(i); IF new(i)=99999 THEN new(i)=.; END;
      DROP i var1-var23; RUN;
* Stack situation items;
DATA SituationStacked; SET Situation;
      ARRAY aitem(6) Sit1r Sit2 Sit3r Sit4 Sit5r Sit6;
      DO i=1 TO 6; itemnum=i; response=aitem(i); OUTPUT; END; DROP i; RUN;
```

Independence (Null) Baseline Model: Item means and variances, but NO covariances

TITLE "Independence (Null) CFA Model in MIXED"; PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC N CLASS PersonID itemnum;	AMELEN=100 METHOD=ML;
MODEL response = itemnum / SOLUTION NOINT NOTEST; REPEATED itemnum / TYPE=TOEPH(1) SUBJECT=PersonID R; RUN;	TYPE=TOEPH(1) predicts a diagonal matrix (would be the
Estimated R Matrix for PersonID 1 Row Col1 Col2 Col3 Col4 Col5 Col6 1 3.0493	same as TYPE=UN(1).
2 1.9028 3 2.5431	
4 1.9672 5 2.9451 6 2.3412	The R matrix shows the unconditional variances per item—repeated in the next
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	piece of output as Var(item). Note that this independence model predicts no covariances between items.
Information Criteria Neg2LogLike Parms AIC AICC HQIC BIC CAIC 24625.9 12 24649.9 24650.0 24672.6 24710.0 24722.0	Model fit is given as $-2LL$ rather than LL (but otherwise is the same as given from Mplus).
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	The fixed effects show the unconditional means per item.

Saturated (Unstructured) Baseline Model: Item means, variances, and covariances in original data

TITLE "Saturated (Unstructured) CFA Model in MIXED"; PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML; CLASS PersonID itemnum; MODEL response = itemnum / SOLUTION NOINT NOTEST; TYPE=UN(6) predic

TYPE=UN(6) predicts a fullyestimated matrix without any constraints whatsoever. REPEATED itemnum / TYPE=UN(6) SUBJECT=PersonID R RCORR; RUN;

Row 1 2 3 4 5 6	3.0 0.5 1.8 0.7 1.3	Es Col1 493 772 022 339 583 946	stimate Cc 0.57 1.90 0.69 1.10 0.60 0.96	ol2 72 28 74 29 43	Matrix Col 1.80 0.69 2.54 0.82 1.31 0.86	3 22 74 31 44 91	Persor Col4 0.73 1.10 0.82 1.96 0.69 0.96	4 39 29 44 72 47	Col 1.3 0.6 1.3 0.6 2.9	5 3583 3043 3191 3947 9451 7982	Col6 0.7946 0.9652 0.8676 0.9618 0.7982 2.3412
Estimated R Correlation Matrix for PersonID 1 Row Col1 Col2 Col3 Col4 Col5 Col6 1 1.0000 0.2396 0.6472 0.2997 0.4533 0.2974 2 0.2396 1.0000 0.3170 0.5700 0.2553 0.4573 3 0.6472 0.3170 1.0000 0.3686 0.4820 0.3555 4 0.2997 0.5700 0.3686 1.0000 0.2886 0.4482 5 0.4533 0.2553 0.4820 0.2886 1.0000 0.3040 6 0.2974 0.4573 0.3555 0.4482 0.3040 1.0000 Covariance Parameter Estimates 0.3040 1.0000											
Cov P UN(1, UN(2, UN(2, UN(3, UN(3, UN(4, UN(4, UN(4, UN(4, UN(4, UN(5, UN(5, UN(5, UN(5, UN(5, UN(5, UN(6, UN(6, UN(6, UN(6, UN(6, UN(6, UN(6,	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$		oject onID onID onID onID onID onID onID onID	Star Est 3.0 0.1 1.2 0.2 1.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	rameter ndard imate 0493 5772 9028 8022 6974 5431 7339 1029 8244 5431 7339 1029 8244 5431 7339 1029 8244 5431 7383 6043 3191 6947 9451 69452 8676 9618 7982 3412	E 0 0.00 0.00 0.00 0.00 0.00 0.00 0.	timate Z Fror 1298 7458 8102 9988 6048 1083 7699 6705 7178 8377 9907 7356 9907 7356 9907 7356 9148 7543 1254 8393 6988 8393 7798 7081 8264 9969	Val 23. 7. 2318 100 23. 9. 160 111 233 133 8. 14 9. 233. 9. 131 13. 9.	48 .74 5.48 5.04 5.04 48 53 5.45 .49 5.45 5.45 5.45 5.45 5.45 5.45	0.> (.0) (.0) (.0) (.0) (.0) (.0) (.0) (.0)	- Z 001 001 0001 0001 0001 0001 0001 0001
			Infor	mati	on Crit	teria					

information Criteria											
Neg2LogLike	Pa	rms	Al	C /	AICC	H	IQIC	В	IC	CA	IC
22644.9	27	22698	8.9	2269	9.1	2275	0.0	22834	4.0	2286	51.0

Solution for Fixed Effects

		Standar	d			
Effect	itemnum	Estimate	Error	DF	t Value	Pr > t
itemnum	1	4.5467	0.05258	5509	86.47	<.0001
itemnum	2	5.2892	0.04153	5509	127.35	<.0001
itemnum	3	4.8957	0.04802	5509	101.96	<.0001
itemnum	4	5.3590	0.04223	5509	126.90	<.0001
itemnum	5	4.8604	0.05167	5509	94.06	<.0001
itemnum	6	5.3209	0.04607	5509	115.49	<.0001
Model	1. Fully	y Z-Sco	red Fa	ctor N	Nodel I	dentification

The **R** matrix shows the unconditional variances and covariances for the items.

