Missing Data Methods (Part I): Multiple Imputation

Advanced Multivariate Statistical Methods Workshop

University of Georgia:
Institute for Interdisciplinary Research in Education and Human Development

Covered This Session

- The basics of missing data:
 - Types of missing data

- How NOT to handle missing data
 - Deletion methods (both pairwise and listwise)
 - Mean-substitution
 - Single Imputation

- Multiple imputation for missing data
 - Better, but not quite the best (wait until ML methods)

- How imputation works
 - How to conduct analyses with missing data using imputation
TYPES OF MISSING DATA

Our Notational Setup

• Let’s let D denote our data matrix, which will include dependent (Y) and independent (X) variables

$$D = \{X, Y\}$$

• Problem: some elements of D are missing
Missingness Indicator Variables

- We can construct an alternate matrix M consisting of indicators of missingness for each element in our data matrix D

 \[M_{ij} = 0 \text{ if the } i^{th} \text{ observation’s } j^{th} \text{ variable is not missing} \]
 \[M_{ij} = 1 \text{ if the } i^{th} \text{ observation’s } j^{th} \text{ variable is missing} \]

- Let M_{obs} and M_{mis} denote the observed and missing parts of M

 \[M = \{M_{obs}, M_{mis}\} \]

Example Data

- To demonstrate some of the ideas of types of missing data, let’s consider a situation where you have collected two variables:
 - IQ scores
 - Job performance

- Imagine you are an employer looking to hire employees for a job where IQ is important
Types of Missing Data

- A very rough typology of missing data puts missing observations into three categories:

1. Missing Completely At Random (MCAR)
2. Missing At Random (MAR)
3. Missing Not At Random (MNAR)
Missing Completely At Random (MCAR)

- Missing data are MCAR if the events that lead to missingness are independent of:
 - The observed variables
 - The unobserved parameters of interest

- Examples:
 - Planned missingness in survey research
 - Some large-scale tests are sampled using booklets
 - Students receive only a few of the total number of items
 - The items not received are treated as missing – but that is completely a function of sampling and no other mechanism

A (More) Formal MCAR Definition

- Our missing data indicators, M are statistically independent of our observed data D

$$P(M|D) = P(M)$$

- Like saying a missing observation is due to pure randomness (i.e., flipping a coin)
Implications of MCAR

- Because the mechanism of missing is not due to anything other than chance, inclusion of MCAR in data will not bias your results
 - Can use methods based on listwise deletion, multiple imputation, or maximum likelihood

- Your effective sample size is lowered, though
 - Less power, less efficiency

MCAR Data

Missing data are dispersed randomly throughout data

Mean IQ of complete cases: 99.7
Mean IQ of incomplete cases: 100.8

<table>
<thead>
<tr>
<th>IQ</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>13</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>8</td>
</tr>
<tr>
<td>87</td>
<td>7</td>
</tr>
<tr>
<td>91</td>
<td>7</td>
</tr>
<tr>
<td>92</td>
<td>9</td>
</tr>
<tr>
<td>94</td>
<td>9</td>
</tr>
<tr>
<td>94</td>
<td>11</td>
</tr>
<tr>
<td>96</td>
<td>-</td>
</tr>
<tr>
<td>99</td>
<td>7</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
</tr>
<tr>
<td>105</td>
<td>11</td>
</tr>
<tr>
<td>106</td>
<td>15</td>
</tr>
<tr>
<td>108</td>
<td>10</td>
</tr>
<tr>
<td>112</td>
<td>-</td>
</tr>
<tr>
<td>113</td>
<td>12</td>
</tr>
<tr>
<td>115</td>
<td>14</td>
</tr>
<tr>
<td>118</td>
<td>16</td>
</tr>
<tr>
<td>134</td>
<td>-</td>
</tr>
</tbody>
</table>
Missing At Random (MAR)

- Data are MAR if the probability of missing depends **only** on some (or all) of the observed data

- M is independent of D_{mis}

$$P(M|D) = P(M|D_{obs})$$

<table>
<thead>
<tr>
<th>IQ</th>
<th>Perf</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>99</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>106</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>112</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>115</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>118</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>134</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

MAR Data

Missing data are related to other data:

