Comparing IRT with Other Models

Lecture #14
ICPSR Item Response Theory Workshop

Lecture Overview

• The final set of slides will describe a parallel between IRT and another commonly used method for measurement: factor analysis

• These slides are meant to provide a basis for comparing the two methods, including the appropriate times for applying each method
MORE COMPARING IRT WITH CFA

Introduction

- Consider a score on an item that is not categorical
 - Rather, consider a score to be continuous
 - For simplicity, call the item X_i

- Often Likert-type item scores are considered continuous
 - Other examples of continuous item types include reaction time and many physiological measurements

- Our goal will be to model the response behavior of an examinee on item X_j using a latent variable (in IRT, typically called θ)
 - To distinguish the two approaches, we will use F as the latent variable for factor analysis
The Spearman Single Factor Model

- In relating an examinee’s level of the common factor to their performance on an item, we introduce the Spearman single factor model:

\[X_{is} = \mu_i + \lambda_i F_s + E_{is} \]

- \(X_{is} \) is the score for a person \(e \) on the \(i \)th item
- \(F_s \) is the person’s factor score

The Spearman Single Factor Model

- \(E_{is} \) is the unique or idiosyncratic property of item
 - The amount by which item \(i \) is shifted from the predicted value for person \(e \)

- \(\mu_i \) is the overall mean for an item
 - Allowing for differing item difficulties

- \(\lambda_i \) is called the factor loading of item \(i \)
 - We will discuss this factor loading quite a bit
Factor Loadings

- The term factor loading has a long history in Psychology

- The extent to which the item is “loaded” onto the factor
 - Some items load more highly on to the factor than others

- The factor loadings of items reveal much about a test’s structure :: the mapping of items onto factors

More on Factor Loadings

- The factor loading is similar to a regression weight:
 - It represents the amount of change in the item per one-unit increase in the factor score

- It measures how sensitively each item functions as an indicator of the common factor F
 - Items with relatively large loadings are better indicators of F than items with relatively small loadings

- The factor loading is a measure of the discriminating power of the item
 - How well the item discriminates between examinees with low and high values of F
Single Factor Model Specifics

- We need to define a few more things about our factor model:
 - The unique component, E_{is}, is independent of the common factor, F_s
 - Independence means that $\text{Cov}(E,F) = \text{Corr}(E,F) = 0$
 - The unique components of any two items i and j are independent:
 - $\text{Cov}(E_{is}, E_{js}) = \text{Corr}(E_{is}, E_{js}) = 0$
 - The mean for the unique component is zero

More Specifics

- Like in IRT, we also have to set the scale for F
 - We must pick it’s mean and variance
 - For most of our purposes, it serves us well to think of F as being a standardized measure
 - Mean of zero
 - Standard Deviation/Variance of one

- Standardized factors aren’t as common in factor analysis (CFA or SEM)
 - Variance of the factor must be fixed when additional modeling features are added
 - Actually, same in IRT
What Does The Common Factor Model Say About Our Items?

- So, what can we say the model predicts about our items, marginally?
- What is the model-predicted item mean?
- What is the model-predicted item variance?
- Why are these important?

Model Predicted Item Mean

- The mean for an item under the single factor model:

\[
E(X_{is}) = E(\mu_i + \lambda_i F_s + E_{is})
\]
\[
= E(\mu_i) + E(\lambda_i F_s) + E(E_{is})
\]
\[
= \mu_j + \lambda_i E(F_s) + E(E_{is})
\]
\[
= \mu_i + \lambda_i * 0 + 0
\]
\[
= \mu_i
\]
Item Mean is Trivial

- The factor model says that our item mean should be our item mean parameter.

- Generally, we are not concerned with such a quantity because it tells us information only marginally.
 - No information about how the item measures the common factor.

Model Predicted Item Variance

- The variance for an item under the single factor model:

\[
\text{Var}(X_{is}) = \text{Var}(\mu_i + \lambda_i F_s + E_{is})
\]

We Typically = \[\text{Var}(\lambda_i F_s + E_{is})\]

= \[\text{Var}(\lambda_i F_s) + \text{Var}(E_{is}) + 2 \text{Cov}(F_s, E_{is})\]

= \[\lambda_i^2 \text{Var}(F_s) + \text{Var}(E_{is})\]

= \[\lambda_i^2 + \psi_i^2\]

Is zero by independence

We define the variance of E to be the unique variance of the item.
Model Predicted Item Variance

- The variance for an item under the single factor model:

\[
\text{Var}(X_{is}) = \text{Var}(\mu_i + \lambda_i F_s + E_{is})
\]
\[
= \text{Var}(\lambda_i F_s + E_{is})
\]
\[
= \text{Var}(\lambda_i F_s) + \text{Var}(E_{is}) + 2 \text{Cov}(F_s, E_{is})
\]
\[
= \lambda_i^2 \text{Var}(F_s) + \text{Var}(E_{is})
\]
\[
= \lambda_i^2 + \psi_i^2
\]

We define the variance of E to be the unique variance of the item.

