Multivariate Linear Models
with Predictors

EPSY 905: Fundamentals
of Multivariate Modeling

Online Lecture #13
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In This Lecture

- Multivariate linear models with predictors (using path
analysis software/packages)

. Details and terminology from path analysis:

> Variable naming conventions

> Software estimation defaults (variables in/out of likelihood)
> Model comparisons via likelihood ratio tests

> Measures of absolute and approximate model fit

> Model modification methods

> Standardized regression coefficients

- Additional issues in path analysis
> Variable considerations
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Today’s Data Example

- Data are simulated based on the results reported in:

Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and
self-concept beliefs in mathematical problem solving: a path
analysis. Journal of Educational Psychology, 86, 193-203.

- Sample of 350 undergraduates (229 women, 121 men)

> In simulation, 10% of variables were missing (using missing completely at
random mechanism)

- Note: simulated data characteristics differ from actual data

(some variables extend beyond their official range)

> Simulated using Multivariate Normal Distribution
+ Some variables had boundaries that simulated data exceeded

> Results will not match exactly due to missing data and boundarlesIQJ“””N‘V”‘S';;”\“Sr
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Variables of Data Example

.« Sex (1 = male; 0 = female)

Math Self-Efficacy (MSE)

> Reported reliability of .91
> Assesses math confidence of college students

Perceived Usefulness of Mathematics (USE)
> Reported reliability of .93

Math Anxiety (MAS)
> Reported reliability ranging from .86 to .90

Math Self-Concept (MSC)
> Reported reliability of .93 to .95

Prior Experience at High School Level (HSL)

> Self report of number of years of high school during which students took
mathematics courses

Prior Experience at College Level (CC)
> Self report of courses taken at college level

Math Performance (PERF)
> Reported reliability of .788
> 18-item multiple choice instrument (total of correct responses)
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Our Destination: Overall Path Model
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The Big Picture

Multivariate linear models are statistical methods that, when using an identity
link, assume the variables in an analysis follow a multivariate normal distribution

> Mean vectors
> Covariance matrices

By specifying a set of regression equations that are estimated simultaneously, a
very specific covariance matrix is implied

As with all multivariate models, the key to multivariate linear models is finding an
approximation to the unstructured (saturated) covariance matrix
> With fewer parameters, if possible

The art to multivariate linear models is in specifying models that blend theory and
statistical evidence to produce valid, generalizable results
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MULTIVARIATE LINEAR MODELS
VIA PATH ANALYSIS SOFTWARE AND PACKAGES
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Multivariate Regression

- We begin with a multivariate regression model:

> Predicting mathematics performance (PERF) with female (F), college math experience
(CC), and the interaction between female and college math experience (FxCC)

> Predicting perceived usefulness (USE) with female (F), college math experience (CC),
and the interaction between female and college math experience (FxCC)

PERF; = Bo perr + Br perrFi + BccperrCCi + BriccperrFiCCi + €; pprr
USE; = Bouse + BruseFi + BccuseCCi + BreccuseFiCCi + € ysk

- We denote the residual for PERF as e; ppgrr and the residual for

USE as e; ysg
> We also assume the residuals are Multivariate Normal:

lei,PERF ([0] [ Ue PERF Ue,PERF,USED
e; 2
Lu SE Oc PERF,USE O¢ USE
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Before Continuing: We will Center CC at 10

Boxplot of College Experience (CC) Histogram of College Experience (CC)
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Types of Variables in the Analysis

- An important distinction in path analysis is between endogenous and
exogenous variables

- Endogenous variable(s): variables whose variability is explained by

one or more variables in a model

> In our example Mathematics Performance (PERF) and Mathematics Usefulness (USE)

> In univariate linear regression, the dependent variable is the only endogenous variable
in an analysis

- Exogenous variable(s): variables whose variability is not explained by

any variables in a model

> In our example Female (F), college experience (CC), and the interaction (FxCC)

> In linear regression, the independent variable(s) are the exogenous variables
in the analysis
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Multivariate Linear Regression Path Diagram
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R’s Version of the Path Diagram

