# **An Introduction to Matrix Algebra**

# EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #8



# In This Lecture...

# An introduction to matrix algebra

- Scalars, vectors, and matrices
- Basic matrix operations
- > Advanced matrix operations
- An introduction to matrices in R
  - > Embedded within the R language



# Why Learning a Little Matrix Algebra is Important

## Matrix algebra is the alphabet of the language of statistics

> You will most likely encounter formulae with matrices very quickly

# For example, imagine you were interested in analyzing some repeated measures data...but things don't go as

#### Formulation of the Mixed Model

The previous general linear model is certainly a useful one (Sea although you still assume normality.

The mixed model is written as

 $y = X\beta + Z\gamma + \varepsilon$ 

where everything is the same as in the general linear model exit Henderson (1990) and Searle, Casella, and McCulloch (1992) fi

A key assumption in the foregoing analysis is that  $\pmb{\gamma}$  and  $\pmb{\epsilon}$  are

$$E\begin{bmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\varepsilon} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}$$
$$Var\begin{bmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\varepsilon} \end{bmatrix} = \begin{bmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix}$$

The variance of y is, therefore,  $\mathbf{V} = \mathbf{Z}\mathbf{G}\mathbf{Z}' + \mathbf{R}$ . You can model

#### Estimating Covariance Parameters in the Mixed Model

Estimation is more difficult in the mixed model than in the general linear model. Not only do y  $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ 

However, it requires knowledge of V and, therefore, knowledge of G and R. Lacking such infc

In many situations, the best approach is to use *likelihood-based* methods, exploiting the ass (REML). A favorable theoretical property of ML and REML is that they accommodate data that

PROC MIXED constructs an objective function associated with ML or REML and maximizes i

ML: 
$$l(\mathbf{G}, \mathbf{R}) = -\frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} \mathbf{r}' \mathbf{V}^{-1} \mathbf{r} - \frac{n}{2} \log(2\pi)$$

REML: 
$$l_R(\mathbf{G}, \mathbf{R}) = -\frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} \log |\mathbf{X}' \mathbf{V}^{-1} \mathbf{X}| - \frac{1}{2} \mathbf{r}' \mathbf{V}^{-1} \mathbf{r} - \frac{n-p}{2} \log(2\pi) \}$$

where  $\mathbf{r} = \mathbf{y} - \mathbf{X}(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}$  and p is the rank of  $\mathbf{X}$ . PROC MIXED actually minimiz analytical details for implementing a QR-decomposition approach to the problem. Wolfinger, 1



# **Introduction and Motivation**

- Nearly all multivariate statistical techniques are described with matrix algebra
- When new methods are developed, the first published work typically involves matrices
  - > It makes technical writing more concise formulae are smaller
- Have you seen:
  - $(X^T X)^{-1} X^T y$
  - $\succ \Lambda \Phi \Lambda^T + \Psi$
- Useful tip: matrix algebra is a great way to get out of boring conversations and other awkward moments



# Definitions

- We begin this class with some general definitions (from dictionary.com):
  - > Matrix:
    - 1. A rectangular array of numeric or algebraic quantities subject to mathematical operations
    - 2. The substrate on or within which a fungus grows

#### > Algebra:

- A branch of mathematics in which symbols, usually letters of the alphabet, represent numbers or members of a specified set and are used to represent quantities and to express general relationships that hold for all members of the set
- 2. A set together with a pair of **binary operations** defined on the set. Usually, the set and the operations include an **identity element**, and the operations are **commutative** or **associative**



 Matrix algebra can seem very abstract from the purposes of this class (and statistics in general)

- Learning matrix algebra is important for:
  - > Understanding how statistical methods work
    - And when to use them (or not use them)
  - > Understanding what statistical methods mean
  - > Reading and writing results from new statistical methods

 This is a first lecture of learning the language of multivariate statistics



# **DATA EXAMPLE AND R**



EPSY 905: Matrix Algebra

- To demonstrate matrix algebra, we will make use of data
- Imagine that I collected data SAT test scores for both the Math (SATM) and Verbal (SATV) sections of 1,000 students
- The descriptive statistics of this data set are given below:

| Statistic   | SATV      | SATM  |  |  |  |  |
|-------------|-----------|-------|--|--|--|--|
| Mean        | 499.3     | 498.3 |  |  |  |  |
| SD          | 49.8 81.2 |       |  |  |  |  |
| Correlation |           |       |  |  |  |  |
| SATV        | 1.00      | 0.78  |  |  |  |  |
| SATM        | 0.78      | 1.00  |  |  |  |  |