Model Predicted Item Covariances

- The covariance for a pair of items under the single factor model:

\[
\text{Cov}(X_i, X_j) = \text{Cov}(\mu_i + \lambda_i F_s + E_{is}, \mu_j + \lambda_j F_s + E_{js})
\]
\[
= \text{Cov}(\lambda_i F_s + E_{is}, \lambda_j F_s + E_{js})
\]
\[
= \text{Cov}(\lambda_i F_s, \lambda_j F_s) + \text{Cov}(\lambda_i F_s, E_{js}) + \text{Cov}(\lambda_j F_s, E_{is}) + \text{Cov}(E_{is}, E_{js})
\]
\[
= \lambda_i \lambda_j \text{Cov}(F_s, F_s)
\]
\[
= \lambda_i \lambda_j
\]

The covariance of a variable with itself is its variance.

The variance of F is set to one.
Extrapolating to the Covariance Matrix

• We have seen:
 ➢ The model predicted variance for each item
 ➢ The model predicted covariance for each pair of items

• The model-predicted covariance matrix looks like:

\[
\Sigma = \begin{bmatrix}
\lambda_1^2 + \psi_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 & \lambda_1 \lambda_4 & \lambda_1 \lambda_5 \\
\lambda_1 \lambda_2 & \lambda_2^2 + \psi_2^2 & \lambda_2 \lambda_3 & \lambda_2 \lambda_4 & \lambda_2 \lambda_5 \\
\lambda_1 \lambda_3 & \lambda_2 \lambda_3 & \lambda_3^2 + \psi_3^2 & \lambda_3 \lambda_4 & \lambda_3 \lambda_5 \\
\lambda_1 \lambda_4 & \lambda_2 \lambda_4 & \lambda_3 \lambda_4 & \lambda_4^2 + \psi_4^2 & \lambda_4 \lambda_5 \\
\lambda_1 \lambda_5 & \lambda_2 \lambda_5 & \lambda_3 \lambda_5 & \lambda_4 \lambda_5 & \lambda_5^2 + \psi_5^2
\end{bmatrix}
\]

Item Information Under the Factor Model

• The item information function under the single factor model is:

\[
I(X_i) = \frac{\lambda_i^2}{\psi_i^2}
\]

• Item information under the factor model is not a function of the latent trait
 ➢ This is a key distinction between item information in the factor model and IRT
 ➢ It is a consequence of the differences in data type
 • A nuance of categorical data: the mean and the variance are related
Implications of FA Item Information

- The test information function in FA is flat
 - Regardless of a person’s location on the scale, the standard error of their estimate will be the same

- CAT algorithms do not make much sense using FA
 - All items would be equally informative across the scale
 - The items with the highest information would always be selected
Comparing FA with IRT

- FA and IRT have much in common:
 - They both provide a statistical model for response behavior as a function of a latent trait (or set of latent traits)

- IRT parameterizations obscure the commonalities between the models
 - To demonstrate, let’s rephrase the 2PL model

IRT Model in Slope/Intercept Form

- Begin with the original 2PL Model:
 \[P(Y_{is} = 1|\theta_s) = \frac{\exp(1.7a_i(\theta_s - b_i))}{1 + \exp(1.7a_i(\theta_s - b_i))} \]

- Then convert into the log-odds of the probability of a correct response:
 \[\ln \left(\frac{P(Y_{is} = 1|\theta_s)}{1 - P(Y_{is} = 1|\theta_s)} \right) = 1.7a_i(\theta_s - b_i) \]
IRT Model in Slope/Intercept Form

- Finally, multiply through the equation:
 \[
 \ln \left(\frac{P(Y_{is} = 1|\theta_s)}{1 - P(Y_{is} = 1|\theta_s)} \right) = 1.7a_i(\theta_s - b_i) = -1.7b_i + 1.7a_i\theta_s
 \]