- Any IQ less than 90 did not have a performance variable

- Mean IQ of incomplete cases: 83.6
- Mean IQ of complete cases: 105.5
Implications of MAR

- If data are missing at random, biased results could occur

- Inferences based on listwise deletion will be biased and inefficient
 - Fewer data points = more error in analysis

- Inferences based on maximum likelihood will be unbiased but inefficient

- We will focus on methods for MAR data

Missing Not At Random (MNAR)

- Data are MNAR if the probability of missing data is related to values of the variable itself

\[P(M|D) = P(M|D_{obs}, D_{mis}) \]

- Often called non-ignorable missingness
 - Inferences based on listwise deletion or maximum likelihood will be biased and inefficient

- Need to provide statistical model for missing data simultaneously with estimation of original model
SURVIVING MISSING DATA: A BRIEF GUIDE

Using Statistical Methods with Missing Data

• Missing data can alter your analysis results dramatically depending upon:
 1. The type of missing data
 2. The type of analysis algorithm

• The choice of an algorithm and missing data method is important in avoiding issues due to missing data
The Worst Case Scenario: MNAR

- The worst case scenario is when data are MNAR (missing not at random)
 - Non-ignorable missing

- You cannot easily get out of this mess
 - Instead you have to be clairvoyant

- Analyses algorithms must incorporate models for missing data
 - And these models must also be right

The Reality

- In most empirical studies, MNAR as a condition is an afterthought

- It is impossible to know definitively if data truly are MNAR
 - So data are treated as MAR or MCAR

- Hypothesis tests do exist for MCAR
 - Although they have some issues
The Best Case Scenario: MCAR

- Under MCAR, pretty much anything you do with your data will give you the “right” (unbiased) estimates of your model parameters

- MCAR is very unlikely to occur
 - In practice, MCAR is treated as equally unlikely as MNAR

The Middle Ground: MAR

- MAR is the common compromise used in most empirical research
 - Under MAR, maximum likelihood algorithms are unbiased

- Maximum likelihood is for many methods:
 - Linear models in PROC MIXED
 - CFA/SEM models in Mplus
When ML Goes Bad...

- For linear models with missing dependent variable(s), PROC MIXED works great
 - ML “skips” over the missing DVs in the likelihood function, using only the data you have observed

- For linear models with missing independent variable(s), PROC MIXED uses list-wise deletion
 - Gives biased parameter estimates under MAR

Options for MAR for Linear Models with Missing Independent Variables

1. Use ML Estimators and hope for MCAR

2. Rephrase IVs as DVs
 - In SAS: hard to do, but possible for some models
 - Dummy coding, correlated random effects
 - In Mplus: much easier...looks more like a SEM
 - Predicted variables then function like DVs in MIXED

3. Impute IVs (multiple times) and then use ML Estimators
 - Not usually a great idea...but often the only option
Example Data

- Three variables were collected from a sample of 31 men in a course at NC State
 - **Oxygen**: oxygen intake, ml per kg body weight, per minute
 - **Runtime**: time to run 1.5 miles in minutes
 - **Runpulse**: heart rate while running

- The research question: how does oxygen intake vary as a function of exertion (running time and running heart rate)

- The problem: some of the data are missing
Descriptive Statistics of Missing Data

- Descriptive statistics of our data:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>47.1161786</td>
<td>5.4130470</td>
<td>28</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.6882143</td>
<td>1.3798794</td>
<td>28</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
<td>10.1432382</td>
<td>22</td>
</tr>
</tbody>
</table>

- Patterns of missing data:

<table>
<thead>
<tr>
<th>Missing Pattern</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>None Missing</td>
<td>21</td>
<td>67.74%</td>
<td>21</td>
<td>67.74%</td>
</tr>
<tr>
<td>Pulse Missing</td>
<td>4</td>
<td>12.90%</td>
<td>25</td>
<td>80.65%</td>
</tr>
<tr>
<td>Time and Pulse Missing</td>
<td>3</td>
<td>9.68%</td>
<td>28</td>
<td>50.32%</td>
</tr>
<tr>
<td>Oxygen Missing</td>
<td>1</td>
<td>3.23%</td>
<td>29</td>
<td>93.55%</td>
</tr>
<tr>
<td>Oxygen and Pulse Missing</td>
<td>2</td>
<td>6.45%</td>
<td>31</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Comparing Missing and Not Missing