"X » use
/,,/":,1

\
~
\-_
~
~
~
~
~
~ -
~ - -
! ~ - 7
1! S - -
,I ~ - ,/
~ -
l - ”~
! \\ - -
1! ~ - -
rd
I | o - -
| | ~ - -
~ - e
I | S -7 -
I - N ”
- ~
! ’¢' ~ /,
- ~
1 - ~ -
| - ~ -
- ~ -
- Cd
- - ~ »
4 - ~
- ~ -
/ g -~ -
I | ~ -
57
\ | ~
- ~
\ 1 - - ~
N =~ ” ~
- - ~
~ o - o - ~
1 T~a -7 s
- ’ -
] ~-a - g
-~ - ~
\ -~ - ~
\ ‘\,_/ ~
\ ! 20 T~ S
I - - ~
\ ’ =~ ~
| ” ~ - ~
\ - ~ - ~
I - - ~
\ - -~ -
- ~
y | g - ~
” - - ~
V| - =~ ~»
| . - ~
- - ~
s - ~
=~ ~
-~ ~
S~ ~
- ~
~o ‘
-
-

-

&
\A 4
O
3,

:’ fml

12 — -

EPSY 905: Multivariate Linear Models with Predictors



Labeling Variables

- The endogenous (dependent) variables are:
> Performance (PERF) and Usefulness (USE)

- The exogenous (independent) variables are:

> Female (F), college experience (CC), and the interaction of Female and college
experience (F*CC)

THE UNIVERSITY OF
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Multivariate Regression in R Using the lavaan Package

#Building Analysis Model #1: an empty model---------—=—- oo
#NOTE: BECAUSE ALL VARIABLES ARE PUT INTO THE LIKELIHOOD FUNCTION, TO DO LIKELIHOOD RATIO TESTS, WE HAVE TO
- CONSTRUCT THE FULL MODEL BUT MAKE THE REGRESSION COEFFICIENTS EQUAL TO ZERO

#analysis syntax
model@l1.syntax = "

By putting 0* in front of each of the

#Means: . . .

perf ~ 1 + 0*fenale + 0*ccl0 + o*fexccto | VA@riables, we are allowing them to be in

use ~ 1 + @*female + @*ccl@ + @*femXccl@ . . .

I the likelihood (for model comparisons) but
perf ~~ perf not predict either DV

#Covariance:

perf ~~ use

#analysis estimation
model@l1.fit = sem(model@l.syntax, data=data@l, conditional.x=TRUE, fixed.x = TRUE, mimic = "MPLUS", estimator = "MLR")

* A note about path analysis software:
* Most packages put all variables into the likelihood function
(Mplus does not)
* So, you must start with all variables in the model for LRTs
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Multivariate Regression Model Parameters

Lavaan considers all five variables to be part of a multivariate normal distribution, so
the unstructured (saturated) model has a total of 20 parameters:
> 5 means

» 5 variances
> 10 covariances (5-choose-2 or 5*(5-1)/2))

- The model itself has 14 parameters:
> 5intercepts
> 0regression slopes (but we'll add these next)
2 residual variances
1 residual covariance
3 exogenous variances
3 exogenous covariances

YV V VYV V

- Lavaan will estimate two models for each analysis: HO (your model) and H1 (saturated
model)

- Degrees of DF in path models come from comparing the saturated model number of
parameters with the parameters estimated
> Parameters available 20 — 14 parameters estimated = 6 df

THE UNIVERSITY OF

- Therefore, this model will not fit perfectly — model fit statistics will be availahl
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Output from Lavaan: Summary Statement

lavaan (0.5-20) converged normally after 28 iterations

Number of observations 350 RegreSSionS:
Estimate Std.Err Z-value P(lzl)  Std.lv Std.all
Number of missing patterns 7 per‘f ~
Ectimator W Robust female 0.000 0.000 0.000
Minimum Function Test Statistic 22.307 22.204 cclo 0.000 0.000 0.000
Degrees of freedom 6 6
Pvalue (Chi-square) 0.001 0.001 femXcc10 0.000 0.000 0.000
Scaling correction factor 1.005 use ~
for the Yuan-Bentler correction (Mplus variant) female 0.000 0.000 0.000
Model test baseline model: ccle 0.000 0.000 0.000
femXcc10 0.000 0.000 0.000
Minimum Function Test Statistic 28.371 27.908
Degrees of freedom 7 7 . .
P-value 0.000 0.000 Covariances:
Estimate Std.Err Z-value P(lzl)  Std.lv Std.all
User model versus baseline model: per'f ~——
Comparative Fit Index (CFI) 0.237 0.225 use 6.847 2.850 2.403 0.016 6.847  0.147
Tucker-Lewis Index (TLI) 0.110 0.0%
- . S Intercepts:
Loglikelihood and Inf t Crit :
ogiTieTthood and fntormation Tritera Estimate Std.Err Z-value P(1zl)  Std.lv Std.all
Loglikelihood user model (HO) -4073.253  -4073.253 perf 13.959  0.174 80.442  0.000 13.959  4.721
Scaling conrection factor 1028 use 52.440  0.872 60.140  0.000 52.440  3.322
or the MLR correction
Loglikelihood unrestricted model (H1) -4062.099 -4062.099
Scaling correction factor 1.015 Variances:
for the MLR correction Estimate Std.Err Z-value PG 1zl)  Std.lv Std.all
Number of free parameters 5 5 perf 8.742 0.754 11.59% 0.000 8.742 1.000
Akaike (AIC) 8156.505  8156.505 use 249.245 19.212 12.973 0.000 249.245 1.000
Bayesian (BIC) 8175.795 8175.795
Sample-size adjusted Bayesian (BIC) 8159.933 8159.933

