Introduction to Mixed Models
for Multivariate Regression

EPSY 905: Fundamentals of
Multivariate Modeling
Online Lecture #15
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In This Lecture...

- Multivariate regression via mixed models

- Comparing and contrasting path analysis with

mixed models
> Differences in model fit measures
> Differences in software estimation methods
> Model comparisons via multivariate Wald tests (instead of LRTs)
> How to compute R?
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Today’s Data Example

- Data are simulated based on the results reported in:

Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and
self-concept beliefs in mathematical problem solving: a path
analysis. Journal of Educational Psychology, 86, 193-203.

- Sample of 350 undergraduates (229 women, 121 men)

> In simulation, 10% of variables were missing (using missing completely at
random mechanism)

- Note: simulated data characteristics differ from actual data

(some variables extend beyond their official range)

> Simulated using Multivariate Normal Distribution
+ Some variables had boundaries that simulated data exceeded

> Results will not match exactly due to missing data and boundarieswmgj&
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Variables of Data Example

- Female (1 = male; 0 = female)

Math Self-Efficacy (MSE)

> Reported reliability of .91
> Assesses math confidence of college students

Perceived Usefulness of Mathematics (USE)
> Reported reliability of .93

Math Anxiety (MAS)
> Reported reliability ranging from .86 to .90

Math Self-Concept (MSC)
> Reported reliability of .93 to .95

Prior Experience at High School Level (HSL)

> Self report of number of years of high school during which students took
mathematics courses

Prior Experience at College Level (CC)
> Self report of courses taken at college level

Math Performance (PERF)
> Reported reliability of .788
> 18-item multiple choice instrument (total of correct responses)

THE UNIVERSITY OF
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Multivariate Linear Regression Path Diagram
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The Big Picture

- Mixed models are used for many types of analyses:

> Analogous to MANOVA and M-Regression (so repeated measures analyses)
> Multilevel models for clustered, longitudinal, and crossed-effects data

- The biggest difference between mixed models and path
analysis software is in the assumed distribution of the

exogenous variables

> Mixed models: no distribution assumed

> Path analysis: most software assumes multivariate normal
+ Mplus does not by default

> This affects how missing data are managed — mixed models cannot have any
missing Vs

- Mixed models also do not allow endogenous variables to
predict other endogenous variables
> No indirect effects are possible from a single analysis (multiple analyses needed)

- Mixed models software also often needs variables to be stored

in so-called “stacked” or long-format data (one row per DV)

> We used wide-format data for lavaan (one row per person) IQJKANSKS
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Multivariate Linear Models Software Scorecard

Classical MANOVA/
M-Regression

Path Analysis
(lavaan unless

Mixed Models
(nlme/Ime4 unless

Dependent variables
can predict other
dependent variables
simultaneously

Variable-specific
modeling options

“Robust” Maximum
Likelihood Estimation

Residual Maximum
Likelihood Estimation

Ability to Incorporate
Random Effects

Multiple Covariance
Structures (beyond
Compound Symmetry
and Unstructured)

Approximate Model Fit
Indices

Different denominator
df methods
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Path analysis definition

Precise model
development

Provides lepto/platykurtic
data protection

Provides unbiased
variances, covariance, and
(some) path estimates

Additional levels of
dependency

)

Model parsimony (“Curse’
of multidimensionality)

Determining How Bad a
Model May Be

NO

NO

NO

YES (analogously)

NO

NO

NO

NO

stated)
YES

YES
(directly)

YES

NO

YES
(two-level nested;
Mplus does more)

YES (some)

YES

NO

stated)
NO

YES
(with dummy codes)

YES
(most without LRT)

YES

YES

YES (many in R; many
more in SAS)

NO

YES



MULTIVARIATE REGRESSION/ANOVA/ANCOVA
VIA PATH ANALYSIS

EEEEEEEEEEEEE
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Multivariate Regression

- Before we dive into mixed models, we will begin with a multivariate

regression model:

> Predicting mathematics performance (PERF) with female (F), college math experience
(CC), and the interaction between female and college math experience (FxCC)

> Predicting perceived usefulness (USE) with female (F), college math experience (CC),
and the interaction between female and college math experience (FxCC)