RCORR is the unconditional correlation matrix.

Note THIS IS THE DATA the only discrepancies you'd see relative to descriptive statistics would be from missing data, as these are ML estimates (that assume MAR rather than MCAR as in listwise deletion).

The fixed effects again show the unconditional means per item.

(Factor Variance = 1, Factor Mean = 0, All Loadings and Intercepts Estimated)

 TITLE "Single-Factor CFA Model (Factor Variance=1, Factor Mean=0) in MIXED";

 PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC NAMELEN=100 METHOD=ML;

 CLASS PersonID itemnum;

 MODEL response = itemnum / SOLUTION NOINT NOTEST;

 REPEATED itemnum / TYPE=FA(1) SUBJECT=PersonID R RCORR;

TYPE=FA(1) creates the covariance matrix that would be predicted by a

RUN	;
-----	---

Estimated R Matrix for PersonID 1										
Row	Col1	Col2	Col3	Col4	Col5	Col6				
1	3.0493	0.8670	1.5313	0.9682	1.2626	1.0108				
2	0.8670	1.9028	0.8716	0.5511	0.7187	0.5753				
3	1.5313	0.8716	2.5431	0.9733	1.2692	1.0161				
4	0.9682	0.5511	0.9733	1.9672	0.8025	0.6424				
5	1.2626	0.7187	1.2692	0.8025	2.9451	0.8378				

matrix that would be predicted by a single-factor model.

The **R** matrix shows the predicted variances and covariances for the items.

RCORR is the single-factor predicted correlation matrix.

6	1.0108	0.57	53 1.01	61	0.6424	0.8	378 2	2.3412
6 Row 1 2 3 4 5 6	Estin Col ² 1.0000 0.3600 0.5499 0.3953 0.4213 0.3783	mated R 1 Co 0.36 1.00 0.39 0.28 0.30 0.27	Correlation DI2 Co 00 0.54 00 0.39 62 1.00 48 0.43 36 0.46	on Matr 13 199 062 000 351 338 164	ix for Pe Col4 0.3953 0.2848 0.4351 1.0000 0.3334 0.2994	ersonll Cols 0.4 0.3 0.4 0.3 1.0	D 1 5 Cc 213 (036 (638 (334 (000 (
Cov P	arm S	ubject	Standard Estimate	Z Eri	or Va	alue	Pr Z	
FA(1) FA(2) FA(3) FA(4) FA(5) FA(6) FA(1, FA(2, FA(3, FA(4, FA(5, FA(6,	Pers Pers Pers Pers Pers 1) Per 1) Per 1) Per 1) Per 1) Per	sonID sonID sonID sonID sonID sonID sonID sonID sonID sonID sonID sonID	1.5259 1.4093 1.0038 1.3518 1.8986 1.6706 1.2342 0.7025 1.2407 0.7845 1.0230 0.8190	0.094 0.070 0.077 0.070 0.093 0.083 0.083 0.047 0.047 0.047 0.046 0.052 0.050	96 19 55 12 71 19 12 20 30 20 932 23 20 14 783 23 679 14 202 14	5.16 9.86 9.94 9.12 9.05 3.15 4.88 5.94 6.76 9.67 6.32	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0000 <.0000 <.0000 <.0000	1 1 1 1
	_ogLike)72.8	Parms		teria AIC 3108.9		QIC 2.9 2	BIC 23198.9	CAIC 23216.9
Effect		num E	n for Fixed Standard stimate .5467 0.	Error Error	s DF 5509	t Val 86		> t .0001

itemnum	1	4.5467	0.05258	5509	86.47	<.0001
itemnum	2	5.2892	0.04153	5509	127.35	<.0001
itemnum	3	4.8957	0.04802	5509	101.96	<.0001
itemnum	4	5.3590	0.04223	5509	126.90	<.0001
itemnum	5	4.8604	0.05167	5509	94.06	<.0001
itemnum	6	5.3209	0.04607	5509	115.49	<.0001

The FA(item) terms are the item residual variances. The FA(item, factor) terms are the item factor loadings.