Root Mean Square Error of Approximation:

L]
RMSEA 0.088 0.088 N Ote *

90 Percent Confidence Interval 0.051 0.129 0.051 0.128

P-value RISEA <= 0.05 ous  oaw No information about exogenous

o . e variables (from fixed.x=TRUE option)

Parameter Estimates:

Information Observed THE UNIVERSITY OF
Standard Errors Robust.huber.white KANSAS
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Path Diagram with Numbers Sh
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Output from lavaan: “Fitted” and Saturated Covariance Matrix

> fitted(model@l.fit)

$cov
perf use female ccl0 fmXc10
perf 8.742
use 6.847 249.245
female 0.000 0.000 0.226
cclo 0.000 0.000 -0.335 34.600
femXccld 0.000 0.000 -0.146 10.723 10.616
$mean
perf use female ccld femXccl@

13.959 52.440 0.346 0.320 -0.211

> inspect(model@l.fit, what="sampstat.hl")
$cov
perf use female ccl0@ fmXc10

perf 8.730
use 6.788 249.254
female 0.070 0.341 0.226
cclo 4.123 8.751 -0.335 34.600
femXccld 1.920 4.500 -0.146 10.723 10.616
$mean

perf use female ccld femXccl@

13.946 52.468 0.346 0.320 -0.211
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The fitted covariance matrix
shows you what the model
implies the variances and
covariances should be

Here the exogenous variables
are provided by sample
estimates (fitted.x=TRUE)

Model parameters provide
the endogenous parameters

The lower matrix is the
saturated model matrix
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Output from lavaan: Residual Covariance Matrices

> residuals(model@l.fit, type = "raw")

$type
[1] "raw"
$cov
perf use female ccl® fmXcl@Q
perf -0.012
use -0.059 0.009
female 0.070 0.341 0.000
cclo 4.123 8.751 ©0.000 0.000
femXccld 1.920 4.500 0.000 0.000 0.000
$mean
perf use female ccld femXcclo
-0.013 0.029 0.000 0.000 0.000
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The “raw” residuals are the
difference between the
model implied covariance
matrix and the H1 (saturated
model) covariance
matrix/mean vector
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METHODS OF EXAMINING MODEL FIT

THE UNIVERSITY OF
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Methods of Model Fit

- Model-data fit is of utmost concern when building models
with multivariate outcomes

- If a model does not fit the data:

> Parameter estimates may be biased

> Standard errors of estimates may be biased

> Inferences made from the model may be wrong

> If the saturated model fit is wrong, then the LRTs will be inaccurate

- Examining model fit is the first step in multivariate models

- That said, not all “good-fitting” models are useful...

> ...model fit just allows you to talk about your model...there may be nothing of
significance (statistically or practically) in your results, though

THE UNIVERSITY OF
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Types of Model Fit Information

- Model fit information for models where outcomes are
conditionally MVN* come in several types, but all are
based on the premise that any model mean and
covariance structure must fit as well as the saturated

mean vector and covariance matrix model
*If model outcomes are not conditionally MVN, model fit is very different

- All possible models/structures are nested within the

saturated mean vector and covariance matrix model

> Most model fit statistics come from comparing any model/structure with the
saturated model

- Indices shown first are called “global” model fit indices
> Report fit of model globally (as opposed to locally for specific parameters)

THE UNIVERSITY OF
EPSY 905: Multivariate Linear Models with Predictors 22 KAN S S