PERF; = Bo perr + Br perrFi + BccperrCCi + BriccperrFi * CCi + €; pprr
USE; = Bouse + BruseFi + BccuseCCi + Briccuseki * CCi + €; ysk

- We denote the residual for PERF as e; ppgrr and the residual for

USE as e; ysg
> We also assume the residuals are Multivariate Normal:

lei,PERF <[O] [ Ue PERF Ue,PERF,USED
e; 2
Lu SE Oe PERF,USE O¢ USE
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Before Continuing: We will Center CC at 10

Boxplot of College Experience (CC)
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Types of Variables in the Analysis

An important distinction in path analysis is between endogenous and
exogenous variables

- Endogenous variable(s): variables whose variability is explained by one or

more variables in a model

> Inlinear regression, the dependent variable is the only endogenous variable
in an analysis
+ Mathematics Performance (PERF) and Mathematics Usefulness (USE)

- Exogenous variable(s): variables whose variability is not explained by any

variables in a model

> In linear regression, the independent variable(s) are the exogenous variables
in the analysis
+ Female (F), college experience (CC), and the interaction (FxCC)

- These distinctions are not commonly used in mixed models:

> Endogenous variables are called dependent variables or outcomes
> Exogenous variables are called independent variables or predictors

THE UNIVERSITY OF
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Multivariate Linear Regression Path Diagram

’
/4

2
#0¢ PERF

)

OF ...
"u»{ Female (F)
2 St Ofcc
O-CC ", : -‘
....... ﬂ“
" College Math

Experience (CC)

= Occ,FxcC
2 A
OF«CCe. Female x
g College Math
e Experience
(F*CC)

EPSY 905: Multivariate Linear Models with Predictors

Mathematics
Performance
(PERF)

Oe¢ PERF,USE

<
\

Mathematics
Usefulness
(USE)

I

O-e,USE

:BF*CC,USE

Direct Effect

Residual (Endogenous)

Variance

Exogenous Variances

Exogenous Covariances

THE UNIVERSITY OF
. KANSA

S



CONVERTING DATA FROM WIDE- TO
LONG-FORMAT USING THE RESHAPE FUNCTION
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First Step: Convert Data from Wide to Long

. Original wide-format data (all DVs for a person on one row)

J a 57 Filter
“ id perf use female ccl0
1 1 14 44 1 -1
2 2 12 77 0 -8
3 3 NA 64 1 2
4 4 19 71 0 10
5 5 12 48 0 5

- Reshape commands:

#omit all variables but those in the analysis:
data@2 = data@l[c("id", "perf", "use", "female", "ccl@")]

#create long-format data set using reshape command

data@2_long = reshape(data@2, varying = c("perf", "use"), v.names = "score",
timevar = "DV", times = c("perf", "use"),
direction = "long")

- @ v
“id female cclo DV score
° ReSU|ting data: 1.perf 1 1 -1 perf 14
l.use 1 1 -1 use 44
2.perf 2 0 -8 perf 12
2.use 2 0 -8 use 77
3.perf 3 1 2 perf NA
3.use 3 1 2 use 64
4.perf 4 0 10 perf 19
4.use 4 0 10 use 71
5 n

THE UNIVERSITY OF
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Second Step: Remove any Missing Values

- Because all variables are not put into the likelihood
function, any missing values (on any DV or |V) are not
permitted

> For IVs, omitting variables has serious implications for the analysis (assumes
data are missing completely at random)

> For DVs, because the DVs are part of the likelihood, they can be missing
without problem (well without problems that aren’t easy to handle)

- So, we must remove all missing values from all variables:

#catch #1: missing values must be removed from DV and all predictors:

data@3_long = data@2_long[which(is.na(data@2_long$score) == FALSE &
is.na(data@2_long$ccl®) == FALSE &
is.na(data@2_long$female) == FALSE),]

THE UNIVERSITY OF
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Third Step: Create Dummy Code for DV

. In stacked data, the dependent variable values are all put
into one column (variable) of the data set

- As mixed model software has one spot for a single
outcome, we trick the software into modeling more than
one by using a dummy coded variable that is part of our
analysis, making each effect conditional on the correct DV

#create dummy coded variable for indicating which DV is in use:
data@3_long$dPerf = @
data@3_long[which(data@3_long$DV == "perf"),]%dPerf = 1

