### Upcoming Workshops:

Thank you for visiting my course notes. Here are some upcoming opportunities to learn from me and my colleagues in person:

Workshop | Dates | Location | Instructor |
---|---|---|---|

Diagnostic Measurement | May 22-25, 2017 | Omni Hilton Head Oceanfront Resort, Hilton Head Island, South Carolina | Jonathan Templin |

Introduction to Longitudinal Multilevel Models | May 30-June 2, 2017 | Omni Hilton Head Oceanfront Resort, Hilton Head Island, South Carolina | Lesa Hoffman |

**Applied Multilevel Models for Cross Sectional Data
Workshop Syllabus**

ICPSR Summer Workshop in Boulder, Colorado

July 15 – 19, 2013

Presented by:

Jonathan Templin, Ph.D.

Associate Professor, Department of Psychology

University of Nebraska-Lincoln

Teaching Assistant:

Ryan Walters, M.S.

Research Analyst and Instructor, Creighton University

**Course Description**

Multilevel models are powerful statistical models that partition multiple sources variation that may be present due to dependencies in data. Also known as hierarchical linear models mixed effects models, multilevel models extend traditional linear models (such as regression or analysis of variance) to analyses where data structures are clustered, nested, or hierarchical in nature. This workshop presents an introduction to multilevel models featuring their use in cross-sectional analyses. By attending the workshop, participants will gain an understanding of the multilevel modeling approach and will be able to evaluate and conduct basic multilevel model analyses.

The week long workshop will span topics in an integrated framework, with the first day being a review of general linear models beginning with unconditional models and the rules of model comparisons. The second day will feature two-level models: adding random components and adding single predictors, including a discussion of predictor centering techniques. The third and fourth day will be spent on multilevel models with multiple predictors and models with three or more levels. The final day will be spent discussing advanced topics: multilevel models with multivariate predictors and crossed random effects models.

The primary software package used for instruction will be SAS, but some reference examples using SPSS, Mplus, and R will be provided. The course will also include daily opportunities for hands-on practice and individual consultation. Participants should be familiar with ANOVA and regression, but no prior experience with multilevel models or knowledge of advanced mathematics is assumed.

##### Overall Course Files

Syllabus: | Syllabus |

Zipped Folder of All Syntax Files | Zip File |

All Lecture Slides PDF | PDF File |