Example lavaan Model Fit Output

lavaan (0.5-2@) converged normally after 28 iterations

Number of observations 350
Number of missing patterns 7
Estimator ML
Minimum Function Test Statistic 22.307
Degrees of freedom 6
P-value (Chi-square) 0.001

Scaling correction factor
for the Yuan-Bentler correction (Mplus variant)

Model test baseline model:

Minimum Function Test Statistic 28.371
Degrees of freedom 7
P-value 0.000

User model versus baseline model:

Comparative Fit Index (CFI) 0.237
Tucker-Lewis Index (TLI) 0.110

Loglikelihood and Information Criteria:

Loglikelihood user model (H®) -4073.253
Scaling correction factor

for the MLR correction
Loglikelihood unrestricted model (H1) -4062.099
Scaling correction factor

for the MLR correction

Number of free parameters 5
Akaike (AIC) 8156.505
Bayesian (BIC) 8175.795
Sample-size adjusted Bayesian (BIC) 8159.933

Root Mean Square Error of Approximation:

RMSEA 0.088
90 Percent Confidence Interval 0.051 0.129
P-value RMSEA <= 0.05 0.046

Standardized Root Mean Square Residual:
SRMR 0.077
Parameter Estimates:

Information Observed
Standard Errors Robust.huber.white
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The fit.measures=TRUE Model Fit Statistics

Unlabeled section

> Likelihood ratio test versus the saturated model
> Testing if your model fits as well as the saturated model

Model test baseline model

> Likelihood ratio test pitting the saturated model against the independent variables model
> Testing whether any variables have non-zero covariances (significant correlations)

User model versus baseline model

> CFI
> TLI

Loglikelihood and Information Criteria

> Likelihood ratio tests (nested models)
> Information criteria comparisons (non-nested models)

Root Mean Square Error of Approximation
> How far off a model is from the saturated model, per degree of freedom

Standardized Root Mean Square Residual

» How far off a model’s correlations are from the saturated model correlations wmgﬁg
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Indices of Global Model Fit

- Primary: obtained model ¥? (from Model test baseline model)
— here we use the MLR rescaled ¥? from the “Robust” Column
> x2 is evaluated based on model df (difference in parameters between your
CFA model and the saturated model)

> Tests null hypothesis that this model (H,) fits equally to saturated model (H,)
so significance is undesirable (smaller x?, bigger p-value is better)
+ Means saturated model is estimated automatically for each model analyzed
> Just using x? is insufficient, however:

+ Distribution doesn’t behave like a true ¥? if sample sizes are small
(or, if not using MLR, if items are non-normally distributed)

» Obtained x% depends largely on sample size
+ Some mention this is an unreasonable null hypothesis (perfect fit??)

- Because of these issues, alternative measures of fit are usually used
in conjunction with the x? test of model fit

> Absolute Fit Indices (besides x?)
> Parsimony-Corrected; Comparative (Incremental) Fit Indices

THE UNIVERSITY OF
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Chi-Square Test of Model Fit

- The Chi-Square Test of Model Fit provides a likelihood ratio test
comparing the current model to the
saturated (unstructured) model:

> The value is -2 times the difference in log-likelihoods (rescaled if MLLR)

> The degrees of freedom is the difference in the number of estimated
model parameters

> The p-value is from the Chi-square distribution

. If this test has a significant p-value:

> The current model (H) is rejected —the model fit is significantly worse than
the full model

> In latent variable models, this test is usually ignored
+ Said to be overly sensitive

- If this test does not have a significant p-value:
> The current model (H,) is not rejected — fits equivalently to full model

THE UNIVERSITY OF
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Where the Saturated Model Test Comes From

- The saturated model LRT comes from a likelihood ratio test of the
current model with the saturated model

. If using MLR (Robust method), then this LRT is rescaled based on the
estimated scaling factors of both models

. This same information can be obtained from:
> Loglikelihood model output section

> anova() function comparing fit for
current and saturated models

THE UNIVERSITY OF
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Calculating the LRT for Global Fit Test for Model 04

« From the lavaan niitniit-

Loglikelihood and Information Criteria:

Estimator ML Robust

Minimum Function Test Statistic 22.307 22.204 Loglikelihood user model (HO) _4973.253  -4Q73.253
Degrees of freedom 6 6 Scaling correction factor 1.028
P-value (Chi-square) 0.001 0.001 for the MLR correction

Scaling correction factor 1.005 Loglikelihood unrestricted model (H1) -4062.099  -4062.099