- We've decided to put USE as the reference variable
> Like reference group, but now for DV

THE UNIVERSITY OF
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BUILDING THE “EMPTY” MULTIVARIATE MODEL
IN MIXED MODELS SOFTWARE
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Multivariate Regression from the Path Analysis Method

. If we were to put our empty model into a path analysis framework,
we would end up with the following:

PERF; = Boperr + €i,pERF
USE; = Bo,use + €iusk

- We denote the residual for PERF as e; ppgrr and the residual for

USE as e; ysg
> We also assume the residuals are Multivariate Normal:

lei,PERF ([O] [ Ue PERF Ue,PERF,USED
e; 2
Lu SE Oe PERF,USE O¢ USE
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Building the Empty Model: Not So Empty

- A multivariate model using mixed model software uses the
dummy code for DV to make all effects conditional on the

specific DV in the model

> Here | use the symbol § to represent each fixed effect in the multivariate
model from the mixed model perspective

> | will compare/contrast these with the symbols 8 from the fixed effects in
path analysis

. For instance, our empty model is thus:
)/I:,DV — 60 ~+ 51dPeTfi ~+ ei,DV

- The prediction is conditional on the value of dPerf:

> When dPerf=0 - DV = “Use” = USE; = §y + e; ysg
> When dPerf=1 > DV = “Perf” > PERF; = 6y + 8; * 1 + €; pery

THE UNIVERSITY OF
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Estimating the Empty Model

« From the nlme library, we use the gls() function
> Be sure the library is installed and loaded before trying this!

#create empty model using REML estimation to attempt to mirror initial analysis:
model@1_mixed = gls(model = score ~ 1 + dPerf, method = "REML", data = data@3_long,
correlation=corSymm(form=~1l/id), weights=varIdent(form = ~11DV))

model = score ~ 1 + dPerf:
> DV ~ = put the name of the DV on the left of the ~
> 1 2 Unnecessary but indicates the intercept is estimated
> dPerf = The rest of the Vs go between plus signs after the ~

method = “REML” = Don’t change (more details next)

correlation = corSymm(form =~1|id)

> Provides estimates of all unique correlations
> Needs id variable name after | for program to know which data comes from which
person

weights = varldent(form = ~1|DV)

> Estimates a different (residual) variance for each DV
> With correlation line ensures an unstructured model is estimated IQJKANS/KS
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Empty Model Results: Fixed Effects and “Model Fit”

EPSY 905: Mixed Models

> summary(model@1_mixed)
Generalized least squares fit by REML
Model: score ~ 1 + dPerf
Data: data@3_long
AIC BIC loglLik
3774.313 3795.871 -1882.156

Correlation Structure: General
Formula: ~1 | id
Parameter estimate(s):
Correlation:
1
2 0.136
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | DV
Parameter estimates:
perf use
1.000000 5.337397

Coefficients:
Value Std.Error  t-value p-value
(Intercept) 52.40986 ©.9437950 55.53098 0
dPerf -38.46901 ©.9399708 -40.92575 0
Correlation:
(Intr)
dPerf -0.98

Standardized residuals:
Min Q1 Med Q3 Max
-3.24789265 -0.64196261 0.01956532 ©0.68109325 2.99644101

Residual standard error: 3.023304
Degrees of freedom: 553 total; 551 residual

KU KANSAS



Empty Model Results: Residual Covariance Matrix

- The residual covariance matrix comes from the
getVarCov() function:

> getVarCov(model@1l_mixed)
Marginal variance covariance matrix
[,1] [,2]
[1,] 9.1404 6.6311
[2,] 6.6311 260.3900
Standard Deviations: 3.0233 16.137

THE UNIVERSITY OF
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Mapping Multivariate Mixed Models onto Path Models

- To compare this result with the path analyses we

conducted previously, we’ll have to use this data set
> Omit the same observations

- So, we'll need to take our long-format data and reshape it
into wide-format:

#Comparison with Path Model Version: removed NA values ----------—-———— -
data@3_wide = reshape(data@3_long, timevar = "DV", idvar = c("id", "female", "ccl@®"), direction = "wide")

#create DVs with original names:
data@3_wide$perf = data@3_wide$score.perf

data@3_wide$use = data@3_wide$score.use

#creating interation between male and cc:i-------------— -
data@3_wide$femaleXccl® = data@3_wide$female*data@3_wide$ccld

