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Today’s	Class

• Methods	for	exploratory	factor	analysis	(EFA)
Ø Principal	Components-based	 (TERRIBLE)
Ø Maximum	Likelihood-based	 Exploratory	 Factor	Analysis	(BAD)
Ø Exploratory	Structural	Equation	Modeling	(ALSO	BAD)

• Comparisons	of	CFA	and	EFA

• How	to	do	exploratory	analyses	with	CFA
Ø Structure	of	no	items	known
Ø Structure	of	some	items	known
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The	Logic	of	Exploratory	Analyses
• Exploratory	analyses	attempt	 to	discover	 hidden	structure	 in	data	with	little	to	no	

user	 input
Ø Aside	from	the	selection	of	analysis	and	estimation

• The	results	 from	exploratory	analyses	can	be	misleading
Ø If	data	do	not	meet	assumptions	of	model	or	method	selected
Ø If	data	have	quirks	that	are	idiosyncratic	to	the	sample	selected
Ø If	some	cases	are	extreme	relative	to	others
Ø If	constraints	made	by	analysis	are	implausible

• Sometimes,	exploratory	 analyses	are	needed
Ø Must	construct	an	analysis	that	capitalizes	on	the	known	features	of	data
Ø There	are	better	ways	to	conduct	such	analyses

• Often,	exploratory	analyses	are	not	needed
Ø But	are	conducted	anyway	– see	a	lot	of	reports	of	scale	development	that	start	with	the	idea	that	

a	construct	has	a	certain	number	of	dimensions
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ADVANCED	MATRIX	OPERATIONS
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A	Guiding	Example

• To	demonstrate	some	advanced	matrix	algebra,	we	will	
make	use	of	data

• I	collected	data	SAT	test	scores	for	both	the	Math	(SATM)	
and	Verbal	(SATV)	sections	of	1,000	students

• The	descriptive	statistics	of	this	data	set	are	given	below:
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Matrix	Trace

• For	a	square	matrix	𝚺 with	p rows/columns,	the	trace	is	the	
sum	of	the	diagonal	elements:

𝑡𝑟𝚺 =%𝑎''

(

')*
• For	our	data,	the	trace	of	the	correlation	matrix	is	2

Ø For	all	correlation	matrices,	 the	trace	 is	equal	to	the	number	of	variables	
because	all	diagonal	elements	 are	1

• The	trace	will	be	considered	the	total	variance	in	principal	
components	analysis

Ø Used	as	a	target	to	recover	when	applying	statistical	models
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Matrix	Determinants
• A	square	matrix	can	be	characterized	by	a	scalar	value	called	a	
determinant:

det𝚺 = 𝚺

• Calculation	of	the	determinant	by	hand	is	tedious
Ø Our	determinant	 was	0.3916
Ø Computers	 can	have	difficulties	 with	this	calculation	(unstable	 in	cases)

• The	determinant	is	useful	in	statistics:
Ø Shows	up	in	multivariate	statistical	distributions
Ø Is	a	measure	of	“generalized”	variance	of	multiple	variables

• If	the	determinant	is	positive,	the	matrix	is	called	positive	definite
Ø Is	invertable

• If	the	determinant	is	not	positive,	the	matrix	is	called	
non-positive	definite

Ø Not	invertable
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Matrix	Orthogonality

• A	square	matrix	𝚲 is	said	to	be	orthogonal	if:
𝚲𝚲/ = 𝚲/𝚲 = 𝐈

• Orthogonal	matrices	are	characterized	by	two	properties:
1. The	dot	product	of	all	row	vector	multiples	is	the	zero	vector

w Meaning	 vectors	are	orthogonal	 (or	uncorrelated)
2. For	each	 row	vector,	 the	sum	of	all	elements	 is	one

w Meaning	 vectors	are	“normalized”

• The	matrix	above	is	also	called	orthonormal
Ø The	diagonal	 is	equal	 to	1	(each	vector	has	a	unit	 length)

• Orthonormal	matrices	are	used	in	principal	components	
and	exploratory	factor	analysis	
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Eigenvalues	and	Eigenvectors

• A	square	matrix	𝚺 can	be	decomposed	into	a	set	of	
eigenvalues	𝛌 and	a	set	of	eigenvectors	𝐞

𝚺𝐞 = λ𝐞

• Each	eigenvalue	has	a	corresponding	eigenvector
Ø The	number	equal	to	the	number	of	rows/columns	of	𝚺
Ø The	eigenvectors	 are	all	orthogonal

• Principal	components	analysis	uses	eigenvalues	and	
eigenvectors	to	reconfigure	data
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Eigenvalues	and	Eigenvectors	Example

• In	our	SAT	example,	the	two	eigenvalues	obtained	were:
𝜆* = 1.78
𝜆9 = 0.22

• The	two	eigenvectors	obtained	were:

𝐞* =
0.71
0.71 ; 𝐞9 =

0.71
−0.71

• These	terms	will	have	much	greater	meaning	principal	
components	analysis
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Spectral	Decomposition

• Using	the	eigenvalues	and	eigenvectors,	we	can	
reconstruct	the	original	matrix	using	a	spectral	
decomposition:

𝚺 =%𝜆'𝐞'𝐞'/
(

')*
• For	our	example,	we	can	get	back	to	our	original	matrix:

𝐑* = 𝜆*𝐞*𝐞*/ = 1.78 .71
.71 .71 .71 = .89 .89

.89 .89

𝐑9 = 𝐑* + 𝜆9𝐞9𝐞9/

= .89 .89
.89 .89 + 0.22 .71

−.71 .71 −.71 = 1.00	 0.78
0.78 1.00
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Spectral	Decomposition	 in	R
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Additional	Eigenvalue	Properties

• The	matrix	trace	is	the	sum	of	the	eigenvalues:

𝑡𝑟𝚺 =%𝜆'

(

')*
Ø In	our	example,	 the	𝑡𝑟𝐑	 = 	1.78 + .22	 = 	2

• The	matrix	determinant	can	be	found	by	the	product	of	
the	eigenvalues

𝚺 =B𝜆'

(

')*
Ø In	our	example	 𝐑 = 1.78 ∗ .22 = .3916
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AN	INTRODUCTION	TO	PRINCIPAL	
COMPONENTS	ANALYSIS

EPSY	905:	PCA,	EFA,	and	CFA 14



PCA	Overview

• Principal	Components	Analysis	(PCA)	is	a	method	for	re-expressing	
the	covariance	(or	often	correlation)	between	a	set	of	variables

Ø The	re-expression	 comes	from	creating	a	set	of	new	variables	(linear	combinations)	 of	
the	original	variables

• PCA	has	two	objectives:
1. Data	reduction

w Moving	from	many	original	variables	down	to	a	few	“components”

2. Interpretation
w Determining	which	original	variables	contribute	most	to	the
new	“components”
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Goals	of	PCA

• The	goal	of	PCA	is	to	find	a	set	of	k	principal	components	(composite	
variables)	that:

Ø Is	much	smaller	 in	number	than	the	original	set	of	V variables
Ø Accounts	for	nearly	all	of	the	total	variance

w Total	variance	=	trace	of	covariance/correlation	matrix

• If	these	two	goals	can	be	accomplished,	then	the	set	of	k principal	
components	contains	almost	as	much	information	as	the	
original	V variables

Ø Meaning	 – the	components	 can	now	replace	the	original	variables	 in	any	subsequent	
analyses
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Questions	when	using	PCA

• PCA	analyses	proceed	by	seeking	the	answers	to	two	
questions:

1. How	many	components	(new	variables)	are	needed	to	
“adequately”	represent	the	original	data?
Ø The	term	adequately	 is	fuzzy	(and	will	be	in	the	analysis)

2. (once	#1	has	been	answered):	What	does	each	
component	represent?
Ø The	term	“represent”	 is	also	fuzzy
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PCA	Features

• PCA	often	reveals	relationships	between	variables	that	
were	not	previously	suspected

Ø New	interpretations	 of	data	and	variables	 often	stem	from	PCA

• PCA	usually	serves	as	more	of	a	means	to	an	end	rather	
than	an	end	it	itself

Ø Components	 (the	new	variables)	 are	often	used	in	other	
statistical	 techniques

w Multiple	 regression/ANOVA
w Cluster	analysis

• Unfortunately,	PCA	is	often	intermixed	with	Exploratory	
Factor	Analysis

Ø Don’t.	Please	don’t.	Please	make	it	stop.
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PCA	Details

• Notation:	𝑍 are	our	new	components	and	𝐘 is	our	original	
data	matrix	(with	N observations	and	V variables)

Ø We	will	let	p be	our	index	for	a	subject	

• The	new	components	are	linear	combinations:
𝑍(* = 𝐞*/𝐘 = 𝑒**𝑌(* + 𝑒9*𝑌(9 + ⋯+ 𝑒K*𝑌(K
𝑍(9 = 𝐞9/𝐘 = 𝑒*9𝑌(* + 𝑒99𝑌(9 + ⋯+ 𝑒K9𝑌(K

⋮
𝑍(K = 𝐞K/𝐘 = 𝑒*K𝑌(* + 𝑒9K𝑌(9 + ⋯+ 𝑒KK𝑌(K

• The	weights	of	the	components	(𝑒NO) come	from	the	
eigenvectors	of	the	covariance	or	correlation	matrix	for	
component	𝑘 and	variable	𝑗
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Details	About	the	Components

• The	components	(𝑍) are	formed	by	the	weights	of	the	
eigenvectors	of	the	covariance	or	correlation	matrix	of	the	
original	data

Ø The	variance	 of	a	component	 is	given	by	the	eigenvalue	 associated	with	the	
eigenvector	 for	the	component

