Classical Item Analysis

Test Theory
Lecture 17
Chapter 11
Today’s Class

- Building a test from item and test statistics.
- Tetrachoric correlations.
Introduction to Classical Item Analysis
Classical Item Analysis

Classical item analysis uses conventional parameters of general statistical theory to characterize:

- Items.
- Relations between items and test scores.
- Relations between pairs of items.
Classical Item Analysis Goals

The usual intention is to use these as aids in making a choice of best subset of items

- A test of suitable length for general application
- With items are homogenous with satisfactory:
 - Reliability.
 - Validity.
 - Predictive utility.
Item-Test Relations
Correlation Between Item Score and Test Score

- Correlation between the item score and the total score has been regarded as an index of item discriminating power.

- The intuitive notion is that if this correlation is high, the item discriminates between examinees with low test score and examinees with high test score.

- If the total score is a reliable measure of just one attribute, the item-test correlation should give a rough indication of the correlation item j and the attribute the items are designed to measure.
Types of Correlations Used

- Two alternatives in computing the covariance or correlation between X_j (score of item j) and Y (total test score) as a measure for item discrimination:
 1. Item-total score.
 2. Item reminder score (correlation between item j and $(Y - X_j)$, $Y - X_j$ is the item sum with item j omitted).
Details About Correlations

- The first coefficient is larger than the second one because item j is included in computing the item sum.

- The first coefficient may be spuriously increased but same quantity, Y, is the criterion for "discriminating power" for every item.

- The second coefficient eliminates the spurious increase of the obtained parameter, but the criterion is different for each item.

- For sufficiently large item number of items, the effect of omitting or not omitting the item score will become negligible.
Some possible measures of item discriminating power include:

- The covariance between the jth item score and the test score.
- The covariance of each item (unstandardized) with the standardized test score.
- The item-test correlation.

Each of the above measures (a), (b) and (c) has a counterpart in which the total test score is replaced by the reminder score.
1. These measures are applicable for both quantitative and binary items.

Correlation between a binary variable (e.g. a binary item score) and a quantitative variable (e.g. test score) is called point-biserial correlation.
Biserial Correlations

An alternative measure for correlation between binary (X) and quantitative (Y) variables is **biserial correlation**.

- The binary score (X) is postulated coming from a quantitative variable (X*) which is jointly normally distributed with Y.
- If a respondent's X* value above a certain threshold, \(\tau \), the response is coded as a one.
- Otherwise, response is coded zero.
There is a direct relationship between the point-biserial correlation and biserial correlation, which depends only on item difficulty [see formula (11.6a) and (11.6b)].

- The point-biserial correlation is never greater than $0.798 \times$ biserial, and it has this ratio at π (item difficulty) equal to 0.5.
Assumptions Behind Correlations

The implicit assumptions behind these traditional devices of measuring the "discriminating power" of an item is:

- That the test score is approximately unidimensional.

- That the test score is sufficiently reliable for the test score to serve as a good approximation to the general attribute measured by most of the items if not all of them.
If the item actually fits the single factor model, then as the number of items becomes large, the semi-standardized covariances will both converge on the factor loadings of the unstandardized items.

- The semi-standardized covariances are the covariances of item j with the standardized test score or the covariance of item j with the standardized reminder score.

- That is, in a large set of items, the loading – the expected increase in item score corresponding to a unit increase in the (standardized) true score/factor attribute – is closely approximated by the covariance of the unstandardized item score with the standardized test score.

- In the case of binary items, this is the increase in probability of the keyed response per unit factor-score increase.
Similarly, as the number of items become large, the item-test correlations converge on the factor loadings of the standardized items.
Test Statistics
How to Choose Items to Make a Good Test

- Some criteria for choosing items to make a "good" test from an item pool are:

 1. To minimize ratio of the sum of the variances of the item scores of the \(m \) items to the variance of the test score, which will maximize Guttman-Cronbach alpha;

- This procedure rests on the assumption that the item pools fits the single-factor model.
If factor analysis is allowed, choose items so to:

Maximize coefficient omega (which in turn maximizes construct validity).
Keep items with the largest information values (ratio of squared factor loading of an item to its uniqueness).

Note that in our lab example this actually hurt us.
We had two items that were essentially the same – but dropping one changed everything.
Maximizing Predictive Utility and Concurrent Validity

To maximize prediction utility and concurrent validity (i.e. correlation between the test score and an external criterion score), we can maximize the ratio of covariance of item j with standardized criterion score to covariance of item j with standardized test score.
Reliability-Validity Paradox
Reliability-Validity Paradox

- A classical result from true-score theory produces a paradox concerning the relation between reliability and validity.
- The validity of a test with respect to any criterion cannot exceed the index of reliability.

\[\rho_{YV} = \rho_{TVY} \sqrt{\rho_Y} \leq \rho_{TVY} \]
Contradiction

This leads to contradiction in choosing items from an item pool by:

1. maximizing reliability by choosing items with high covariance between an item and the standardized test score.

2. maximize concurrent validity/predictive utility by choosing items with high covariance between an item and the standardized criterion score.
Paradox Resolution

- This paradox is resolved by denying that the equation from Slide 22 is generally true.

- Here, Y is a sum of item scores that fit a common factor model and their "error items" are their unique parts.

- By definition, these error terms are mutually uncorrelated, but the truth of the equation rests on the additional assumption that they are uncorrelated with all other variables.

- Such as assumption is extremely strong, and generally false.
Recommendations for Good Tests

- To make a good predictor, it is appropriate to choose an item set with good predictive utility, with no concern for its reliability/construct validity as measured by omega or bounded by alpha.

- Rod's recommendation to resolve the contradiction between construct validity and predictive utility

- "It is probably better to select the items on internal criterion only (i.e. maximize construct validity or coefficient omega) and then check the resulting test for its convergent validity, and also, if appropriate, its discriminant validity (p.243)."
Item Correlations and Tetrachoric Correlations
Correlations Between Items

- Because correlations are independent of the units of measurement of the variables, there is strong traditional tendency in psychometric theory to treat correlations as somehow the fundamental quantities.

- For analyzing correlation between binary items (which then used in factor analysis), Pearson product-moment correlation (also known as phi correlation) is not a good measure because it cannot reach unity when items have different difficulty level.
An alternative measure of association is the tetrachoric correlation which can attain values of one or minus one even when items have different difficulty parameters.

Each of the two binary variables are assumed to associate with a quantitative "response tendency" – which are jointly normally distributed.

- Tetrachoric correlation is the correlation between these two quantitative response tendencies.
The way we arrive at a tetrachoric correlation is to try to match the probabilities of a 2x2 contingency table with that of the probabilities found from a bivariate normal distribution.

The bivariate normal distribution has:
- Both means set to zero.
- Both variances set to one.
- Only the correlation can change.

The limits of integration are set by the marginal probabilities of the binary items.
Wrapping Up

- Item analysis is something that is as old as test theory.
- This chapter served to demonstrate the types of information that could be attained from item and test statistics.
- Such information is useful when constructing tests.
Next Time

- Chapter 12 – Item Response Theory