THE UNIVERSITY OF
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Lavaan Model Syntax

model@1_mirror.syntax = "
#Means:

perf ~ 1

use ~ 1

#Variances:

perf ~~ perf

use ~~ use

#Covariance:
perf ~~ use

"

model@1_path_noNA.fit = sem(model@l_mirror.syntax, data=data@3_wide,
conditional.x=TRUE, fixed.x = TRUE, mimic = "MPLUS", estimator = "MLR")

summary(model@1_path_noNA.fit, fit.measures = TRUE, standardized = TRUE)

THE UNIVERSITY OF
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Comparing and Contrasting Results: Model Fit

> summary(model@l_path_noNA.fit, fit.measures = TRUE, standardized = TRUE)
lavaan (@.5-20) converged normally after 29 iterations

Number of observations 311
Number of missing patterns 3
Estimator ML Robust
Minimum Function Test Statistic 0.000 0.000
Degrees of freedom 0 0
Scaling correction factor NA

for the Yuan-Bentler correction (Mplus variant)

Model test baseline model:

Minimum Function Test Statistic 4,798 4,574
Degrees of freedom 1 1
P-value 0.028 0.032

User model versus baseline model:

Comparative Fit Index (CFI) 1.000 1.000
T e PASI bttt e b4 .
. . Tucker-Lewis Index (TLI 1.000 1.000
Generalized least squares fit by REML (TLD
Model: score ~ 1 + dPerf Loglikelihood and Information Criteria:
Data: data®3_long Loglikelihood del (HO) 1882.250 1882.250
. oglikelihood user mode - . - .
AIC BIC  loglik Loglikelihood unrestricted model (H1) -1882.250  -1882.250
3774.313 3795.871 -1882.156
Number of free parameters 5 5
Akaike (AIC) 3774.500 3774.500
Bayesian (BIC) 3793.199 3793.199
Sample-size adjusted Bayesian (BIC) 3777.341 3777.341
Root Mean Square Error of Approximation:
RMSEA 0.000 0.000
90 Percent Confidence Interval 0.000 0.000 0.000 0.000
P-value RMSEA <= 0.05 1.000 1.000
Standardized Root Mean Square Residual:
SRMR 0.000 0.000
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Comparing and Contrasting Results: Parameter Estimates

Correlation Structure: General Covariances:

Formula: ~1 | id Estimate Std.Err Z-value P(>1zl) Std.lv Std.all
Parameter estimate(s): perf ~~

1

Intercepts:

2 0.136 _ Estimate Std.Err Z-value P(>lzI) Std.lv Std.all
Variance function: perf 13.941  0.187 74.660 0.000 13.941  4.620
Structure: Different standard deviations per stratum use 52.410  ©0.940 55.750 0.000 52.410 3.253

Formula: ~1 | DV _

Parameter estimates: Variances:

perf use Estimate Std.Err Z-value P(>lzl) Std.lv Std.all

1.000000 5.337397 perf 9.105 ©0.827 11.006 ©0.000 9.105  1.000

: : use 259.498 20.968 12.376  0.000 259.498  1.000
Coefficients:

Value Std.Error  t-value p-value .
> getVarCov(model@l_mixed
(Intercept) 52.40986 ©0.9437950 55.53098 0 Mag inal vaEiance covar'iaace matrix
dPerf -38.46901 0.9399708 -40.92575 0 9 [,1] [,2]
b b

#create mean for Usefulness (sum of intercept plus main effect of dPerf) [1,] 9.1404 6.6311
estimate@l = matrix(c(1,1), nrow = 1); rownames(estimate@l) = "Mean Usefulness" [2,] 6.6311 260.3900
estimate®2 = matrix(c(1,0@), nrow = 1); rownames(estimate®2) = "Mean Performance" Standard Deviations: 3.0233 16.137

estimates = rbind(estimate@l, estimate®2)
effects = glht(model = model@l_mixed, linfct = estimates)
summary(effects)

Simultaneous Tests for General Linear Hypotheses

Fit: gls(model = score ~ 1 + dPerf, data = data@3_long, correlation = corSymm(form = ~1 |
id), weights = varIdent(form = ~1 | DV), method = "REML")