# The Data...

#### In Excel:

|        | 🗶 🖳 🔊 👻 🖓 😴 🖙 sat.csv - Microsoft Excel |            |          |                |             |       |         | ٢            |     |   |    |
|--------|-----------------------------------------|------------|----------|----------------|-------------|-------|---------|--------------|-----|---|----|
| F      | ile Hom                                 | Inser Pag  | ge Form  | Data           | Revie       | View  | Add-]   | 0            | 2 - | đ | 23 |
| Pa     | ste                                     | Font Align | ment Nur | %<br>nber      | A<br>Styles | Cells | Σ ▼<br> | 27 -<br>28 - |     |   |    |
| Clip   | board 🕞                                 |            |          |                |             |       | Editi   | ng           |     |   | _  |
|        | A1                                      | •          | 0        | f <sub>x</sub> | SATV        | ′     |         |              |     |   | ~  |
|        | А                                       | В          | С        |                | D           | E     |         | F            |     | G |    |
| 1      | SATV                                    | SATM       |          |                |             |       |         |              |     |   |    |
| 2      | 520                                     | 580        |          |                |             |       |         |              |     |   |    |
| 3      | 520                                     | 550        |          |                |             |       |         |              |     |   |    |
| 4      | 460                                     | 440        |          |                |             |       |         |              |     |   |    |
| 5      | 560                                     | 530        |          |                |             |       |         |              |     |   | -  |
| 6      | 430                                     | 440        |          |                |             |       |         |              |     |   | -  |
| -      | 490                                     | 530        |          |                |             |       |         |              |     |   |    |
| 0<br>0 | 520                                     | 570        |          |                |             |       |         |              |     |   |    |
| 10     | 490                                     | 540        |          |                |             |       |         |              |     |   |    |
| 11     | 450                                     | 470        |          |                |             |       |         |              |     |   |    |
| 12     | 510                                     | 560        |          |                |             |       |         |              |     |   |    |
| 13     | 480                                     | 510        |          |                |             |       |         |              |     |   |    |
| 14     | 470                                     | 420        |          |                |             |       |         |              |     |   |    |
| 15     | 500                                     | 520        |          |                |             |       |         |              |     |   |    |
| 16     | 480                                     | 470        |          |                |             |       |         |              |     |   |    |
| 17     | 450                                     | 390        |          |                |             |       |         |              |     |   |    |
| 18     | 500                                     | 480        |          |                |             |       |         |              |     |   |    |
| 19     | 510                                     | 500        |          |                |             |       |         |              |     |   |    |
| 20     | 610                                     | 630        |          |                |             |       |         |              |     |   |    |
| 21     | 450                                     | 410        |          |                |             |       |         |              |     |   |    |
| 22     | 410                                     | 380        |          | _              |             |       |         |              |     |   | -  |
| 23     | 460                                     | 460        |          |                |             |       |         |              |     |   |    |

#### In R:

| N 2 | ~    |      |
|-----|------|------|
|     | SATV | SATM |
| 1   | 520  | 580  |
| 2   | 520  | 550  |
| 3   | 460  | 440  |
| 4   | 560  | 530  |
| 5   | 430  | 440  |
| 6   | 490  | 530  |
| 7   | 570  | 580  |
| 8   | 530  | 570  |
| 9   | 490  | 540  |
| 10  | 450  | 470  |
| 11  | 510  | 560  |
| 12  | 480  | 510  |
| 13  | 470  | 420  |
| 14  | 500  | 520  |
| 15  | 480  | 470  |
| 16  | 450  | 390  |
| 17  | 500  | 480  |
| 18  | 510  | 500  |
| 19  | 610  | 630  |
| 20  | 450  | 410  |
| 21  | 410  | 380  |
| 22  | 460  | 460  |



# DEFINITIONS OF MATRICES, VECTORS, AND SCALARS



### Matrices

- A matrix is a rectangular array of data
  - > Used for storing numbers
- Matrices can have unlimited dimensions
  - > For our purposes all matrices will have two dimensions:
    - Row
    - Columns
- Matrices are symbolized by **boldface** font in text, typically with capital letters

SAT Verbal SAT Math  
(Column 1) (Column 2)  
$$\mathbf{X} = \begin{bmatrix} 520' & 580' \\ 520 & 550' \\ \vdots & \vdots \\ 540 & 660 \end{bmatrix}_{(1000 \times 2)}$$



#### Vectors

- A vector is a matrix where one dimension is equal to size 1
  - > Column vector: a matrix of size  $r \ge 1$

$$\boldsymbol{x}_{.1} = \begin{bmatrix} 520\\520\\\vdots\\540 \end{bmatrix}_{1000 \ x \ 1}$$