- Now, we can re-configure terms to FA analogs:
 \[
 \ln \left(\frac{P(Y_{is} = 1|\theta_s)}{1 - P(Y_{is} = 1|\theta_s)} \right) = 1.7a_i(\theta_s - b_i) = -1.7b_i + 1.7a_i\theta_s
 \]
 \[
 = \mu_i + \lambda_i\theta_s
 \]

IRT vs. FA

- Many IRT models are categorical versions of the FA or structural equation model
 - The difference in model properties (like information) is due to the link function used for the data

- A link function is the function applied to the left hand side of the previous equation
 - IRT models we have discussed usually use a logistic link function (or an ogive)
 - FA models use an “identity” link function
 - Identity = no link function at all
IRT vs. FA, continued

• Appropriate uses of FA are for data that follow continuous distributions

• Appropriate uses of IRT are for data that follow the corresponding categorical distribution
 ➢ Binary variables use binomial logistic
 ➢ Polytomous variables use multinomial logistic

• The question to be asked is at what point do categorical data become continuous
 ➢ If you think really hard about it, all data are categorical...how many categories, though?

Other Link Functions: Item Factor Analysis

• Just as in categorical data analysis, other link functions exist and their use results in models with IRT-like properties

• One of the more prevalent link functions is the probit or normal ogive link
 ➢ This is the cumulative distribution function of a standard normal variable
 ➢ The use of the normal ogive link dates to Lord (1952)
 ➢ More commonly, such models are referred to as Item Factor Models
 ➢ Setting the scaling constant to 1.7 in IRT approximates this function
Item Factor Analysis

- An alternative parameterization of the model in terms of underlying quantitative "response tendencies" – common factor parameterization

- Each binary item has associated with it an "underlying" quantitative response tendency X_i^* and a threshold value τ_i, such that:
 - If $X_i^* > \tau_i$ then $X_i = 1$
 - If $X_i^* \leq \tau_i$ then $X_i = 0$

Underlying Response Model

- The underlying response tendencies, X_1^*, \ldots, X_l^* are then used with a factor analysis model, say Spearman single factor model (mean omitted – see below):
 $$X_i^* = \lambda_i F_s + E_{is}^*$$

- With uncorrelated unique parts E_{is}^*

- For model identification, we impose a scale on each X_i^* so that it is standardized:
 - With mean zero (hence no μ_i).
 - With variance one, so $\lambda_i^2 + \psi_i^2 = 1$.
Building on the Previous Model

- F_s and E_{is}^* each have a normal distribution
- Each X_i^* has a normal distribution
- This leads to, for an item i,
 \[
P(X_{is} = 1|F_s) = P(X_{is}^* > \tau_i | F_s)
 = \Phi \left(\frac{\lambda_i}{\sqrt{1 - \lambda_i^2}} F_s - \frac{1}{\sqrt{1 - \lambda_i^2}} \pi_i \right)
 \]
- Larger λ_i means larger discriminating power
- The larger the π_i, the more difficult the item

Similarities

- We can relate our new item factor analysis parameterization to the IRT parameterization:

<table>
<thead>
<tr>
<th></th>
<th>Item Factor Analysis</th>
<th>IRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Discrimination</td>
<td>$\lambda_i = \frac{b_i}{\sqrt{1 + b_i^2}}$</td>
<td>$a_i = \frac{\lambda_i}{\sqrt{1 - \lambda_i^2}}$</td>
</tr>
<tr>
<td>Item Difficulty</td>
<td>$\pi_i = -\frac{a_i}{\sqrt{1 + b_i^2}}$</td>
<td>$b_i = -\frac{\pi_i}{\sqrt{1 - \lambda_i^2}}$</td>
</tr>
</tbody>
</table>
So Why Use One Parameterization over the Other?

- The common factor parameters are most useful in a preliminary examination of the structure of the data
 - Many people are experienced with using factor loadings
 - Because we can use established factor-analytic criteria for judging the sizes of the factor loadings.

