Building a Regression Model I: Model Selection and Validation

Lecture 3
February 6, 2007
Psychology 791
Today’s Lecture

- A bit of Chapter 9 - the practical side of model fitting.
The Path to Finding a Model

- Up until now, we have discussed various regression models that can be applied to data.

- One thing that we have failed to discuss is, which model is the "best" model.

- How do you choose which model is the most appropriate for the data?

- We will discuss the idea of model selection and validation.
Process

- Model Building can be thought of as a 3 (or 4) step process:
 1. Data collection and preparation.
 2. Reduction of explanatory or predictor variables.
 4. Model validation.
Overview

Model Building/Selection Process
- Process
- Building a Regression Model

Data Collection

Data Preparation

Preliminary Model Investigation

Reduction of Explanatory Variables

Model Refinement and Selection

Criteria for Model Selection

Automatic Search Procedures

Model Validation

Wrapping Up

Building a Regression Model

FIGURE 9.1
Strategy for Building a Regression Model

Collect data → Preliminary check on data quality → Diagnostics for relationships and among interactions → Identify several potentially useful subsets of explanatory variables (include known essential variables) → Investigate curvatures and interaction effects more fully → Further model diagnostics needed? → Select tentative model → Model refinement and selection → Model validation → Final regression model

Lecture 3 Psychology 791
Step 1: Data Collection

- The data collection process really stems from the design of the research study.

- Four types of research designs are outlined in the book:
 - Controlled Experiments.
 - Controlled Experiments with Covariates.
 - Confirmatory Observational Studies.
 - Exploratory Observational Studies.
Controlled Experiments

- In a controlled experiment, the experimenter controls the levels of the explanatory variables and assigns treatments.

- With control over the experimental variables, data collection simply stems from collecting observations from the treatment conditions.

- Example: Subjects are randomly assigned to four treatment groups to determine which condition is best for weight loss.
Controlled Experiments with Covariates

- This type of design incorporates the idea above, in that the experimenter controls the levels of the explanatory variable.

- There are, however, other uncontrolled variables - or -

- Example: Subjects are randomly assigned to four treatment groups to determine which condition is best for weight loss.
 - However, they also believe that age and gender might also be a factor in weight loss.
Confirmatory Observational Studies

- Studies that are observational in nature that are designed to test specific hypotheses.

- The response variable cannot be controlled and are simply observed.

- Example: Previous research has shown that high stress levels lead to weight gain.
 - They are unable to control the stress levels of the subjects, so they simply measure it and see how it relates to weight gain.
Exploratory Observational Studies

- These designs are when uncontrolled variables are measured in observational setting with no specific hypotheses.

- Basically a bunch of variables are collected and they want to see which ones have the most effect the response variable.

- Example: Researchers are interested in the stability of weight over time.
 - They are unsure of which variables are most important, so they gather a bunch of information they think might be predictive, for example, gender, amount of exercise, diet, etc.
Data Preparation

- Each of these four research designs outlines the way in which the data is collected.

- Once data is collected and is put into a data file, it should be checked for errors.

- Extreme outliers that may be input errors, measurement errors, etc.
Model Investigation

- Once you are comfortable that the data is correct, you can begin the analyses.

- During this time, you look for any clues that the data might give you as to the nature of the relationship.

- Check the scatter plots to determine the strength and nature of the relationship.

- Check residuals to determine what the functional form of the relationship is (linear, non-linear, etc).

- Check relationships between independent variables to determine if some interaction may exist.

- This step should involve a combination of prior research knowledge and brute force.
Reduction of Explanatory Variables

- The purpose of any research study is to determine which variables influence the response variable the most.

- We ultimately want to capture the most information with the fewest amount of variables.

- It doesn’t make sense to use three IV’s if two do just as well in prediction.

- The following is how variable selection works for each research design.
Controlled Experiments

- The number of IV’s is determined in the experimental design of the study.

- Any model alterations pertain to the functional form of the model and not the number of IV’s.

- Example: Still have the four treatment groups relating to weight loss.
Controlled Experiments with Covariates

- Reduction of variables relates to the Covariates.

- Again, the IV’s were determined in the design of the study.

- Model selection involves trying to identify which Covariates effect the relationship and which do not.

- Keep variables in that help, remove variable that do not contribute to the model.

- Example: Four treatment groups that relate to weight loss, but does gender have an effect? How about age?
Confirmatory Observational Studies

- There should be no reduction in variables for these designs.
- We are confirming something that is already known.
- Either it is confirmed or it is not.
- Example: Either stress relates to weight gain or it doesn’t.
Exploratory Observational Studies

- The most variable reduction is done in these types of experimental designs.

- Variable selection is a tricky process for these studies.

- You need to balance having too many variables with leaving out important variables.

- These search processes can be long and tedious.

- Luckily, computers will do this for you.

- This refers to model selection procedures which we will discuss a little later.

- Example: Identify which variables contribute most to long term weight stability.
Model Refinement and Selection

- The initial model is then run and analyzed.
- Things like residual plots are used at this stage to determine if the model is appropriate or needs to be changed.
- Fit of the model can also be determined.
- Once you find the model that gives the best fit and follows all assumptions, you can move to model validation.
- Model Validation is simply looking to see if your model makes sense.
Criteria for Model Selection

- At the model selection stage, it would be helpful to have some information about which models are better than others and which variables are important or not.

- If you think about a model with 4 IV’s.

- There are 16 \(2^{4}\) different models that can be fit and analyzed.

- That is very tedious work.

- Computer programs will do this work for you, but you have to give it some kind of criteria of determining which model is better than another.
6 Different Criteria

- The following 6 criteria are options for use in model selection:

1. R^2_p
2. $R^2_{a,p}$
3. C_p
4. AIC_p
5. SBC_p
6. $PRESS_p$
This criterion uses the coefficient of multiple determination, R^2, as a criteria for selecting variables (p is the number of parameters).