> Row vector: a matrix of size 1 x c

 $x_{1.} = [520 \quad 580]_{1 x 2}$ 

- Vectors are typically written in **boldface** font text, usually with lowercase letters
- The dots in the subscripts x<sub>.1</sub> and x<sub>1</sub>. represent the dimension aggregated across in the vector
  - >  $x_1$ . is the first row and <u>all</u> columns of X
  - ➤ x<sub>.1</sub> is the first column and <u>all</u> rows of X
  - Sometimes the rows and columns are separated by a comma (making it possible to read double-digits in either dimension)



# **Matrix Elements**

- A matrix (or vector) is composed of a set of elements
   > Each element is denoted by its position in the matrix (row and column)
- For our matrix of data X (size 1000 rows and 2 columns), each element is denoted by:

 $x_{ii}$ 

The first subscript is the index for the rows: i = 1,...,r (= 1000)

> The second subscript is the index for the columns: j = 1,...,c (= 2)

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{1000,1} & x_{1000,2} \end{bmatrix}_{(1000 \ x \ 2)}$$



- A scalar is just a single number
- The name scalar is important: the number "scales" a vector – it can make a vector "longer" or "shorter"
- Scalars are typically written without boldface:  $x_{11} = 520$
- Each element of a matrix is a scalar



 The transpose of a matrix is a reorganization of the matrix by switching the indices for the rows and columns

$$\mathbf{X} = \begin{bmatrix} 520 & 580 \\ 520 & 550 \\ \vdots & \vdots \\ 540 & 660 \end{bmatrix}_{(1000 \ x \ 2)}$$

$$\mathbf{X}^{T} = \begin{bmatrix} 520 & 520 & \cdots & 540 \\ 580 & 550 & \cdots & 660 \end{bmatrix}_{(2 \ x \ 1000)}$$

- An element  $x_{ij}$  in the original matrix **X** is now  $x_{ji}$  in the transposed matrix **X**<sup>T</sup>
- Transposes are used to align matrices for operations where the sizes of matrices matter (such as matrix multiplication)

# **Types of Matrices**

- Square Matrix: A square matrix has the same number of rows and columns
  - Correlation/covariance matrices are square matrices
- **Diagonal Matrix:** A diagonal matrix is a square matrix with non-zero diagonal elements  $(x_{ij} \neq 0 \text{ for } i = j)$  and zeros on the off-diagonal elements  $(x_{ij} = 0 \text{ for } i \neq j)$ :  $\mathbf{A} = \begin{bmatrix} 2.759 & 0 & 0 \\ 0 & 1.643 & 0 \\ 0 & 0 & 0.879 \end{bmatrix}$ 
  - > We will use diagonal matrices to form correlation matrices
- Symmetric Matrix: A symmetric matrix is a square matrix where all elements are reflected across the diagonal
   (a<sub>ij</sub> = a<sub>ji</sub>)

   Correlation and covariance matrices are symmetric matrices

EPSY 905: Matrix Algebra

# VECTORS



EPSY 905: Matrix Algebra

# **Vectors in Space...**

- Vectors (row or column) can be represented as lines on a Cartesian coordinate system (a graph)
- Consider the vectors:  $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$  and  $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- A graph of these vectors would be:



<u>Question</u>: how would a column vector for each of our example variables (SATM and SATV) be plotted?



# **Vector Length**

- The length of a vector emanating from the origin is given by the Pythagorean formula
  - > This is also called the Euclidean distance between the endpoint of the vector and the origin

$$L_{\mathbf{x}} = \sqrt{x_{11}^2 + x_{21}^2 + \dots + x_{r1}^2} = \|\mathbf{x}\|$$

- From the last slide:  $\|\mathbf{a}\| = \sqrt{5} = 2.24$ ;  $\|\mathbf{b}\| = \sqrt{13} = 3.61$
- From our data:
   ||SATV|| = 15,868.138; ||SATM|| = 15,964.42
- In data: length is an analog to the standard deviation
  - In mean-centered variables, the length is the square root of the sum of mean deviations (not quite the SD, but close)



- Vectors can be added together so that a new vector is formed
- Vector addition is done element-wise, by adding each of the respective elements together:
  - > The new vector has the same number of rows and columns

$$\mathbf{c} = \mathbf{a} + \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