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>47.1161786</td>
<td>5.4130470</td>
<td>28</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.6882143</td>
<td>1.3798794</td>
<td>28</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
<td>10.1432382</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>46.4747200</td>
<td>5.0578561</td>
<td>25</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.6882143</td>
<td>1.3798794</td>
<td>28</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
<td>10.1432382</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>46.3538095</td>
<td>5.4778395</td>
<td>21</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.8613636</td>
<td>1.4573597</td>
<td>22</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
<td>10.1432382</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>49.4032857</td>
<td>4.8678964</td>
<td>7</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.0530333</td>
<td>0.8612336</td>
<td>6</td>
</tr>
<tr>
<td>RunPulse</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Bad Ways to Handle Missing Data

• Dealing with missing data is important, as the mechanisms you choose can dramatically alter your results

• This point was not fully realized when the first methods for missing data were created
 ➢ Each of the methods described in this section should never be used
 ➢ Given to show perspective – and to allow you to understand what happens if you were to choose each
Deletion Methods

- Deletion methods are just that: methods that handle missing data by deleting observations
 - Listwise deletion: delete the entire observation if any values are missing
 - Pairwise deletion: delete a pair of observations if either of the values are missing

- Assumptions: Data are MCAR

- Limitations:
 - Reduction in statistical power if MCAR
 - Biased estimates if MAR or MNAR

Listwise Deletion

- Listwise deletion discards all of the data from an observation if one or more variables are missing

- Most frequently used in statistical software packages that are not optimizing a likelihood function (need ML)

- In linear models:
 - SAS GLM list-wise deletes cases where IVs or DVs are missing
Listwise Deletion Example

- If you wanted to predict Oxygen from Running Time and Pulse Rate you could:
 - Start with one variable (running time):

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	442.6707797	442.6707797	59.44	<.0001
Error	23	171.2952043	7.4476098		
Corrected Total	24	613.9657950			

 - Then add the other (running time + pulse rate):

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	445.4733900	224.7366850	26.85	<.0001
Error	18	150.6113373	8.3700632		
Corrected Total	20	600.1345072			

- The nested-model comparison test cannot be formed
 - Degrees of freedom error changes as missing values are omitted

Pairwise Deletion

- Pairwise deletion discards a pair of observations if either one is missing
 - Different from listwise: uses more data (rest of data not thrown out)

- Assumes: MCAR

- Limitations:
 - Reduction in statistical power if MCAR
 - Biased estimates if MAR or MNAR

- Can be an issue when forming covariance/correlation matrices
 - May make them non-invertable, problem if used as input into statistical procedures
Pairwise Deletion Example

- Covariance Matrix from PROC CORR (see the different DF):

\[
\begin{array}{ccc}
\text{Oxygen} & \text{RunTime} & \text{RunPulse} \\
\text{Oxygen} & 29.3010776 & -5.9882853 & -19.5021167 \\
29.3010776 & 25.5819081 & 30.0067254 \\
27 & 24 & 20 \\
\text{RunTime} & -5.9882853 & 1.9040671 & 3.6559091 \\
1.9441750 & 1.9040671 & 2.1849985 \\
25.5819081 & 1.9040671 & 102.8852814 \\
24 & 27 & 21 \\
\text{RunPulse} & -19.5021167 & 3.6559091 & 102.8852814 \\
107.1333333 & 102.8852814 & 102.8852814 \\
30.0067254 & 2.1248885 & 102.8852814 \\
20 & 21 & 21 \\
\end{array}
\]

Single Imputation Methods

- **Single imputation** methods replace missing data with some type of value
 - **Single**: one value used
 - **Imputation**: replace missing data with value

- Upside: can use entire data set if missing values are replaced

- Downside: biased parameter estimates and standard errors (even if missing is MCAR)
 - Type-I error issues

- Still: never use these techniques
Unconditional Mean Imputation

- Unconditional mean imputation replaces the missing values of a variable with its estimated mean
 - Unconditional = mean value without any input from other variables
- Example: missing Oxygen = 47.1; missing RunTime = 10.7; missing RunPulse = 171.9