• Using	the	eigenvalue	and	eigenvectors	means:
Ø Each	successive	 component	has	lower	variance

w Var(Z1)	>	Var(Z2)	>	…	>	Var(Zv)
Ø All	components	 are	uncorrelated
Ø The	sum	of	the	variances	 of	the	principal	components	 is	equal	to	the	
total	variance:

%𝑉𝑎𝑟 𝑍T = 𝑡𝑟𝚺 = % 𝜆T

K

T)*

K

T)*
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PCA	on	our	Example

• We	will	now	conduct	a	PCA	on	the	correlation	matrix	of	
our	sample	data

Ø This	example	 is	given	for	demonstration	 purposes	 – typically	we	will	not	do	
PCA	on	small	numbers	of	variables
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PCA	in	R

• The	R	function	that	does	principal	components	is	called	
prcomp()
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Graphical	Representation

• Plotting	the	components	and	the	original	data	side	by	side	
reveals	the	nature	of	PCA:

Ø Shown	from	PCA	of	covariance	matrix
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The	Growth	of	Gambling	Access

• In	past	25	years:
Ø An	exponential	 increase	 in	the	
accessibility	of	gambling

Ø An	increased	 rate	of	with	problem	
or	pathological	gambling	
(Volberg,	2002,	Welte et	al.,	2009)

• Hence,	there	is	a	need	to	better:
Ø Understand	 the	underlying	causes	of	the	disorder
Ø Reliably	identify	potential	pathological	gamblers	
Ø Provide	effective	 treatment	 interventions
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Pathological	Gambling:	DSM	Definition

• To	be	diagnosed	as	a	pathological	gambler,	an	individual	
must	meet	5	of	10	defined	criteria:

1. Is	preoccupied	with	gambling	
2. Needs	 to	gamble	with	increasing	

amounts	of	money	in	order	to	
achieve	 the	desired	excitement	

3. Has	repeated	 unsuccessful	 efforts	 to	
control,	cut	back,	or	stop	gambling

4. Is	restless	or	irritable	when	
attempting	to	cut	down	or	stop	
gambling

5. Gambles	as	a	way	of	escaping	from	
problems	or	relieving	a	dysphoric
mood

6. After	 losing	money	gambling,	often	
returns	another	day	to	get	even

7. Lies	to	family	members,	 therapist,	 or	
others	 to	conceal	the	extent	of	
involvement	with	gambling

8. Has	committed	illegal	acts	such	as	
forgery,	 fraud,	theft,	or	
embezzlement	 to	finance	gambling

9. Has	jeopardized	or	lost	a	significant	
relationship,	 job,	educational,	or	
career	opportunity	because	of	
gambling

10. Relies	on	others	 to	provide	money	
to	relieve	a	desperate	 financial	
situation	caused	by	gambling
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Research	on	Pathological	Gambling

• In	order	to	study	the	etiology	of	pathological	gambling,	more	
variability	in	responses	was	needed

• The	Gambling	Research	Instrument	(Feasel,	Henson,	&	Jones,	
2002)	was	created	with	41	Likert-type	items

Ø Items	were	developed	to	measure	each	criterion

• Example	items	(ratings:	Strongly	Disagree	to	Strongly	Agree):
Ø I	worry	that	I	am	spending	too	much	money	on	gambling (C3)
Ø There	are	few	things	I	would	rather	do	than	gamble (C1)

• The	instrument	was	used	on	a	sample	of	experienced	gamblers	
from	a	riverboat	casino	in	a	Flat	Midwestern	State

Ø Casino	patrons	were	solicited	after	playing	roulette	
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The	GRI	Items

• The	GRI	used	a	6-point	Likert scale
Ø 1:	Strongly	Disagree
Ø 2:	Disagree
Ø 3:	Slightly	Disagree
Ø 4:	Slightly	Agree
Ø 5:	Agree
Ø 6:	Strongly	Agree

• To	meet	the	assumptions	of	factor	analysis,	we	will	treat	
these	responses	as	being	continuous

Ø This	is	tenuous	at	best,	but	often	is	the	case	 in	factor	analysis
Ø Categorical	 items	would	be	better….but	 you’d	need	another	course	 for	how	to	
do	that

w Hint:	 Item	Response	 Models
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The	Sample

• Data	were	collected	from	two	sources:
Ø 112	“experienced”	 gamblers

w Many	from	an	actual	casino
Ø 1192	college	 students	 from	a	“rectangular”	midwestern state

w Many	never	gambled	before

• Today,	we	will	combine	both	samples	and	treat	them	as	
homogenous	– one	sample	of	1304	subjects

EPSY	905:	PCA,	EFA,	and	CFA 28



Final	10	Items	on	the	Scale

Item Criterion Question

GRI1 3 I	would	like	to	cut	back	on	my	gambling.