- Geometrically, this creates a new vector along either of the previous two
   Starting at the origin and ending at a new point in space
- In Data: a new variable (say, SAT total) is the result of vector addition

$$SAT_{TOTAL} = x_{.1} + x_{.2}$$

### **Vector Addition: Geometrically**





# **Vector Multiplication by Scalar**

- Vectors can be multiplied by scalars
  - > All elements are multiplied by the scalar

$$\mathbf{d} = 2\mathbf{a} = 2\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}$$

- Scalar multiplication changes the length of the vector:  $\|\mathbf{d}\| = \sqrt{2^2 + 4^2} = \sqrt{20} = 4.47$
- This is where the term scalar comes from: a scalar ends up "rescaling" (resizing) a vector
- In Data: the GLM (where X is a matrix of data) the fixed effects (slopes) are scalars multiplying the data

### **Scalar Multiplication: Geometrically**



# **Linear Combinations**

 Addition of a set of vectors (all multiplied by scalars) is called a linear combination:

$$\mathbf{y} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \dots + a_k \mathbf{x}_k$$

- Here, **y** is the linear combination
  - > For all k vectors, the set of all possible linear combinations is called their span
  - > Typically not thought of in most analyses but when working with things that don't exist (latent variables) becomes somewhat important
- In Data: linear combinations happen frequently:
  - Linear models (i.e., Regression and ANOVA)
  - > Principal components analysis



# **Linear Dependencies**

- A set of vectors are said to be linearly dependent if
   a<sub>1</sub>x<sub>1</sub> + a<sub>2</sub>x<sub>2</sub> + ··· + a<sub>k</sub>x<sub>k</sub> = 0
   -and a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>k</sub> are all **not** zero
- Example: let's make a new variable SAT Total:  $SAT_{total} = 1 * SATV + 1 * SATM$
- The new variable is linearly dependent with the others: (1) \* SATV + (1) \* SATM + (-1) \* SAT<sub>total</sub> = 0
- In Data: (multi)collinearity is a linear dependency. Linear dependencies are bad for statistical analyses that use matrix inverses

# Inner (Dot) Product of Vectors

- An important concept in vector geometry is that of the inner product of two vectors
  - > The inner product is also called the dot product

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = a_{11} b_{11} + a_{21} b_{21} + \dots + a_{N1} b_{N1} = \sum_{i=1}^N a_{i1} b_{i1}$$

λT

- The dot or inner product is related to the angle between vectors and to the projection of one vector onto another
- From our example:  $\mathbf{a} \cdot \mathbf{b} = 1 * 2 + 2 * 3 = 8$
- From our data:  $x_1 \cdot x_2 = 251,928,400$
- In data: the angle between vectors is related to the correlation between variables and the projection is related to regression/ANOVA/linear models

## **Angle Between Vectors**

• As vectors are conceptualized geometrically, the angle between two vectors can be calculated

$$\theta_{ab} = \cos^{-1} \left( \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \right)$$

• From the example:

$$\theta_{ab} = \cos^{-1}\left(\frac{8}{\sqrt{5}\sqrt{13}}\right) = 0.12$$

- 0.105

From our data:

$$\theta_{SATV,SATM} = \cos^{-1} \left( \frac{251,928,400}{\sqrt{15,868.138}\sqrt{15,946.42}} \right)$$

1

### In Data: Cosine Angle = Correlation

- If you have data that are:
  - Placed into vectors
  - Centered by the mean (subtract the mean from each observation)
- ...then the cosine of the angle between those vectors is the correlation between the variables:

$$r_{ab} = \cos(\theta_{ab}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{\sum_{i=1}^{N} (a_{i1} - \bar{a}) (b_{i1} - \bar{b})}{\sqrt{\sum_{i=1}^{N} (a_{i1} - \bar{a})^2} \sqrt{\sum_{i=1}^{N} (b_{i1} - \bar{b})^2}}$$

For the SAT example data (using mean centered variables):

$$r_{SATV,SATM} = \cos(\theta_{SATVC,SATMC})$$
  
=  $\cos\left(\frac{3,132,223.6}{1,573.956 * 2,567.0425}\right) = .775$ 

# **Vector Projections**

- A final vector property that shows up in statistical terms frequently is that of a projection
- The projection of a vector a onto b is the orthogonal projection of a onto the straight line defined by b
  - > The projection is the "shadow" of one vector onto the other:





 To provide a bit more context for vector projections, let's consider the projection of mean centered SATV onto SATM:



# **MATRIX ALGEBRA**



EPSY 905: Matrix Algebra

# **Moving from Vectors to Matrices**

- A matrix can be thought of as a collection of vectors
  - Matrix operations are vector operations on steroids
- Matrix algebra defines a set of operations and entities on matrices
  - > I will present a version meant to mirror your previous algebra experiences