Scaling correction factor 1.015

for the Yuan-Bentler correction (Mplus variant) -
for the MLR correction

. Calculation:

> 14 parameters in our model; 20 in saturated model
> Scaling correction factor:

, o — c
(Qrestncted)( restricted) (qull)( full) — 1.005

CLR =
(%‘estricted _ qull)

> y2 =229 = 92204

1.005
> DF=6

. Conclusion: this model fit significantly worse than the

saturated model

» And it should—especially if any of our predictors have non-zero b THE UNIVERSITY OF
KANSAS
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Saturated Model LRT and Loglikelihood Output

Loglikelihood and Information Criteria:

Loglikelihood user model (H®) -49073.253 -4073.253

Scaling correction factor 1.028
for the MLR correction

Loglikelihood unrestricted model (H1) -4062.099 -4062.099

Scaling correction factor 1.015

for the MLR correction
. If the loglikelihoods of the current model (“User model” o
H,) are equal to the loglikelihoods of the saturated model
(“Unrestriced model” or Hy), then you are running a model

that is equivalent to the saturated model
> No other model fit will be available or useful

THE UNIVERSITY OF
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The fit.measures=TRUE Model Fit Statistics

Model test baseline model

> Likelihood ratio test pitting the saturated model against the independent variables model
> Testing whether any variables have non-zero covariances (significant correlations)

User model versus baseline model

> CFI
> TLI

Loglikelihood and Information Criteria

> Likelihood ratio tests (nested models)
> Information criteria comparisons (non-nested models)

Root Mean Square Error of Approximation
> How far off a model is from the saturated model, per degree of freedom

Standardized Root Mean Square Residual

» How far off a model’s correlations are from the saturated model correlations wmgﬁg
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Model Test Baseline Model

- The “model test baseline model” section provides a LRT:

> Comparing the saturated (unstructured) model with
an independent variables model (called the baseline model)

Model test baseline model:

Minimum Function Test Statistic 28.371 27.908
Degrees of freedom 7 7
P-value 0.000 0.000

- Here, the “null” model is the baseline (the independent

variables model)

> If the test is significant, this means that at least one (and likely more than one)
variable has a significant covariance (and correlation)

> If the test is not significant, this means that the independence model is
appropriate
+ This is not likely to happen
+ But if it does, there are virtually no other models that will be significant

- Not often reported as it is likely variables are corrmﬁg
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The fit.measures=TRUE Model Fit Statistics

User model versus baseline model

> CFI
> TLI

Loglikelihood and Information Criteria

> Likelihood ratio tests (nested models)
> Information criteria comparisons (non-nested models)

Root Mean Square Error of Approximation
> How far off a model is from the saturated model, per degree of freedom

Standardized Root Mean Square Residual

» How far off a model’s correlations are from the saturated model correlations wmgﬁg
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User Model Versus Baseline Model Section

- The “User model versus baseline model” section provides
two additional measures of model fit comparing the
current (user) model to the baseline (independent
variables) model

User model versus baseline model:

Comparative Fit Index (CFI) 0.237 0.225
Tucker-Lewis Index (TLI) 0.110 0.09%

. CFl stands for Comparative Fit Index
> Higher is better (above .95 indicates good fit)

. TLI stands for Tucker Lewis Index
> Higher is better (above .95 indicates good fit)

THE UNIVERSITY OF
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Comparative (Incremental) Fit Indices

. Fit evaluated relative to a ‘null” model (of O covariances)
> Relative to that, your model should be great!

T = target (current/estimated) model

. CEI: comparative Fit Index N = null (baseline/independent variables) model

> Based on idea of the chi-square non-centrality parameter: (x*>— df)
max(yz—dfr,0)

max(xf—dfr.x5—dfn.0)

> From 0 to 1: bigger is better, > .90 = “acceptable”, > .95 = “good”

» CFI =1 —

« TLI: Tucker-Lewis Index (= Non-Normed Fit Index)

AN _XF
> TLI = 281
AN _4
afn
» From <0 to >1, bigger is better, >.95 = “good”

THE UNIVERSITY OF
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Information Criteria Output

- The information criteria output provides relative fit statistics:

Number of free parameters 5 5
Akaike (AIC) 8156.505 8156.505
Bayesian (BIC) 8175.795 8175.795
Sample-size adjusted Bayesian (BIC) 8159.933 8159.933