GRI3 6
If	I	lost	a	lot	of	money	gambling	one	day,	I	would	be	more	likely	to	want	to	play	
again	the	following	day.

GRI5 2
I	find	it	necessary	to	gamble	with	larger	amounts	of	money	(than	when	I	first	
gambled)	for	gambling	to	be	exciting.

GRI9 4 I	feel	restless	when	I	try	to	cut	down	or	stop	gambling.

GRI10 1 It	bothers	me	when	I	have	no	money	to	gamble.	
GRI13 3 I	find	it	difficult	to	stop	gambling.

GRI14 2 I	am	drawn	more	by	the	thrill	of	gambling	than	by	the	money	I	could	win.

GRI18 9 My	family,	coworkers,	or	others	who	are	close	to	me	disapprove	of	my	gambling.
GRI21 1 It	is	hard	to	get	my	mind	off	gambling.	

GRI23 5 I	gamble	to	improve	my	mood.	

EPSY	905:	PCA,	EFA,	and	CFA 29



PCA	with	Gambling	Items

• To	show	how	PCA	works	with	a	larger	set	of	items,	we	will	
examine	the	10	GRI	items	(the	ones	that	fit	a	one-factor	
CFA	model)

• TO	DO	THIS	YOU	MUST	IMAGINE:
Ø THESE	WERE	THE	ONLY	10	ITEMS	YOU	HAD
Ø YOU	WANTED	TO	REDUCE	THE	10	ITEMS	INTO	1	OR	2	
COMPONENT	VARIABLES

• CAPITAL	LETTERS	ARE	USED	AS	YOU	SHOULD	NEVER	DO	A	
PCA	AFTER	RUNNING	A	CFA	– THEY	ARE	FOR	DIFFERENT	
PURPOSES!
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Question	#1:	How	Many	Components?

• To	answer	the	question	of	how	many	components,	two	
methods	are	used:

Ø Scree	plot	of	eigenvalues	 (looking	for	the	“elbow”)
Ø Variance	accounted	 for	(should	be	>	70%)

• We	will	go	with	4	components:	(variance	accounted	for	
VAC	=	75%)

• Variance	accounted	for	is	for	the	total	sample	variance
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Plots	to	Answer	How	Many	Components
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Question	#2:
What	Does	Each	Component	Represent?

• To	answer	question	#2	– we	look	at	the	weights	of	the	
eigenvectors	(here	is	the	unrotated solution)

EPSY	905:	PCA,	EFA,	and	CFA 33



Final	Result:	Four	Principal	Components	

• Using	the	weights	of	the	eigenvectors,	we	can	create	four	
new	variables	– the	four	principal	components

• Each	of	these	is	uncorrelated	with	each	other
Ø The	variance	 of	each	is	equal	to	the	corresponding	 eigenvalue

• We	would	then	use	these	in	subsequent	analyses
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PCA	Summary

• PCA	is	a	data	reduction	technique	that	relies	on	the	
mathematical	properties	of	eigenvalues	and	eigenvectors

Ø Used	to	create	new	variables	 (small	number)	out	of	the	old	data	 (lots	of	
variables)

Ø The	new	variables	 are	principal	components	 (they	are	not	factor	scores)

• PCA	appeared	first	in	the	psychometric	literature
Ø Many	“factor	analysis”	methods	used	variants	 of	PCA	before	 likelihood-based	
statistics	were	available

• Currently,	PCA	(or	variants)	methods	are	the	default	option	
in	SPSS	and	SAS	(PROC	FACTOR)
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Potentially	Solvable	Statistical	Issues	in	PCA
• The	typical	PCA	analysis	also	has	a	few	statistical	concerns

Ø Some	of	these	can	be	solved	if	you	know	what	you	are	doing
Ø The	typical	analysis	(using	program	defaults)	does	not	solve	these

• Missing	data	is	omitted	using	listwise deletion	– biases	possible
Ø Could	use	ML	to	estimate	covariance	matrix,	but	then	would	have	to	assume	
multivariate	normality	

Ø Could	use	MI	to	impute	data

• The	distributions	of	variables	can	be	anything…but	variables	
with	much	larger	variances	will	look	like	they	contribute	more	
to	each	component

Ø Could	standardize	variables	– but	some	can’t	be	standardized	easily	(think	gender)

• The	lack	of	standard	errors	makes	the	component	weights	
(eigenvector	elements)	
hard	to	interpret

Ø Can	use	a	resampling/bootstrap	analysis	to	get	SEs	(but	not	easy	to	do)
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My	(Unsolvable)	Issues	with	PCA
• My	issues	with	PCA	involve	the	two	questions	in	need	of	
answers	for	any	use	of	PCA:

1. The	number	of	components	needed	is	not	based	on	a	
statistical	hypothesis	test	and	hence	is	subjective
Ø Variance	accounted	for	is	a	descriptive	measure
Ø No	statistical	test	for	whether	an	additional	component	significantly	accounts	

for	more	variance

2. The	relative	meaning	of	each	component	is	questionable
at	best	and	hence	is	subjective
Ø Typical	packages	provide	no	standard	errors	for	each	eigenvector	weight	(can	

be	obtained	in	bootstrap	analyses)
Ø No	definitive	answer	for	component	composition

• In	sum,	I	feel	it	is	very	easy	to	be	misled	(or	purposefully	
mislead)	with	PCA
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EXPLORATORY	FACTOR	ANALYSIS
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Primary	Purpose	of	EFA

• EFA:	“Determine	nature	and	number	of	latent	variables	that	account	
for	observed	variation	and	covariation	among	set	of	observed	
indicators	(≈	items	or	variables)”

Ø In	other	words,	what	causes	 these	observed	 responses?
Ø Summarize	patterns	 of	correlation	 among	indicators
Ø Solution	is	an	end	(i.e.,	 is	of	interest)	 in	and	of	itself

• Compared	with	PCA: “Reduce	multiple	observed	variables	into	fewer	
components	that	summarize	their	variance”

Ø In	other	words,	how	can	I	abbreviate	 this	set	of	variables?
Ø Solution	is	usually	a	means	to	an	end
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Methods	for	EFA

• You	will	see	many	different	types	of	methods	for	“extraction”	of	
factors	in	EFA

Ø Many	are	PCA-based
Ø Most	were	developed	 before	computers	became	 relevant	or	likelihood	 theory	was	
developed

• You	can	ignore	all	of	them	and	focus	on	one:	

Only	Use	Maximum	Likelihood	for	EFA

• The	maximum	likelihood	method	of	EFA	extraction:
Ø Uses	the	same	log-likelihood	 as	confirmatory	factor	analyses/SEM

w Default	assumption:	multivariate	normal	distribution	of	data
Ø Provides	consistent	 estimates	 with	good	statistical	 properties	(assuming	 you	have	a	
large	enough	sample)

Ø Missing	 data	using	all	 the	data	that	was	observed	(MAR)
Ø Is	consistent	 with	modern	statistical	 practices

EPSY	905:	PCA,	EFA,	and	CFA 40



Questions	when	using	EFA

• EFAs	proceed	by	seeking	the	answers	to	two	questions:
(the	same	questions	posed	in	PCA;	but	with	different	terms)

1. How	many	latent	factors	are	needed	to	“adequately”	
represent	the	original	data?
Ø “Adequately”	=	does	a	given	EFA	model	fit	well?

2. (once	#1	has	been	answered):	What	does	each	
factor	represent?
Ø The	term	“represent”	 is	fuzzy
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The	Syntax	of	Factor	Analysis
• Factor	analysis	works	by	hypothesizing	that	a	set	of	latent	factors	
helps	to	determine	a	person’s	response	to	a	set	of	variables	

Ø This	can	be	explained	by	a	system	of	 simultaneous	 linear	models
Ø Here	Y	=	observed	 data,	p	=	person,	 v	=	variable,	F	=	factor	score	(Q	factors)

𝑌(* = 𝜇VW + 𝜆**𝐹(* + 𝜆*9𝐹(9 +⋯+ 𝜆*Y𝐹(Y + 𝑒(*
𝑌(9 = 𝜇VZ + 𝜆9*𝐹(* + 𝜆99𝐹(9 +⋯+ 𝜆9Y𝐹(Y + 𝑒(9

⋮
𝑌(K = 𝜇V[ + 𝜆K*𝐹(* + 𝜆K9𝐹(9 +⋯+ 𝜆KY𝐹(Y + 𝑒(K

• 𝜇V\ =	mean	for	variable	𝑣
• 𝜆T^ =	factor	loading	for	variable	v	onto	factor	f	(regression	slope)

Ø Factors	are	assumed	distributed	MVN	with	zero	mean	and	(for	EFA)	identity	covariance	
matrix	(uncorrelated	 factors	– to	start)

• 𝑒(T =	residual	for	person	p	and	variable	v
Ø Residuals	are	assumed	distributed	MVN	(across	items)	with	a	zero	mean	and	a	diagonal	
covariance	matrix	𝚿 containing	 the	unique	 variances

• Often,	this	gets	shortened	into	matrix	form:
𝐘( = 𝝁a + 𝚲𝐅(/ + 𝐞𝐩
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How	Maximum	Likelihood	EFA	Works

• Maximum	likelihood	EFA	assumes	the	data	follow	a	
multivariate	normal	distribution

Ø The	basis	for	the	log-likelihood	 function	 (same	log-likelihood	we	have	used	in	
every	analysis	to	this	point)

• The	log-likelihood	function	depends	on	two	sets	of	
parameters:	the	mean	vector	and	the	covariance	matrix