- The response function parameterizations are useful in applications of a fitted model because they generally simplify computations
 - Differing estimation routines can be employed

Interpretation of Item Factor Parameters

- One can interpret the common factor parameters in relation to classical item analysis:

- The factor loading of the item, λ_i, is the product-moment correlation between X_i^* and F
 - Which is the biserial correlation between binary X_i and F

- The product of the factor loadings between any pair of items (i and j) gives the model estimate of the tetrachoric correlation between the items:
 $$\rho_{ij} = \lambda_i \lambda_j$$
Welcome to the Family

- **Generalized Linear Models** → General Linear Models with non-normal error terms and transformed data to obtain some kind of continuous outcome to work with

- Many kinds of non-normally distributed outcomes have some kind of generalized linear model to go with them:
 - Binary (dichotomous)
 - Ordered categorical (ordinal)
 - Unordered categorical (nominal)
 - Censored (piled up and cut off at one end – left or right)
 - Counts (discrete, positive values)
 - Counts with zero issues (too many or none)
3 Parts of a Generalized Linear Model

- **Link Function (main difference from GLM):**
 - How a non-normal outcome gets transformed into something we can predict that is more continuous (unbounded)
 - For outcomes that are already normal, general linear models are just a special case with an “identity” link function \((Y \times 1)\)

- **Model for the Means ("Structural Model"):**
 - How predictors linearly relate to the transformed outcome
 - New transformed data = \(\beta_0 + \beta_1X_s + \beta_2Z_s\)

- **Model for the Variance ("Sampling/Stochastic Model"):**
 - If the errors aren’t normal and homoscedastic, then what are they?
 - Family of alternative distributions at our disposal that map onto what the distribution of errors could possibly look like

Model Parts for Binary Outcomes: 2 Choices \(\rightarrow\) Logit vs. Probit

- **2 Alternative Link Functions:**
 - **Logit link**: binary \(Y = \ln(p/1-p)\) :: logit is new transformed \(Y\)
 - \(Y\) is 0/1, but logit\((Y)\) goes from \(-\infty\) to \(+\infty\)
 - **Probit link**: binary \(Y = \Phi(Y)\)
 - Observed probability replaced by value of standard normal curve below which observed proportion is found :: Z-score is new transformed \(Y\)
 - \(Y\) is 0/1, but probit\((Y)\) goes from \(-\infty\) to \(+\infty\)

- **Same Model for the Means:**
 - Main effects and interactions of predictors as desired...
 - No analog to odds coefficients in probit, however

- **2 Alternative Models for the Variances:**
 - **Logit**: \(e_i's\) ~ Bernoulli distributed with known variance of \(\pi^2/3\), or 3.29
 - **Probit**: \(e_i's\) ~ Bernoulli distributed with known variance of 1
Ordered Categorical Outcomes

- One option: **Cumulative Logit Model**
 - Called “graded response model” in IRT
 - Assumes ordinal categories
 - Model logit of category vs. all lower/higher via submodels
 - 3 categories :: 2 models: 0 vs. 1 or 2, 0 or 1 vs. 2
 - Get separate threshold (-intercept) for each submodel
 - Effects of predictors are assumed the same across submodels :: “Proportional odds assumption”
 - Is testable in some software (e.g., Mplus, NLMIXED)

 - In Mplus, can do this with the **CATEGORICAL ARE** option

Ordered Categorical Outcomes

- Another option: **Adjacent Category Logit Model**
 - Called “partial credit model” in IRT
 - Does not assume order across all categories (only adjacent)
 - Model logit of sequential categories only via submodels
 - 3 categories :: 2 models: 0 vs. 1, 1 vs. 2
 - Get separate threshold (-intercept) for each submodel
 - Effects of predictors are still assumed the same across adjacent category submodels :: “Proportional odds assumption”
 - Is testable in some software (e.g., NLMIXED)

 - Currently not available in Mplus
Unordered Categorical Outcomes: “Nominal Model”

- Compare each category against a reference category using a binary logit model
 - Referred to as “baseline category logit”
- End up with multiple logistic submodels up to \(\text{#categories} - 1 \) (2 submodels for 3 categories, 3 for 4 categories, etc)
- Intercept/thresholds and slopes for effects of predictors (factor loadings) are estimated separately within each binary submodel
 - Can get effects for missing contrast via subtraction
 - Effects are interpreted as “given that it’s one of these two categories, which has the higher probability”?
- Model comparisons proceed as in logistic regression
 - Can also test whether outcome categories can be collapsed
- In Mplus, can do this with the **NOMINAL ARE** option