<table>
<thead>
<tr>
<th>Before Single Imputation:</th>
<th>After Single Imputation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Mean</td>
</tr>
<tr>
<td>Oxygen</td>
<td>47.1161785</td>
</tr>
<tr>
<td>RunTime</td>
<td>10.6882143</td>
</tr>
<tr>
<td>RunPulse</td>
<td>171.8636364</td>
</tr>
</tbody>
</table>

Variable	**Mean**	**Std Dev**	**N**
Oxygen	47.116129	5.1952696	31
RunTime	10.6899548	1.3099733	31
RunPulse	171.8741935	8.4864585	31

- Notice: uniformly smaller standard deviations

Conditional Mean Imputation (Regression)

- Conditional mean imputation uses regression analyses to impute missing values
 - The missing values are imputed using the predicted values in each regression (conditional means)
- For our data we would form regressions for each outcome using the other variables
 - \[\text{OXYGEN} = \beta_{01} + \beta_{11}\text{RUNTIME} + \beta_{21}\text{PULSE} \]
 - \[\text{RUNTIME} = \beta_{02} + \beta_{12}\text{OXYGEN} + \beta_{22}\text{PULSE} \]
 - \[\text{PULSE} = \beta_{03} + \beta_{13}\text{OXYGEN} + \beta_{23}\text{RUNTIME} \]
- More accurate than unconditional mean imputation
 - But still provides biased parameters and SEs
Stochastic Conditional Mean Imputation

- Stochastic conditional mean imputation adds a random component to the imputation
 - Representing the error term in each regression equation
 - Assumes MAR rather than MCAR

- Again, uses regression analyses to impute data:
 - \[\text{OXYGEN} = \beta_{01} + \beta_{11} \cdot \text{RUNTIME} + \beta_{21} \cdot \text{PULSE} + \text{Error} \]
 - \[\text{RUNTIME} = \beta_{02} + \beta_{12} \cdot \text{OXYGEN} + \beta_{22} \cdot \text{PULSE} + \text{Error} \]
 - \[\text{PULSE} = \beta_{03} + \beta_{13} \cdot \text{OXYGEN} + \beta_{23} \cdot \text{RUNTIME} + \text{Error} \]

- Error is random: drawn from a normal distribution
 - Zero mean and variance equal to residual variance \(\sigma_e^2 \) for respective regression

Imputation by Proximity: Hot Deck Matching

- Hot deck matching uses real data – from other observations as its basis for imputing

- Observations are “matched” using similar scores on variables in the data set
 - Imputed values come directly from matched observations

- Upside: Helps to preserve univariate distributions; gives data in an appropriate range

- Downside: biased estimates (especially of regression coefficients), too-small standard errors
Scale Imputation by Averaging

- In psychometric tests, a common method of imputation has been to use a scale average rather than total score
 - Can re-scale to total score by taking # items * average score

- Problem: treating missing items this way is like using person mean
 - Reduces standard errors
 - Makes calculation of reliability biased

Longitudinal Imputation: Last Observation Carried Forward

- A commonly used imputation method in longitudinal data has been to treat observations that dropped out by carrying forward the last observation
 - More common in medical studies and clinical trials

- Assumes scores do not change after dropout – bad idea
 - Thought to be conservative

- Can exaggerate group differences
 - Limits standard errors that help detect group differences
Why Single Imputation Is Bad Science

• Overall, the methods described in this section are not useful for handling missing data

• If you use them you will likely get a statistical answer that is an artifact
 ➢ Actual estimates you interpret (parameter estimates) will be biased (in either direction)
 ➢ Standard errors will be too small
 • Leads to Type-I Errors

• Putting this together: you will likely end up making conclusions about your data that are wrong

A BETTER WAY:
MULTIPLE IMPUTATION
Multiple Imputation

- Rather than using single imputation, a better method is to use multiple imputation
 - The multiply imputed values will end up adding variability to analyses
 - helping with biased parameter and SE estimates

- Multiple imputation is a mechanism by which you “fill in” your missing data with “plausible” values
 - End up with multiple data sets – need to run multiple analyses
 - Missing data are predicted using a statistical model using the observed data (the MAR assumption) for each observation