This is more of an abstract method of model fit.

sets of variables are compared and the one with the highest R^2 is assumed to be better.

You can think of it as this: if you add another variable to the model and the R^2 does not increase a lot, then that variable is probably not important.
\[R_{a,p}^2 \]

- \(R^2 \) itself does not take into account the number of variables in the model, plus there is that sticky problem of the ever-increasing \(R^2 \).

- \(R_{a,p}^2 \) is an adjusted \(R^2 \) that takes into account the number of parameters.

\[
R_{a,p}^2 = 1 - \left(\frac{n - 1}{n - p} \right) \frac{SSE_p}{SSTO}
\]

- We again do another inspection method.

- If the \(R_{a,p}^2 \) does not increase too much, then the last variable(s) do not contribute to the fit.
Mallows’ C_p Criterion

- This criterion is concerned with the total mean square error of the n fitted values for each regression model.

- You calculate the following:

$$C_p = \frac{SSE_p}{MSE(X_1 \ldots X_{p-1})} - (n - 2p)$$

- Want to find models where this C_p value is small and the value is near p.

- When C_p is small, the mean squared error is small.

- When C_p is close to p, bias of the regression model is small.
Overview

Model Building/Selection Process

Data Collection

Data Preparation

Preliminary Model Investigation

Reduction of Explanatory Variables

Model Refinement and Selection

Criteria for Model Selection

- Criteria for Model Selection
- 6 Different Criteria
- R^2_p
- $R^2_{a,p}$
- Mallows' C_p Criterion
- AIC_p and SBC_p
- $PRESS_p$

Automatic Search Procedures

Model Validation

Wrapping Up

Lecture 3

AIC_p and SBC_p

- Again, two more model selection criterion:

$$AIC_p = n \ln SSE_p - n \ln n + 2p$$

$$SBC_p = n \ln SSE_p - n \ln n + (\ln n)p$$

- You want to find models where both of these criteria are small.
The prediction sums of squares is a measure of how well the use of the fitted values for the subset model can predict the observed responses Y_i.

$$PRESS_p = \sum_{i=1}^{n} (Y_i - \hat{Y}_{i(i)})^2$$

Want to find models that have smaller PRESS values.
Automatic Search Procedures

- We have talked about ways to find good models by using values.
- But, what if we just want to leave it to the computer?
- These Automatic search procedures are built into every stat package to help you find the 'best' model.

- Here are a few methods which we will outline:
 - 'best' subsets algorithms.
 - Stepwise Regression.
 - Forward Stepwise Regression.
 - Forward Selection.
 - Backward Elimination.
’best’ subsets algorithms

- These procedures will find the "best" subset of models based on your search criteria (for example, one of the 6 mentioned above).

- You will receive information about the ’best’ model and several other ’good’ models based on your criteria.

- So, you essentially have your choice of models that fit the criteria.
Stepwise Regression

- This procedures goes through a step-by-step process of adding variables until the best model is produced based on your search criteria.

- At each step, an F test will be performed to determine if that variable is appropriate.

- This model differs from the previous algorithm in that it gives you the 'best' model possible given your variables and your criterion.
Forward Stepwise Regression

- Here is how this process works:
 - First, an individual model is fit for each IV.
 - The variable with the largest significant t statistic is kept.
 - Next, that first variable is run in the model with each of the remaining variables.
 - The next variable with the largest significant t is then kept.
 - At each stage with more than one variable, there is also another test that is done to determine if a variable in the model should be dropped.
 - Each stage is repeated until no significant t values are found and all variables should be kept.

- Variables are tested for addition to model and then removal from the model.

- What will result is the best fitting model using this search criteria with significant parameters.
Forward Selection

- This is a simplified version of Forward Stepwise procedure.

- Each variable is added in the same way, one by one, but there is no test as to whether a variable should be dropped.
Backward Elimination

- The idea is the same as the forward selection, except all variables are put in the model at first.
- Then working backwards, each variable is tested for it to be removed.
- So, each variable is removed one at a time, instead of added one at a time.
Model Validation

- Once you have found the 'best' model, either by research design or brute force, next you need to determine if your model is valid.

- There are three basic ways to validate a regression model:

 1. Collection of new data to check model and its predictive ability.

 2. Comparison of results with theoretical expectations, earlier empirical results, and simulation results.

 3. Use of a holdout sample to check the model and its predictive ability.
Collection of New Data

- Basically, you collect new data using the same method to see if it fits your data.

- You can measure the predictive ability of a model by using the mean squared prediction error:

 \[
 MS\text{PR} = \frac{\sum_{i=1}^{n^*} (Y_i - \hat{Y}_i)^2}{n^*}
 \]

- Want the MSPR to be close to the MSE.

- One note: Observational studies may be difficult to replicate.
Comparison with Theory

- May have some idea about how your results may relate in terms of theory.

- For example, if you find that eating more cake increases weight loss, then that might be a contradiction to theory.
Cross- Validation

- The most common way to validate the model is through cross-validation.

- In this analysis, you split your sample in half (randomly).

- You use half of the model to fit your model, then use the other half to determine the predictive ability of the model.

- Can then use the MSPR or the selection criteria for model fit.
Final Thought

• Today we talked about the practical side of regression.

• The way models are applied depend in large part on the research design under which the data were collected.

• As we will see, searching for best fitting models can result in trends that do not easily generalize beyond the specific study under investigation.

• As you work through the model building process, be aware of the data and what it is trying to tell you.
Next Time

- Model selection criteria example.
- Methods for searching for variables that have an effect on the response.
- More good clean fun.