Censored (“Tobit”) Outcomes

- For outcomes with ceiling or floor effects
 - Can be “Right censored” and/or “left censored”
 - Also “inflated” or not ::
 - inflation = binary variable in which 1 = censored, 0 = not censored
- Model assumes unobserved continuous distribution instead for the part it is missing
- In Mplus, can do with various **CENSORED ARE** (with options):
 - CENSORED ARE y1 (a) y2 (b) y3 (ai) y4 (bi);
 - y1 is censored from above (right); y2 is censored from below (left)
 - y3 is censored from above (right) and has inflation variable (inflated: y3#1)
 - y4 is censored from above (below) and has inflation variable (inflated: y4#1)
 - So, can predict distribution of y1-y4, as well as whether or not y3 and y4 are censored (“inflation”) as separate outcomes
 - y3 ON x; \(\rightarrow \) x predicts value of Y if at censoring point or above
 - y3#1 ON x; \(\rightarrow \) x predicts whether Y is censored (1) or not (0)
A Family of Options in Mplus for Count Outcomes (COUNT ARE)

- Counts: non-negative integer unbounded responses
 - e.g., how many cigarettes did you smoke this week?

- Poisson and negative binomial models
 - Same Link: \(\text{count } Y = \ln(Y) \) (makes the count stay positive)
 - \(\ln(Y) = \mu_i + \lambda_i F_s + e_i \) (model has intercepts and loadings)
 - Residuals follow 1 of 2 distributions:
 - Poisson distribution in which \(k = \text{Mean} = \text{Variance} \)
 - Negative binomial distribution that includes a new \(\alpha \) “scaling” or “over-dispersion” parameter that allows the variance to be bigger than the mean :: \(\text{variance} = k(1 + k\alpha) \)
 - Poisson is nested within negative binomial (can test of \(\alpha \neq 0 \))
 - COUNT ARE \(y_1(p) y_2(nb) \); :: \(y_1 \) is Poisson; \(y_2 \) is neg. binomial

Issues with Zeros in Count Data

- No zeros :: zero-truncated negative binomial
 - e.g., how many days were you in the hospital? (has to be >0)
 - COUNT ARE \(y_1(nbt) \);

- Too many zeros :: zero-inflated poisson or neg binomial
 - e.g., # cigarettes smoked when asked in non-smokers too
 - COUNT ARE \(y_2(pi) y_3(nbi) \);
 - Refer to “inflation” variable as \(y_2#1 \) or \(y_3#1 \)
 - Tries to distinguish 2 kinds of zeros
 - “Structural zeros” – would never do it
 - Inflation is predicted as logit of being a structural zero
 - “Expected zeros” – could do it, just didn’t (part of regular count)
 - Count with expected zeros predicted by poisson or neg binomial
 - Poisson or neg binomial without inflation is nested within models with inflation (and poisson is nested within neg binomial)
Issues with Zeros in Count Data

- Other more direct ways of dealing with too many zeros: split distribution into (0 or not) and (if not 0, how much)?
 - **Negative binomial “hurdle” (or “zero-altered” negative binomial)**
 - COUNT ARE y1 (nbh);
 - 0 or not: predicted by logit of being a 0 (“0” is the higher category)
 - How much: predicted by zero-truncated negative binomial
 - **Two-part model uses Mplus DATA TWOPART: command**
 - NAMES ARE y1-y4; → list outcomes to be split into 2 parts
 - CUTPOINT IS 0; → where to split observed outcomes
 - BINARY ARE b1-b4; → create names for “0 or not” part
 - CONTINUOUS ARE c1-c4; → create names for “how much” part
 - TRANSFORM IS LOG; → transformation of continuous part
 - 0 or not: predicted by logit of being NOT 0 (“something” is the 1)
 - How much: predicted by transformed normal distribution (like log)

CONCLUDING REMARKS
Wrapping Up...

- When fitting latent factor models (or when just predicting observed outcomes from observed predictors instead), you have many options to fit non-normal distributions
 - **CFA:** Continuous outcomes with normal residuals, $X \rightarrow Y$ is linear
 - **IRT and IFA:** Categorical or ordinal outcomes with Bernoulli/multinomial residuals, $X \rightarrow$ transformed Y is linear; $X \rightarrow$ original Y is nonlinear
 - **Censored:** Continuous outcomes that shut off, $X \rightarrow Y$ is linear
 - Model tries to predict what would happen if Y kept going instead
 - **Count family:** Non-negative integer outcomes, $X \rightarrow \ln(Y)$ is linear
 - Residuals can be Poisson (where mean = variance) or negative binomial (where variance > mean); either can be zero-inflated or zero-truncated
 - Hurdle or two-part may be more direct way to predict/interpret excess zeros (predict zero or not and how much rather than two kinds of zeros)