- Multiple Imputation is possible due to statistical assumptions
 - The most often used assumption is that the observed data are multivariate normal

Multiple Imputation Steps

1. The missing data are filled in a number of times (say, m times) to generate m complete data sets
2. The m complete data sets are analyzed using standard statistical analyses
3. The results from the m complete data sets are combined to produce inferential results
Distributions: The Key to Multiple Imputation

• The key idea behind multiple imputation is that each missing value has a distribution of likely values
 ➢ The distribution reflects the uncertainty about what the variable may have been

• Multiple imputation can be accomplished using variables outside an analysis
 ➢ All contribute to multivariate normal distribution
 ➢ Harder to justify why un-important variables omitted

• Single imputation, by any method, disregards the uncertainty in each missing data point
 ➢ Results from singly imputed data sets may be biased or have higher Type-I errors

Multiple Imputation in SAS

• SAS has a pair of procedures for multiple imputation:
 ➢ PROC MI: generates multiple complete data sets
 ➢ PROC MIANALYZE: analyzes the results of statistical analyses with imputed data sets

• Most frequent assumption SAS uses is that data are multivariate normal

• Not MVN? Mplus provides imputation options
 ➢ Better option: use maximum likelihood (stay tuned)
IMPUTATION PHASE

SAS PROC MI

- PROC MI uses a variety of methods depending on the type of missing data present
 - Monotone missing pattern: ordered missingness – if you order your variables sequentially, only the tail end of the variables collected is missing
 - Multiple methods exist for imputation
 - Arbitrary missing pattern: missing data follow no pattern
 - Most typical in data
 - Markov Chain Monte Carlo assuming MVN is used
Multivariate Normal Data

- The MVN distribution has several nice properties

- In SAS PROC MI, multiple imputation of arbitrary missing data takes advantage of the MVN properties

- Imagine we have N observations of p variables from a MVN:
 \[X_{(N \times p)} \sim N_p (\mu, \Sigma) \]

- The property we will use is the conditional distribution of MVN variables
 - We will examine the conditional distribution of missing data given the data we have observed

Conditional Distributions of MVN Variables

- The conditional distribution of sets of variables from a MVN is also MVN
 - Used as the data-generating distribution in PROC MI

- If we were interested in the distribution of the first q variables, we partition three matrices:
 - The data: \([X_1: (N \times q) \quad X_2: (N \times p-q)] \)
 - The mean vector: \([\mu_1: (q \times 1) \quad \mu_2: (p-q \times 1)] \)
 - The covariance matrix: \(\begin{bmatrix} \Sigma_{11}: (q \times q) & \Sigma_{12}: (q \times p-q) \\ \Sigma_{21}: (p-q \times q) & \Sigma_{22}: (p-q \times p-q) \end{bmatrix} \)
Conditional Distributions of MVN Variables

- The conditional distribution of X_1 given the values of $X_2 = x_2$ is then:

$$X_1 | X_2 \sim N_q (\mu^*, \Sigma^*)$$

Where (using our partitioned matrices):

$$\mu^* = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2' - \mu_2)$$

And:

$$\Sigma^* = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Example from our Data

- From estimates with missing data:

$$\bar{x} = \begin{bmatrix} 47.1 \\ 10.7 \\ 171.9 \end{bmatrix}; \ S = \begin{bmatrix} 29.3 & -6.0 & -19.5 \\ -6.0 & 1.9 & 3.7 \\ -19.5 & 3.7 & 102.9 \end{bmatrix}$$

- For observation #4 (missing oxygen): $x_2 = [11.96 \ 176]$
 - We wish to impute the first observation (oxygen) conditional on the values of runtime and pulse

- Assuming MVN, we get the following sub-matrices:

$$\bar{x}_1 = [47.1]; \ \bar{x}_2 = [10.7]$$

$$S_{11} = [29.3]; S_{12} = [-6.0 \ -19.5];$$

$$S_{21} = [-6.0 \ -19.5]; S_{22} = [1.9 \ 3.7]; S_{22}^{-1} = [.56 \ -.02; -.02 \ .01]$$
Imputation Distribution