Linear Hypotheses:

Estimate Std. Error z value Pr(>lzl)
Mean Usefulness == @  13.9408 0.1869 74.61 <le-1@ ***
Mean Performance == @ 52.4099 0.9438 55.53 <le-1@ ***

Signif. codes: @ ‘***’ 9.@01 ‘**’ 9.01 ‘*’ 9.05 ‘.’ 0.1 * ’ 1
(Adjusted p values reported -- single-step method) m‘gﬁ%
26 :li:]{.] AN
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RESIDUAL MAXIMUM LIKELIHOOD ESTIMATION
(UNBIASED VARIANCE COMPONENTS)
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Residual Maximum Likelihood Estimation

The ML estimator is nice, but the variance estimate is downward biased

(too small)
> Remember — it divides by N for the residual covariance matrix

In small samples, this is likely to lead to biased estimates and

incorrect p-values

> The variance goes into the SE, which goes into the Wald test, which dictates the
p-value for the beta

Instead, another maximum likelihood technique has been developed:
Residual Maximum Likelihood (REML)

> Maximizes the likelihood of the residuals rather than the data
> Has unbiased estimates of the residual covariance matrix
> |Is the default method of estimation for most mixed model estimation packages

There is one catch to REML: you cannot use a LRT to compare nested

models with differing fixed effects

> Because the algorithm uses residuals, if the residuals change, the likelihood changes

> Residuals come from the fixed effects = if fixed effects are different, then residuals change,
causing the likelihood to change

> Can use multivariate Wald test for fixed effects

Don’t mix ML and REML for the same analysis

THE UNIVERSITY OF
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ADDING PREDICTORS TO THE MODEL
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Adding Predictors To The Model

- Adding predictors to the model is similar to adding

predictors in regular regression models
> No O* terms in syntax to remove

- By using REML we cannot compare models using likelihood

ratio tests
> REML LRTs must have same fixed effects
> Adding predictors adds new fixed effects to the empty model

- We are predicting each DV with female, cc10, and
female*ccl10

THE UNIVERSITY OF
KU KANSAS
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Model with Predictors: Syntax

#model 02: all predictors included --------————— - -
model@2_mixed = gls(model = score ~ 1 + dPerf + female + dPerf*female +
ccl® + dPerf*ccl® + female*ccl® + dPerf*female*ccl,
method = "REML", data = data@3_long, correlation=corSymm(form=~1|id),
weights=varIdent(form = ~1|/DV))

Interpret the Parameters:

Bo:

Bapers(dPerf;):

Bremaie (Female;):
IBdPerf*Female (dPerf;Female;):
Bcc10(CC10;):
ﬁdPerf*CClO(dPerfiCC1Oi):
Bremaie«cc10(CC10;Female;):

ﬁdPerf*Female*CClO (dPerf;CC10;Female;):

THE UNIVERSITY OF
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First Question: Which Model “Fits” Better?

- After adding the predictors (estimating their betas) to the model, we must
first ask which model fits better

- Alikelihood ratio test (LRT) cannot be performed as we are using REML

> anova{model@l_mixed, model@Z_mixed)
Model df AIC BIC loglik Test L.Ratio p-value
model@1_mixed 1 5 3774.313 3795.871 -1882.156
model@2_mixed 2 11 3771.308 3B818.617 -1874.654 1 vs 2 15.00473 0.08202
Warning message:
In nlme::anova.lmelobject = model@l_mixed, model®Z_mixed) :
fitted objects with different fixed effects. REML comparisons are not meaningful.

- Which model is the null model?
> Model01

- Which model is the alternative model?
> Model02

- What is the null hypothesis?
> Hy:
- What is the alterative hypothesis?