So the total variance per item is given by: $loading^2(1)$ + error variance, as shown in the **R** matrix above.

Item 1 = 1.2342² + 1.5259 = 3.0493

The covariance between items is given by their loadings multiplied together.

Item 1 and 2 cov = 1.2342*0.7025 = 0.8670

The fixed effects now show the intercepts per item conditional on factor = 0 (which then are equal to the original item means).

Tau-Equivalent Items Single-Factor Model with Marker Item Factor Model Identification (Factor Variance = ?, Factor Mean = 0, All Loadings Equal at 1)

PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC	NAMELEN=100 METHOD=ML;		
CLASS PersonID itemnum;	A random intercent creates a constant		
MODEL response = itemnum / SOLUTION NOINT NOTEST; RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID G V VCORR;	A random intercept creates a constant		
REPEATED itemnum / TYPE=TOEPH(1) SUBJECT=PersonID R; RUN	source of covariance across all items.		
Estimated R Matrix for PersonID 1			
Row Col1 Col2 Col3 Col4 Col5 Col6	The R matrix shows the item		
1 2.0017	residual variances.		
2 1.1357			
3 1.4550 4 1.0866	The G matrix shows the		
5 2.0552	variance due to the factor for		
6 1.4565	all items.		
Estimated G Matrix			
Person Row Effect ID Col1	V is the predicted covariance		
1 Intercept 1 0.9127	matrix from putting G and R		
Estimated V Matrix for PersonID 1	back together, and VCORR is		
Row Col1 Col2 Col3 Col4 Col5 Col6	the predicted correlation		
1 2.9143 0.9127 0.9127 0.9127 0.9127 0.9127 2 0.9127 2.0483 0.9127 0.9127 0.9127 0.9127	matrix.		
3 0.9127 0.9127 2.3677 0.9127 0.9127 0.9127			
4 0.9127 0.9127 0.9127 1.9993 0.9127 0.9127			
5 0.9127 0.9127 0.9127 0.9127 2.9679 0.9127 6 0.9127 0.9127 0.9127 0.9127 0.9127 2.3691			
6 0.9127 0.9127 0.9127 0.9127 0.9127 2.3691 Estimated V Correlation Matrix for PersonID 1			
Row Col1 Col2 Col3 Col4 Col5 Col6			
1 1.0000 0.3735 0.3474 0.3781 0.3103 0.3473			
2 0.3735 1.0000 0.4144 0.4510 0.3702 0.4143 3 0.3474 0.4144 1.0000 0.4195 0.3443 0.3853			
3 0.3474 0.4144 1.0000 0.4195 0.3443 0.3853 4 0.3781 0.4510 0.4195 1.0000 0.3747 0.4194			
5 0.3103 0.3702 0.3443 0.3747 1.0000 0.3442			
6 0.3473 0.4143 0.3853 0.4194 0.3442 1.0000			
Coverience Deremeter Felimetee			
Covariance Parameter Estimates Standard Z			
Cov Parm Subject Estimate Error Value Pr > Z			
UN(1,1) PersonID 0.9127 0.04938 18.48 <.0001			
Var(1) PersonID 2.0017 0.09613 20.82 <.0001 Var(2) PersonID 1.1357 0.05929 19.15 <.0001			
/ar(2) PersonID 1.1357 0.05929 19.15 <.0001 /ar(3) PersonID 1.4550 0.07304 19.92 <.0001			
Var(4) PersonID 1.0866 0.05703 19.05 <.0001			
/ar(5) PersonID 2.0552 0.09729 21.13 <.0001			
/ar(6) PersonID 1.4565 0.07161 20.34 <.0001			
Information Criteria			
Neg2LogLike Parms AIC AICC HQIC BIC CAIC			
23131.1 13 23157.1 23157.1 23181.7 23222.2 23235.2			
Solution for Eived Effects			
Solution for Fixed Effects Standard			
Effect itemnum Estimate Error DF t Value Pr > t			
itemnum 1 4.5467 0.05140 5510 88.45 <.0001	The fixed effects still show the		
itemnum 2 5.2892 0.04309 5510 122.74 <.0001	intercepts per item conditional on		
itemnum 3	factor = 0 (which then are equal		
itemnum 5 4.8604 0.05187 5510 93.70 <.0001	to the original item means).		