- The imputed value for Oxygen for observation #4 is drawn from a $N_1(43.0, 9.8)$:

\[
\bar{x}^* = \bar{x}_1 + S_{12}S_{22}^{-1}(x'_2 - \bar{x}_2) = \\
[47.1] + [-6.0 \quad -19.5] \begin{bmatrix} .56 & -.02 \\ -.02 & .01 \end{bmatrix} \begin{bmatrix} 11.96 \\ 176 \end{bmatrix} - \begin{bmatrix} 10.7 \\ 171.9 \end{bmatrix} = 43.0
\]

\[
S^* = S_{11} - S_{12}S_{22}^{-1}S_{21} = \\
[29.3] - [-6.0 \quad -19.5] \begin{bmatrix} .56 & -.02 \\ -.02 & .01 \end{bmatrix} \begin{bmatrix} -6.0 \\ -19.5 \end{bmatrix} = 9.8
\]

Using the MVN for Missing Data

- If we consider our missing data to be X_1, we can then use the result from the last slide to generate imputed (plausible) values for our missing data

- Data generated from a MVN distribution is fairly common and “easy” to do computationally

- However....
The Problem: True μ and Σ are Unknown

- Problem: the true mean vector and covariance matrix for our data is unknown
 - We only have sample estimates
 - Sample estimates have sampling error
 - The mean vector has a MVN distribution
 - The sample covariance matrix has a (scaled) Wishart distribution
 - Missing data complicate the situation by providing even fewer observations to estimate either parameter

- The example from before used one estimate (but that is unlikely to be correct)
 - It used pairwise deletion

The PROC MI Solution

- PROC MI: use MCMC to estimate data and parameters simultaneously:

Step 0: Create starting value estimates for μ and Σ:

$(\mu_{t-1}=0, \Sigma_{t-1}=0)$

Iterate t times through:

Step 1: Using μ_{t-1}, Σ_{t-1} generate the missing data from the conditional MVN (conditional on the observed values for each case)

Step 2: Using the imputed and observed data, draw a new μ_t, Σ_t from the MVN and Wishart distributions, respectively
The Process of Imputation

- The iterations take “a while” to reach a steady state – stable values for the distribution of μ_t, Σ_t
 - Called a burn in period

- After this period, you can take sets of imputed data to be used in your multiple analyses
 - The sets should be taken with “enough” iterations in between so as to not be highly correlated
 - Called a thinning interval

Using PROC MI

- PROC MI Syntax:

 USING PROC MI TO IMPUTE DATA:

 PROC MI DATA=WORK.fitmiss OUT=WORK.fitimpute NIMPUTE=30;
 MCMC CHAIN=MULTIPLE DISPLAYINIT INITIAL=EM(ITPRINT);
 VAR oxygen runtime runpulse;
 RUN;

- More often than not, the output of MI does not have much useful information
 - Must assume convergence of mean vector and covariance matrix – but limited statistics to check convergence

- Of interest is the new data set (fit impute)
 - Here it contains 30 imputations for each missing variable
 - Need to run the regression 30 times – Analysis and Pooling Phase
Inspecting Imputed Values

- To demonstrate the imputed values, look at the histogram of the 30 values for observation 4:

MULTIPLE IMPUTATION: ANALYSIS PHASE
Up Next: Multiple Analyses

- Once you run PROC MI, the next step is to use each of the imputed data sets in its own analysis
 - Called the analysis phase
 - For our example, that would be 30 times

- The multiple analyses are then compiled and processed into a single result
 - Yielding the answers to your analysis questions (estimates, SEs, and P-values)

- GOOD NEWS: SAS will automate all of this for you

Analysis Phase

- Analysis Phase: run the analysis on all imputed data sets
 - Here we use PROC GLM
    ```
    *ANALYSIS PHASE:;
    PROC GLM DATA=WORK.fitimpute;
    BY _IMPUTATION_;
    MODEL oxygen = runtime runpulse / INVERSE;
    ODS OUTPUT ParameterEstimates = WORK.recparsm
                     InvXPX = WORK.glmpxi;
    RUN;
    ```

 - Syntax runs for each data set (BY _IMPUTATION_)
 - Saves from each:
 - Parameter estimates (to make parameter estimates)
 - \((X^T X)^{-1}\) matrix (to make standard errors)
 - \(Var(\beta) = \sigma^2 (X^T X)^{-1}\) in general linear models
Multiple Imputation: Pooling Phase

Pooling Parameters from Analyses of Imputed Data Sets

- In the pooling phase, the results are pooled and reported.