THE UNIVERSITY OF
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Syntax for Multivariate Wald Test for Model Fit

#create a specific vector for each beta weight: will use later

intercept = matrix(c(1, @, @, @, 0, @, @, @), nrow =
rownames(intercept) = "Intercept"

dPerf = matrix(c(@, 1, @, @0, 0, @, @, @), nrow =
rownames(dPerf) = "dPerf"

female = matrix(c(0, 0, 1, 0, 0, 0, 0, @), nrow
rownames(female) = "female"

cclo = matrix(c(@, @, 0, 1, 0, @, @0, @), nrow =
rownames(ccl@) = "ccl@"

dPerf_female = matrix(c(0, 0, 0, 0, 1, 0, @0, @), nrow
rownames (dPerf_female) = "dPerf:female"

dPerf_ccl0 = matrix(c(@, 0, @, 0, @0, 1, @, @), nrow =
rownames(dPerf_ccl1@) = "dPerf:ccl@"

female_ccl® = matrix(c(@, 0, @, 0, @, 0, 1, @), nrow
rownames (female_ccl1@) = "female:ccl@"

dPerf_female_cclQ = matrix(c(0@, @, @0, 0, 0, @, 0, 1), nrow
rownames (dPerf_female_ccl1@) = "dPerf:female:ccl@"

#analog to LRT: test all parameters simultaneously (a multi-DF

to create specific parameters for each DV prediction

D
D
-1
D
-1
D
-1

-1

contrast)

overall_sig = rbind(female, ccl@, dPerf_female, dPerf_ccl@, female_ccl®@, dPerf_female_ccl1@)

effects = glht(model = model@®2_mixed, linfct = overall_sig)

#note: R's package do not give you an F-test [BAD R, BAD!]
summary(effects, test=Ftest())

EPSY 905: Mixed Models
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Results for Model Fit

- Note: R’s nlme function doesn’t do a good job with

df.residual and provides a Chi-square test
> SAS is way more advanced on this as there are multiple options

General Linear Hypotheses

Linear Hypotheses:

Estimate
Intercept for Use == 51.79933
Simple main effect for Female predicting Use == 1.83570
Simple main effect for CC10Q predicting Use == 0.19525
Interaction of Female and CC10Q predicting Use == @ 0.26018
Intercept for Perf == 13.68949

Simple main effect for Female predicting Perf == @ 0.65832
Simple main effect for CC10Q predicting Perf == 0 0.09871
Interaction of Female and CC10Q predicting Perf == 0 0.09377

Global Test:
Chisq DF Pr(>Chisq)
1 8328 8 0
Warning message:
In test(object) :
‘df.residual’ is not available for ‘model’ a Chisq test is performed instead of the requested F test.
>

. Also note there are 6 degrees of freedom (one for each

additional beta weight in the model) KU KARSAS
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Up Next: Inspect Parameters and Make Interpretations

. Using the summary() function for the model:

Coefficients:

Value Std.Error  t-value p-value
(Intercept) 51.79933 1.1750554 44.08246 0.0000
dPerf -38.10983 1.1751688 -32.42924 0.0000
female 1.83570 2.0060709 ©.91507 0.36006
cclo 0.19525 0.1981999 0.98510 0.3250
dPerf:female -1.17738 2.0068176 -0.58669 0.5577
dPerf:ccl@ -0.09653 0.1979034 -0.48778 0.6259
female:ccl0 0.26018 0.3527298 0.73761 0.4611
dPerf:female:ccl® -0.16641 0.3529074 -0.47155 0.6374

~ b |

. But, there is a way to directly code these beta weights into
path model analogs using the glht() function

THE UNIVERSITY OF
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Direct Betas using Linear Combinations and glht()

#creating direct betas vectors for prediction of usefuleness (dPerf = @)

beta_use_@ = intercept; rownames(beta_use_0) = "Intercept for Use"

beta_use_female = female; rownames(beta_use_female) = "Simple main effect for Female predicting Use"

beta_use_ccl® = ccl1@; rownames(beta_use_ccl@) = "Simple main effect for CC10Q predicting Use"

beta_use_femaleXccl® = female_ccl@; rownames(beta_use_femaleXccl®) = "Interaction of Female and CC1Q predicting Use"

beta_perf_0 = intercept + dPerf; rownames(beta_perf_0) = "Intercept for Perf"

beta_perf_female = female + dPerf_male; rownames(beta_perf_female) = "Simple main effect for Female predicting Perf"

beta_perf_ccl® = ccl@ + dPerf_ccl@; rownames(beta_perf_ccl®) = "Simple main effect for CC1@ predicting Perf"

beta_perf_femaleXccl® = female_ccl@® + dPerf_female_ccl@; rownames(beta_perf_femaleXccl®) = "Interaction of Female and CC1@ predicting Perf"

beta = rbind(beta_use_0, beta_use_female, beta_use_ccl@, beta_use_femaleXccl®, beta_perf_0, beta_perf_female,
beta_perf_ccl@, beta_perf_femaleXccl@)

effects = glht(model = model@2_mixed, linfct = beta)

summary(effects)