> AIC: Akaike Information Criterion
> BIC: Bayesian Information Criterion (also called Schwarz’s criterion)
> Sample-size Adjusted BIC

- These statistics weight the information given by the parameter
values by the parsimony of the model (the number of
model parameters)

> For all statistics, the smaller number is better

- The core of these statistics is -2*log-likelihood

THE UNIVERSITY OF
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The fit.measures=TRUE Model Fit Statistics

- Loglikelihood and Information Criteria

> Likelihood ratio tests (nested models)
> Information criteria comparisons (non-nested models)

- Root Mean Square Error of Approximation
> How far off a model is from the saturated model, per degree of freedom

. Standardized Root Mean Square Residual

» How far off a model’s correlations are from the saturated model correlations IQJM“S‘K’SF
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Comparing Information Criteria

. Information criteria are relative tests of fit

Number of free parameters 5 5
Akaike (AIC) 8156.505 8156.505
Bayesian (BIC) 8175.795 8175.795
Sample-size adjusted Bayesian (BIC) 8159.933 8159.933

The are calculated based on the log-likelihood of the model,
factoring in a penalty for number of parameters (plus other things)

They should never be used to compare nested models
> The likelihood ratio test is the most powerful test statistic to use for nested models

When comparing non-nested models, first choose a statistic
> AIC, BIC, or Sample-size Adjusted BIC are what are given by default

The preferred model is the one with the lowest value of that statistic

THE UNIVERSITY OF
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The fit.measures=TRUE Model Fit Statistics

- Root Mean Square Error of Approximation
> How far off a model is from the saturated model, per degree of freedom

. Standardized Root Mean Square Residual

» How far off a model’s correlations are from the saturated model correlations IQJM“S‘K’SF
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Indices of Global Model Fit

Parsimony-Corrected: RMSEA
- Root Mean Square Error of Approximation

- Uses comparison with CFA model and saturated model
> ¥ listed here from first part of lavaan output

. Relies on a non-centrality parameter (NCP)
> Indexes how far off your model is = ¥? distribution shoved over
> NCP = d = (x2—df) / (N-1) Then, RMSEA = SQRT(d/df)

+ df is difference between # parameters in CFA model and saturated model

> RMSEA ranges from 0 to 1; smaller is better

+ <.050r .06 = “good”, .05 to .08 = “acceptable”,
.08 to0 .10 = “mediocre”, and >.10 = “unacceptable”

» In addition to point estimate, get 90% confidence interval

> RMSEA penalizes for model complexity — it’s discrepancy in fit per df left in
model (but not sensitive to N, although Cl can be)

> Test of “close fit”: null hypothesis that RMSEA < .05

THE UNIVERSITY OF
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RMSEA (Root Mean Square Error of Approximation)

The RMSEA is an index of model fit where 0 indicates
perfect fit (smaller is better):

Root Mean Square Error of Approximation:

RMSEA 0.088 0.088
9@ Percent Confidence Interval 0.051 0.129 0.051 0.128
P-value RMSEA <= 0.05 0.046 0.047

RMSEA is based on the approximated covariance matrix

The goal is a model with an RMSEA less than .05
> Although there is some flexibility

The result above indicates our model fits poorly
(RMSEA of .0088)
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The fit.measures=TRUE Model Fit Statistics

. Standardized Root Mean Square Residual
> How far off a model’s correlations are from the saturated model correlation
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Standardized Root Mean Squared Residual

- The SRMR (standardized root mean square residual)

provides the average standardized difference between:

> The estimated covariance matrix of the saturated model
> The estimated covariance matrix of the current model

Standardized Root Mean Square Residual:

SRMR 0.077 0.077

. Lower is better (some suggest less than 0.08)
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LOCAL MODEL FIT MEASURES
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“Local” Measures of Model (Mis)Fit

. Local measures of model (mis)fit are statistics that point to
the location (typically of a covariance matrix) where a
model may not fit well

III

> As opposed to “global” measures that indicate a model fit overall

. Local measures of model (mis)fit are typically of two types:

> Residual covariance matrices (unstandardized, standardized, or normalized)

+ The difference between the model’s estimated covariance matrix and the
saturated model’s estimated covariance matrix

+ These were used for the SRMR

> Model “modification indices”

+ 1-degree of freedom hypothesis tests for the improvement of the model LRT if one
more parameter was allowed to be estimated
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Residual Covariance Matrices