Ø Mean	vector	 is	saturated	 (just	uses	the	item	means	 for	item	intercepts)	 – so	it	
is	often	not	thought	of	in	analysis

w Denoted	as	𝝁a = 𝝁d

Ø Covariance	matrix	is	what	gives	“factor	structure”
w EFA	models	provide	a	structure	for	the	covariance	matrix
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The	EFA	Model	for	the	Covariance	Matrix

• The	covariance	matrix	is	modeled	based	on	how	it	would	
look	if	a	set	of	hypothetical	(latent)	factors	had	caused	the	
data

• For	an	analysis	measuring	𝐹 factors,	each	item	in	the	EFA:
Ø Has	1	unique	variance	parameter
Ø Has	𝐹 factor	loadings

• The	initial	estimation	of	factor	loadings	is	conducted	based	
on	the	assumption	of	uncorrelated	factors

Ø Assumption	 is	dubious	at	best	– yet	is	the	cornerstone	 of	the	analysis
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Model	Implied	Covariance	Matrix

• The	factor	model	implied	covariance	matrix	is	𝚺a =
𝚲𝚽𝚲/ +𝚿

Ø Where:	
w 𝚺a =	model	 implied	 covariance	matrix	of	the	observed	data	(size	𝐼 x	𝐼)
w 𝚲 =	matrix	of	factor	loadings	(size	𝐼 x	𝐹)

– In	EFA:	all	 terms	in	𝚲 are	estimated
w 𝚽 =	factor	covariance	matrix	(size	𝐹 x	𝐹)

– In	EFA:	𝚽 = 𝐈 (all	factors	have	variances	of	1	and	covariances	of	0)
– In	CFA:	this	is	estimated

w 𝚿 =	matrix	of	unique	(residual)	variances	(size	𝐼 x	𝐼)
– In	EFA:	𝚿 is	diagonal	by	default	(no	residual	 covariances)

• Therefore,	the	EFA	model-implied	covariance	matrix	is:
𝚺a = 𝚲𝚲/ +𝚿
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EFA	Model	Identifiability

• Under	the	ML	method	for	EFA,	the	same	rules	of	
identification	apply	to	EFA	as	to	
Path	Analysis

Ø T-rule:	Total	number	of	EFA	model	parameters	 must	not	exceed	unique	
elements	 in	saturated	 covariance	matrix	of	data

w For	an	analysis	with	a	number	of	factors	𝐹 and	a	set	number	of	items	𝐼 there	are	
𝐹∗𝐼 + 𝐼 = 𝐼 𝐹 + 1 EFA	model	parameters

w As	we	will	see,	there	must	be	g gh*
9

constraints	 for	the	model	 to	work

w Therefore,	𝐼 𝐹 + 1 − g gh*
9

< d dj*
9

Ø Local-identification:	 each	portion	of	the	model	must	be	locally	identified
w With	all	factor	loadings	estimated	 local	identification	 fails

– No	way	of	differentiating	 factors	without	constraints
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Constraints	to	Make	EFA	in	ML	Identified

• The	EFA	model	imposes	the	following	constraint:
𝚲/𝚿𝚲 = 𝚫

such	that	𝚫 is	a	diagonal	matrix

• This	puts	g gh*
9

constraints	on	the	model	(that	many	fewer	
parameters	to	estimate)

• This	constraint	is	not	well	known	– and	how	it	functions	is	hard	
to	describe

Ø For	a	1-factor	model,	the	results	of	EFA	and	CFA	will	match

• Note:	the	other	methods	of	EFA	“extraction”	avoid	this	
constraint	by	not	being	statistical	models	in	the	first	place

Ø PCA-based	routines	rely	on	matrix	properties	to	resolve	identification
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The	Nature	of	the	Constraints	in	EFA

• The	EFA	constraints	provide	some	detailed	assumptions	
about	the	nature	of	the	factor	model	and	how	it	pertains	
to	the	data

• For	example,	take	a	2-factor	model	(one	constraint):	

%𝜓T9B𝜆T^

Y)9

^)*

K

T)*

= 0

• In	short,	some	combinations	of	factor	loadings	and	unique	
variances	(across	and	within	items)	cannot	happen

Ø This	goes	against	most	of	our	statistical	 constraints	 – which	must	be	justifiable	
and	understandable	 (therefore	 testable)

Ø This	constraint	 is	not	testable	 in	CFA
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The	Log-Likelihood	Function

• Given	the	model	parameters,	the	EFA	model	is	estimated	
by	maximizing	the	multivariate	normal	log-likelihood

Ø For	the	data

log 𝐿 = log = 2𝜋 hrK9 𝚺 hr9 exp %−
𝒀( − 𝝁V

/
𝚺h* 𝒀( − 𝝁V
2

r

()*

=

−
𝑁𝑉
2 log 2𝜋 −

𝑁
2 log 𝚺 − %

𝒀( − 𝝁V
/
𝚺h* 𝒀( − 𝝁V
2

r

()*

• Under	EFA,	this	becomes:	
log 𝐿

= −
𝑁𝑉
2 log 2𝜋 −

𝑁
2 log 𝚲𝚲/ +𝚿

−%
𝒀( − 𝝁𝑰

/
𝚲𝚲/ +𝚿 h* 𝒀𝒑 − 𝝁𝑰

2

r

()*
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Benefits	and	Consequences	of	EFA	with	ML