itemnum 6 5.3209 0.04635 5510 114.81 <.0001	. ,		
Parallel Items Single-Factor Model with Marker Item Factor Mode			
(Factor Variance = ?, Factor Mean = 0, All Loadings = 1 and All Ei	ror Variances Equal)		
TITLE "Parallel Items Single-Factor CFA Model (Factor Variance=			
PROC MIXED DATA=SituationStacked NOITPRINT NOCLPRINT COVTEST IC	NAMELEN=100 METHOD=ML;		
CLASS PersonID itemnum;	A random intercent creates a constant		
MODEL response = itemnum / SOLUTION NOINT NOTEST;	A random intercept creates a constant		

MODEL response = itemnum / SOLUTION NOINT NOTEST; RANDOM INTERCEPT / TYPE=UN SUBJECT=PersonID G V VCORR; REPEATED itemnum / TYPE=VC SUBJECT=PersonID R; RUN; A random intercept creates a constant source of covariance across all items. A Type=VC R matrix means equal residual variance across items.

Г

Row	Es Col1	stimated R Col2	Matrix for I Col3	PersonID ² Col4	l Col5	Col6	
1	1.5180	00.2	0010		0010	0010	
2	1.5180						
3		1.518					
4			1.5180				
5				1.5180	400		
6	F = 4 ² = 1 = 1 =			1.5	180		
		d G Matrix					
Row	Effect	ID	Col1				
1	Intercept	1 0.	9401				
	Ē	stimated V I	Matrix for I	PersonID 1			
Row	Col1	Col2	Col3	Col4	Col5	Col6	
1	2.4581	0.9401	0.9401	0.9401	0.9401	0.9401	
2	0.9401	2.4581	0.9401	0.9401	0.9401	0.9401	
3	0.9401	0.9401	2.4581	0.9401	0.9401	0.9401	
4 5	0.9401 0.9401	0.9401 0.9401	0.9401 0.9401	2.4581 0.9401	0.9401 2.4581	0.9401 0.9401	
6	0.9401	0.9401	0.9401	0.9401	0.9401	2.4581	
0	0.0401	0.0401	0.0401	0.0401	0.0401	2.4001	
	Estim	ated V Corr	elation Ma	atrix for Pe	rsonID 1		
Row	Col1	Col2	Col3	Col4	Col5	Col6	
1	1.0000	0.3825	0.3825	0.3825	0.3825	0.3825	
2	0.3825	1.0000	0.3825	0.3825	0.3825	0.3825	
3	0.3825	0.3825	1.0000	0.3825	0.3825	0.3825	
4	0.3825	0.3825	0.3825	1.0000	0.3825	0.3825	
5 6	0.3825	0.3825	0.3825	0.3825	1.0000	0.3825	
0	0.3825	0.3825	0.3825	0.3825	0.3825	1.0000	
	Cova	ariance Par	ameter Es	timates			
Standard Z							
Cov Parm Subject Estimate Error Value Pr > Z							
UN(1,1) PersonID 0.9401 0.05103 18.42 <.0001							
itemn	um Pers	sonID 1.	5180 0.	02891 5	2.51 <	.0001	
		Informatio	on Criteria				
Neg2l	LogLike	Parms		ІСС Н	QIC B	IC CAIC	
	•	8 23270.0					
202	01.0	20210.0	20210.	. 20200	2 20010	20010.1	
Solution for Fixed Effects Standard							
Effect	itemnu	ım Estima	ate Err	or DF	t Value	Pr > t	
itemn		4.5467			96.31	<.0001	
itemn		5.2892			112.04	<.0001	
itemn		4.8957			103.71	<.0001	
itemn		5.3590			113.52	<.0001	
itemn		4.8604 5.3209			102.96 112.71	<.0001 <.0001	
itemn	um 6	5.3208	0.0472	0166 12	112.71	<.000T	

The R matrix shows the item residual variances.
The G matrix shows the variance due to the factor for all items.
V is the predicted covariance matrix from putting G and R back together, and VCORR is the predicted correlation matrix.
This type of predicted covariance matrix has a special name: compound symmetry .

The fixed effects still show the intercepts per item conditional on factor = 0 (which then are equal to the original item means).

Unfortunately, multiple factor models in MIXED appear to be EFA models instead of CFA models, so no examples of two-factor models are given.