- Residual covariance matrices are used to figure out how to

best improve model misfit

- The “raw” or “unstandardized” residual covariance matrix
for the model literally takes the difference between model
implied and saturated model covariance matrices

. | often prefer “normalized” versions of these matrices

> We can inspect the normalized residual covariance matrix (like z-scores) to see

Where our biggest mlsfit occurs > residuals(model@l.fit, type = "normalized")

$type
[1] "normalized"

use -0.021 0.000

female 0.848 0.856 0.000

cclo 3.916 1.591 0.000 0.000
femXccl® 2.775 1.636 0.000 0.000 0.000

$mean
perf use female ccl0 femXccl@
-0.078 0.033 0.000 0.000 0.000
EPSY 905: Multivariate Linear Models with Predictors
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Modification Indices: More Help for Fit

- As we used Maximum Likelihood to estimate our model, another useful
feature is that of the modification indices

> Modification indices, also called Score or LaGrangian Multiplier tests, attempt to
suggest the change in the log-likelihood for adding a given model parameter
(larger values indicate a better fit for adding the parameter)

> modindices(model@1.fit)
lhs op rhs mi mi.scaled epc sepc.lv sepc.all sepc.nox

perf ~ female 0.811 0.808 0.326 0.326 0.052 0.110
perf cclO 15.420 15.348 0.121 0.121 0.240 0.041
perf femXccl® 9.285 9.242 0.169 0.169 0.187 0.057

female 0.436 0.434 1.204 1.204 0.036 0.076
cclo 1.134 1.128 ©.166 ©0.166 0.062 0.010
femXcc1@ 1.196 1.190 ©0.307 0.307 0.063 0.019

- mi column: the expected value of the LRT of the current model
and a model where this parameter was added

- mi.scaled column: the scaled (robust) LRT

> Should be bigger than 3.84 for 1 df
> Practice is to find values that are much higher (say 10 or more)

- epc column: expected value of the parameter in the model
where this parameter was added
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ADDING PREDICTORS TO THE MODEL
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Adding Predictors: Removing Zero Values from Parameters

#model @2: all parameters included --------=-=-=-—---m - e
model@2.syntax = "

#Means:
perf ~ 1 + (p_f)*female + (p_cc)*ccld + (p_f_cc)*femXccld
use ~ 1 + (u_f)*female + (u_cc)*ccl® + (u_f_cc)*femXccl®d

#Variances:
perf ~~ perf
use ~~ use

#Covariance:
perf ~~ use

#Defined parameters (glht() analog in lavaan)
cc_perf_fem := p_cc + p_f_cc
cc_use_fem := u_cc + u_f_cc

#analysis estimation
model@2.fit = sem(model®@2.syntax, data=data@l, conditional.x=TRUE, fixed.x = TRUE, mimic = "MPLUS", estimator = "MLR")
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First Question: Which Model “Fits” Better?

. After adding the predictors (estimating their betas) to the
model, we must first ask which model fits better

. A likelihood ratio test (LRT) can be performed comparing
model02 (with predictors) and model01 (without)

- Which model is the null model?
- Which model is the alternative model?
- What is the null hypothesis?

- What is the alterative hypothesis?
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LRT With Scaled Chi-Squares

- R makes the scaled Chi-square LRT easy...use the anova()
function and it will rescale the Chi-squares automatically

> anova(model@l1.fit, model@2.fit)
Scaled Chi Square Difference Test (method = "satorra.bentler.2001")

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

model@2.fit © 8146.2 8188.6 ©.000
model@l.fit 6 8156.5 8175.8 22.307 22.204 6 0.001112 **

Signif. codes: @ ‘***’ 9.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

- Here we see that we reject model01 (the null model)

- So we conclude that at least one beta value was
significantly different from zero
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Step 2: Inspect Model Fit

- Next we inspect the model fit of model02:

> summary(model®@2.fit, standardized=TRUE, fit.measures=TRUE)
lavaan (@.5-20) converged normally after 57 iterations

Number of observations 350 [ ] MOdElOZ has the Same Iog_

Number of missing patterns 7

W et likelihood as the saturated

Minimum Function Test Statistic 0.000 0.000

e Srcon factr S model...so it is equivalent to the

for the Yuan-Bentler correction (Mplus variant)

Model test baseline model: Satu ra ted m Od el

Minimum Function Test Statistic 28.371 27.908 - -

Degrses of fresdan * Therefore it fits perfectly!
User model versus baseline model:

Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.000 1.000

Loglikelihood and Information Criteria: * A ny p at h m O d e I W h e re a I I
LogLikelihood user model (HO 4062.099  -4062.099 exogenous va riables pre dict all

Loglikelihood unrestricted model (H1) -4062.099 -4062.099

e of e porcneters endogenous variables AND all

Bayesian (BIC) 8188.635 8188.635

Sample-size adjusted Bayesian (BIC) 8153.739  8153.739 COVB I’I a n Ces betwee n e n d Oge n O u S

Root Mean Square Error of Approximation:

gzsggrcent Confidence Interval 0.000 gggg gggg 0.000 Variables are eStimated iS the
saturated model

P-value RMSEA <= 0.05 1.000 1.000
Standardized Root Mean Square Residual:
SRMR 0.000 0.000

Parameter Estimates:

Information Observed THE UNIVERSITY OF
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Up Next: Inspect Parameters and Make Interpretations

EPSY 905: Multivariate Linear N

Regressions:
Estimate
perf ~
female (p_f) 0.510
cclo (p_cc) 0.09%0
fmXccl® (p_f_) 0.091
use ~
female (u_f) 1.960
cclo (u_cc) 0.192
fmXccl® (u_f_) 0.257
Covariances:
Estimate
perf ~~
use 5.365
Intercepts:
Estimate
perf 13.758
use 51.783
Variances:
Estimate
perf 8.124
use 245.747
Defined Parameters:
Estimate
cc_perf_fem 0.187
cc_use_fem 0.449

Std.

(SIS

(SIS

Std.

Std.
.209
.128

=

Std.
.712
18.

Std.
.059
.261

(SIS

Err

.352
.033
.068

.776
.200
.329

Err

.794

Err

Err

726

Err

Z-value

1.448
2.931
1.341

1.104
0.901
0.780

Z-value

1.920

Z-value
05.944
45.921

Z-value
11.411
13.123

Z-value
3.150
1.720

P(>1z1)

0.148
0.003
0.180

0.270
0.337
0.436

P(>1zl1)

0.055

P(>1zl)
0.000
0.000

P(>1zl1)
0.000
0.000

P(>1zl1)
0.002
0.086

Std.1lv

0.510
0.0%
0.091

1.960
0.192
0.257

Std.1lv

5.365

Std.1lv
13.758
51.783

Std.1lv
8.124
245.747

Std.1lv
0.187
0.449

Std.

(SRS (SRS

Std.

all

.082
191
.100

.059
.072
.053

all

.120

.all
.656
.280

.all
.931
.986

.all
.291
.125

U
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New Terms: Standardized Parameters

- Standardized parameters are parameters that are

transformed by dividing by one or more standard
deviations

. Big-picture example: Recall the covariance to correlation
formula

Covariance(X,Y)

Correlation(X,Y) = SD(X) * SD(Y)

. The correlation is a standardized covariance
. Standardized = units removed
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Standardized Regression Parameters

The standardized regression parameters are similar

Take the original equation for a simple linear (one
predictor) regression:

Oy

X _ _
by Pxy o,

> B is interpreted as the increase in units of Y per units of X

To standardize (std.all in lavaan), remove units:

o

X _ px|[“x )\ _

by =Py | — = Pxy
Oy

> bif is interpreted as the increase in SDs of Y per SDs of X
Standardized parameters are useful for comparing effects
on different scales
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Questions to Answer about this Model

- What is the effect of college experience on usefulness for
males?

- What is the effect of college experience on usefulness for
females?

- What is the difference between males and females ratings
of usefulness when college experience = 107?

- How did the difference between males and females ratings
change for each additional hour of college experience?
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Questions to Answer about this Model

- What is the effect of college experience on performance
for males?

- What is the effect of college experience on performance
for females?

- What is the difference between males and females
performance when college experience = 107?

- How did the difference between males and females
performance change for each additional hour of college

I ?
experience:
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WRAPPING UP
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Multivariate Linear Models with Predictors

. In this lecture we discussed the basics of multivariate

linear models with predictors

> Model specification/identification

> Model estimation

> Model fit (necessary, but not sufficient)
> Model modification and re-estimation
> Final model parameter interpretation

- There is a lot to the analysis — but what is important to
remember is the over-arching principal of multivariate

analyses: covariance between variables is important

> Path models imply very specific covariance structures

> The validity of the results hinge upon accurately finding an approximation to
the covariance matrix
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