• The	parameters	of	the	EFA	model	under	ML	retain	the	
same	benefits	and	consequences	of	any	model	(i.e.,	CFA)

Ø Asymptotically	(large	N)	they	are	consistent,	 normal,	and	efficient
Ø Missing	data	are	“skipped”	in	the	likelihood,	allowing	for	incomplete	
observations	 to	contribute	 (assumed	MAR)

• Furthermore,	the	same	types	of	model	fit	indices	are	
available	in	EFA	as	are	in	CFA

• As	with	CFA,	though,	an	EFA	model	must	be	a	close	
approximation	to	the	saturated	model	covariance	matrix	if	
the	parameters	are	to	be	believed

Ø This	is	a	marked	difference	 between	 EFA	in	ML	and	EFA	with	other	methods	–
quality	of	fit	is	statistically	rigorous
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ML	EFA	WITH	BASE	R	FUNCTION	FACTANAL
(THE	BAD	WAY)
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ML	EFA	Using	the	factanal()	Function
• The	base	R	program	has	the	factanal()	function	that	
conducts	ML-based	EFA	

Ø But	it	is	very	limited

• Although	the	function	use	ML,	you	still	cannot	have	
missing	data	in	the	analysis

Ø BAD	R!

• We	will	remove	cases	with	any	missing	data	(listwise
deletion)	and	proceed

• We	will	also	not	use	a	rotation	method	at	first	as	to	show	
how	default	constraints	in	EFA	with	ML	are	ridiculous	
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Step	#1:	Determine	Number	of	Factors	
• The	EFA	factanal()	function	provides	a	rudimentary	
test	for	model	fit

• Remember	the	
saturated	model	from	
path	analysis?

Ø All	covariances estimated

• The	model	fit	tests	the
solution	from	EFA	vs
the	saturated	model

Ø EFA	1-factor	model	shown

• The	goal	is	to	find	a	
model	that	fits	well
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Step	#1	in	R:	Model	Fit	Tests

• One	factor:

• Two	factors:

• Three	factors:

• Four	factors:
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Side	Note:	Default	Constraints	in	ML	EFA

• The	EFA	model	imposes	the	following	constraint:
𝚲/𝚿𝚲 = 𝚫

such	that	𝚫 is	a	diagonal	matrix
• Here	are	the	𝚫matrices	from	each	analysis:
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Step	#2:	Interpreting	the	Best	Model

• As	the	four-factor	solution	fit	best,	we	will	interpret	it
• Unrotated solution	of	factor	loadings:

What???
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FACTOR	LOADING	
ROTATIONS	IN	EFA
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Rotations	of	Factor	Loadings	in	EFA

• Transformations	of	the	factor	loadings	are	possible	as	the	
matrix	of	factor	loadings	is	only	unique	up	to	an	
orthogonal	transformation

Ø Don’t	like	the	solution?	Rotate!

• Historically,	rotations	use	the	properties	of	matrix	algebra	
to	adjust	the	factor	loadings	to	more	interpretable	
numbers

• Modern	versions	of	rotations/transformations	rely	on	
“target	functions”	that	specify	what	a	“good”	solution	
should	look	like

Ø The	details	of	the	modern	approach	are	lacking	in	most	texts
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Types	of	Classical	Rotated	Solutions

• Multiple	types	of	rotations	exist	but	two	broad	categories	
seem	to	dominate	how	they	are	discussed:

• Orthogonal	rotations:	rotations	that	force	the	factor	
correlation	to	zero	(orthogonal	factors).	The	name	
orthogonal	relates	to	the	angle	between	axes	of	factor	
solutions	being	90	degrees.	The	most	prevalent	is	the	
varimax rotation.

• Oblique	rotations:	rotations	that	allow	for	non-zero	factor	
correlations.	The	name	orthogonal	relates	to	the	angle	
between	axes	of	factor	solutions	not	being	90	degrees.	The	
most	prevalent	is	the	promax rotation.