Simultaneous Tests for General Linear Hypotheses

Fit: gls(model = score ~ 1 + dPerf + female + dPerf * female + ccl@ +
dPerf * ccl® + female * ccl@ + dPerf * female * ccl®, data = data@3_long,
correlation = corSymm(form = ~1 | id), weights = varIdent(form = ~1 |
DV), method = "REML™)

Linear Hypotheses:
Estimate Std. Error z value Pr(>lzl)

Intercept for Use == 51.79933 1.17506 44.082 <le-04 ***
Simple main effect for Female predicting Use == 0 1.83570 2.00607 ©0.915 0.9575
Simple main effect for CC1l@ predicting Use == 0 0.19525 0.19820 0.985 0.9372
Interaction of Female and CC10Q predicting Use == @ 0.26018 0.35273 0.738 0.9879
Intercept for Perf == 13.68949 0.22375 61.183 <le-04 ***
Simple main effect for Female predicting Perf == @ 0.65832 0.38378 1.715 0.4733
Simple main effect for CC1@ predicting Perf == 0 0.09871 0.03543 2.786 0.0397 *
Interaction of Female and CC1l@ predicting Perf == 0.09377 0.06716 1.39%6 0.7129

Signif. codes: @ ‘***’ @9.001 ‘**’ 9.01 ‘*’ .05 ‘.’ 0.1 ¢ ’ 1
(Adjusted p values reported -- single-step method)
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Questions to Answer about this Model

- What is the effect of college experience on usefulness for
males?

- What is the effect of college experience on usefulness for
females?

- What is the difference between males and females ratings
of usefulness when college experience = 107?

- How did the difference between males and females ratings
change for each additional hour of college experience?
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Questions to Answer about this Model

- What is the effect of college experience on performance
for males?

- What is the effect of college experience on performance
for females?

- What is the difference between males and females
performance when college experience = 107?

- How did the difference between males and females

performance change for each additional hour of college
experience?
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Model R-squared

- To determine the model R-squared, we have to compare
the variance/covariance matrix from model01 and
model02 and make the statistics ourselves:

> #R-squared for model@2 vs model@l ------—---— - - - e
> #model@l residual covariance matrix:
> Vmodel@l = getVarCov(model@1l_mixed)

> Vmodel@1
Marginal variance covariance matrix
[,1] [,2]

[1,] 9.1404 ©6.6311
[2,] 6.6311 260.3900

Standard Deviations: 3.0233 16.137
>
> #model@2 residual covariance matrix:
> Vmodel@2 = getVarCov(model@2_mixed)

> Vmodel0@2
Marginal variance covariance matrix
[,1] [,2]

[1,] 8.5491 5.0582
[2,] 5.0582 259.5200
Standard Deviations: 2.9239 16.11
>
> #Rsquare for Performance:
> (Vmodel@1[1,1] - Vmodel®@2[1,1])/Vmodel@1[1,1]
[1] 0.06468645
>
> #Rsquare for Usefulness:
> (Vmodel@1[2,2] - Vmodel®@2[2,2])/Vmodel@l[2,2]
[1] 0.003341706
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WRAPPING UP
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Differences Between Mixed and Path Model Results

- Things we get directly from path models that we do not

get directly in mixed models:

> Tests for approximate model fit

> Scaled Chi-square for some types of non-normal data
> Standardized parameter coefficients

> Tests for indirect effects

> R-squared statistics

- Things we get directly in mixed models that we do not get

in path models:
> REML (unbiased estimates of variances/covariances)
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Wrapping Up

. In this lecture we discussed the basics of mixed model

analyses for multivariate models

> Model specification/identification

> Model estimation

> Model modification and re-estimation
> Final model parameter interpretation

- There is a lot to the analysis — but what is important to
remember is the over-arching principal of multivariate

analyses: covariance between variables is important

> Mixed models imply very specific covariance structures

> The validity of the results still hinge upon accurately finding an approximation
to the covariance matrix
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