- For parameter estimates, the pooling is straightforward.
 - The estimated parameter is the average parameter value across all imputed data sets.
 - For our example, the average intercept, slope for runtime, and slope for runpulse are taken over the 30 imputed data sets and analyses.

- For standard errors, pooling is more complicated.
 - Have to worry about sources of variation:
 - Variation from sampling error that would have been present had the data not been missing.
 - Variation from sampling error resulting from missing data.
Pooling Standard Errors Across Imputation Analyses

- Standard error information comes from two sources of variation from imputation analyses (for m imputations)

- Within Imputation Variation:
 \[V_W = \frac{1}{m} \sum_{i=1}^{m} SE_i^2 \]

- Between Imputation Variation (here θ is an estimated parameter from an imputation analysis):
 \[V_B = \frac{1}{m-1} \sum_{i=1}^{m} (\hat{\theta}_i - \bar{\theta})^2 \]

- Then, the total sampling variance is:
 \[V_T = V_W + V_B + \frac{V_B}{M} \]

- The subsequent (imputation pooled) SE is
 \[SE = \sqrt{V_T} \]

Pooling Phase in SAS: PROC MIANALYZE

- SAS PROC MIANALYZE conducts the pooling phase of imputations: no calculations are needed

```plaintext
*POOLING PHASE:;
PROC MIANALYZE PARMS=WORK.regparms XFXI=WORK.glmxpxi EDF=28;
  MODELEFFECTS intercept runtime runpulse;
RUN;
```

- The parameter data set, the $(X^TX)^{-1}$ dataset, and the number of error degrees of freedom are all input

- The MODELEFFECTS line combs through the input data and conducts the pooling
Additional Pooling Information

- The decomposition of imputation variance leads to two helpful diagnostic measures about the imputation:

- **Fraction of Missing Information:** \(FMI = \frac{V_B + \frac{V_B}{m}}{V_T} \)
 - Measure of influence of missing data on sampling variance
 - Example: intercept = 0.20; runtime = 0.22; runpulse = 0.21
 - \(~20\%\) of parameters variance attributable to missing data

- **Relative Increase in Variance:** \(RIV = \frac{V_B + \frac{V_B}{m}}{V_W} = \frac{FMI}{1 - FMI} \)
 - Another measure of influence of missing data on sampling variance
 - Example: intercept = 0.25; runtime = 0.28; runpulse = 0.27
ISSUES WITH IMPUTATION

Common Issues that can Hinder Imputation

• MCMC Convergence
 ➢ Need “stable” mean vector/covariance matrix

• Non-normal data: counts, skewed distributions, categorical (ordinal or nominal) variables
 ➢ Mplus is a good option
 ➢ Some claim it doesn’t matter as much with many imputations

• Preservation of model effects
 ➢ Imputation can strip out effects in data
 • Interactions are most difficult – form as auxiliary variable

• Imputation of multilevel data
 ➢ Differing covariance matrices
Number of Imputations

- The number of imputations \(m \) from the previous slides is important: bigger is better
 - Basically, run as many as you can (100s)

- Take a look at the SEs for our parameters as I varied the number of imputations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(m = 1)</th>
<th>(m = 10)</th>
<th>(m = 30)</th>
<th>(m = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7.04</td>
<td>10.48</td>
<td>9.27</td>
<td>10.03</td>
</tr>
<tr>
<td>RunTime</td>
<td>0.38</td>
<td>0.42</td>
<td>0.39</td>
<td>0.41</td>
</tr>
<tr>
<td>RunPulse</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>

CONCLUDING REMARKS
Wrapping Up

• Missing data are common in statistical analyses

• They are frequently neglected
 ➢ MNAR: hard to model missing data and observed data simultaneously
 ➢ MCAR: doesn’t often happen
 ➢ MAR: most missing imputation assumes MVN

• More often than not, ML is the best choice
 ➢ Software is getting better at handling missing data
 ➢ We will discuss how ML works next