Ø These	 rotations	provide	 an	estimate	of	“factor	correlation”
EPSY	905:	PCA,	EFA,	and	CFA 59



How	Classical	Orthogonal	Rotation	Works

• Classical	orthogonal	rotation	algorithms	work	by	defining	a	
new	rotated	set	of	factor	loadings	𝚲∗ as	a	function	of	the	
original	(non-rotated)	loadings	𝚲 and	an	orthogonal	
rotation	matrix	𝐓

𝚲∗ = 𝚲𝐓
where:	 𝐓𝐓/ = 𝐓/𝐓 = 𝐈

• These	rotations	do	not	alter	the	fit	of	the	model	as
𝚺a = 𝚲∗𝚲∗/ + 𝚿 = 𝚲𝐓 𝚲𝐓	 / + 𝚿 = 𝚲𝐓𝐓/𝚲/ +𝚿
= 𝚲𝚲/ +𝚿
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Modern	Versions	of	Rotation

• Most	studies	using	EFA	use	the	classical	rotation	
mechanisms,	likely	due	to	insufficient	training

• Modern	methods	for	rotations	rely	on	the	use	of	a	target	
function	for	how	an	optimal	loading	solution	should	look

From	Browne	(2001)
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Rotation	Algorithms

• Given	a	target	function,	rotation	algorithms	seek	to	find	a	
rotated	solution	that	simultaneously:

1. Minimizes	 the	distance	between	 the	rotated	solution	and	the	original	
factor	 loadings

2. Fits	best	 to	the	target	 function

• Rotation	algorithms	are	typically	iterative	– meaning	they	
can	fail	to	converge	

• Rotation	searches	typically	have	multiple	optimal	values
Ø Need	many	restarts
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Rotated	Factor	Loadings:	Orthogonal	Rotation	via	Varimax

• The	Varimax rotation	brought	about	the	following	loadings

• Are	these	better	for	interpretation?

• Also	note:	no	factor	correlation
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Rotated	Factor	Loadings:	Oblique	Rotation	via	Promax

• The	Promax rotation	brought	about	the	following	loadings:

• It	also	brought	about	the	following	factor	correlations:
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EFA	VIA	CFA
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CFA	Approaches	to	EFA

• We	can	conduct	exploratory	analysis	using	a	CFA	model
Ø Need	to	set	 the	right	number	of	constraints	 for	identification
Ø We	set	 the	value	of	factor	loadings	 for	a	few	items	on	a	few	of	the	factors

w Typically	to	zero	(my	usual	thought)
w Sometimes	 to	one	(Brown,	2002)

Ø We	keep	 the	factor	covariance	matrix	as	an	identity
w Uncorrelated	 factors	(as	in	EFA)	with	variances	of	one

• Benefits	of	using	CFA	for	exploratory	analyses:	
Ø CFA	constraints	 remove	 rotational	 indeterminacy	of	factor	 loadings	– no	
rotating	is	needed	 (or	possible)

Ø Defines	 factors	 with	potentially less	ambiguity
w Constraints	 are	easy	to	see

Ø For	some	software	 (SAS	and	SPSS),	we	get	much	more	model	
fit	information
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EFA	with	CFA	Constraints

• To	do	EFA	with	CFA,	you	must:
Ø Fix	factor	 loadings	(set	to	either	 zero	or	one)

w Use	“row	echelon”	 form	:
w One	item	has	only	one	factor	loading	estimated
w One	item	has	only	two	factor	loadings	estimated
w One	item	has	only	three	factor	loadings	 estimated

Ø Fix	factor	covariances
w Set	all	 to	0

Ø Fix	factor	variances	
w Set	all	 to	1
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EFA	Via	CFA	Example

• We	can	use	lavaan to	do	CFA…here	is	the	syntax	for	the	
one	factor	model

Ø The	~=	is	the	key	à Factor	name	to	the	left,	items	measuring	 it	to	the	right
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One-Factor	Results	from	lavaan
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Look	Familiar?	They	are	Identical	 to	the	One-Factor	 EFA	from	factanal()
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CFA	Logic…Applied	 to	EFA

• Because	our	one-factor	model	fit	well,	we	can	stop!

• CFA	has	more	indices	of	model	fit	– which	can	make	
finding	an	appropriate	solution	easier

• CFA	also	gives	you	the	standard	errors	for	each	factor	
loading,	leading	to	a	Wald	test	to	see	if	it	is	non-zero

Ø No	need	to	use	arbitrary	 .3	cutoff	
Ø Small	note:	Although	most	EFA	routines	 (like	factanal)	don’t	give	SEs	they	are	
certainly	attainable	 under	ML	theory

• Although	we	should	stop	here…We’ll	continue	with	the	
two- and	three-factor	versions	to	compare	with	EFA
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Two-Factor	Syntax
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CFA	Two-Factor	Results
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CFA	Three-Factor	Syntax
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CONCLUDING	REMARKS
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Wrapping	Up

• Today	we	discussed	the	world	of	exploratory	factor	
analysis	and	found	the	following:

Ø PCA	is	what	people	 typically	run	when	they	are	after	EFA

Ø ML	EFA	is	a	better	option	to	pick	(likelihood	based)
w Constraints	 employed	 are	hidden!
w Rotations	 can	break	without	you	realizing	they	do

Ø ML	EFA	can	be	shown	to	be	equal	to	CFA	for	certain	models

Ø Overall,	CFA	is	still	your	best	bet
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