# • Definitions:

- > Identity matrix
- > Zero vector
- > Ones vector

# Basic Operations:

- > Addition
- Subtraction
- > Multiplication
- "Division"

# **Matrix Addition and Subtraction**

- Matrix addition and subtraction are much like vector addition/subtraction
- Rules:
  - > Matrices must be the same size (rows and columns)
- Method:
  - > The new matrix is constructed of element-by-element addition/subtraction of the previous matrices
- Order:
  - > The order of the matrices (pre- and post-) does not matter



## Matrix Addition/Subtraction

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{bmatrix}$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \\ a_{41} + b_{41} & a_{42} + b_{42} \end{bmatrix} \qquad \mathbf{A} - \mathbf{B} = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} \\ a_{21} - b_{21} & a_{22} - b_{22} \\ a_{31} - b_{31} & a_{32} - b_{32} \\ a_{41} - b_{41} & a_{42} - b_{42} \end{bmatrix}$$



- Matrix multiplication is a bit more complicated
  - The new matrix may be a different size from either of the two multiplying matrices

$$\mathbf{A}_{(r x c)} \mathbf{B}_{(c x k)} = \mathbf{C}_{(r x k)}$$

- Rules:
  - Pre-multiplying matrix must have number of columns equal to the number of rows of the post-multiplying matrix
- Method:
  - The elements of the new matrix consist of the inner (dot) product of the row vectors of the pre-multiplying matrix and the column vectors of the postmultiplying matrix
- Order:
  - > The order of the matrices (pre- and post-) matters



# **Matrix Multiplication**

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\ a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23} \end{bmatrix}$$



# **Multiplication in Statistics**

- Many statistical formulae with summation can be re-expressed with matrices
- A common matrix multiplication form is:  $\mathbf{X}^T \mathbf{X}$ 
  - > Diagonal elements:  $\sum_{i=1}^{N} X_i^2$
  - > Off-diagonal elements:  $\overline{\sum}_{i=1}^{N} X_{ia} X_{ib}$
- For our SAT example:

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} \sum_{i=1}^{N} SATV_{i}^{2} & \sum_{i=1}^{N} SATV_{i}SATM_{i} \\ \sum_{i=1}^{N} SATV_{i}SATM_{i} & \sum_{i=1}^{N} SATM_{i}^{2} \end{bmatrix}$$
$$= \begin{bmatrix} 251,797,800 & 251,928,400 \\ 251,928,400 & 254,862,700 \end{bmatrix}$$

- The identity matrix is a matrix that, when pre- or post-multiplied by another matrix results in the original matrix:  $\mathbf{AI} = \mathbf{A}$ 

$$IA = A$$

- The identity matrix is a square matrix that has:
  - Diagonal elements = 1
  - > Off-diagonal elements = 0

$$I_{(3\ x\ 3)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



- The zero vector is a column vector of zeros  $\mathbf{0}_{(3\ x\ 1)} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
- When pre- or post- multiplied the result is the zero vector:
  - A0 = 00A = 0



- A ones vector is a column vector of 1s:  $\mathbf{1}_{(3 \ x \ 1)} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$
- The ones vector is useful for calculating statistical terms, such as the mean vector and the covariance matrix



# Matrix "Division": The Inverse Matrix

• Division from algebra:

> First: 
$$\frac{a}{b} = \frac{1}{b}a = b^{-1}a$$
  
> Second:  $\frac{a}{a} = 1$ 

- "Division" in matrices serves a similar role
  - For square and symmetric matrices, an inverse matrix is a matrix that when pre- or post- multiplied with another matrix produces the identity matrix:

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$
$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

- Calculation of the matrix inverse is complicated
  - > Even computers have a tough time
- Not all matrices can be inverted
  - > Non-invertible matrices are called singular matrices
    - In statistics, singular matrices are commonly caused by linear dependencies

#### The Inverse

- In data: the inverse shows up constantly in statistics
  - Models which assume some type of (multivariate) normality need an inverse covariance matrix
- Using our SAT example
  - > Our data matrix was size (1000 x 2), which is not invertible
  - > However  $\mathbf{X}^T \mathbf{X}$  was size (2 x 2) square, and symmetric  $\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 251,797,800 & 251,928,400 \\ 251,928,400 & 254,862,700 \end{bmatrix}$

> The inverse is:

$$(\mathbf{X}^T \mathbf{X})^{-1} = \begin{bmatrix} 3.61E - 7 & -3.57E - 7 \\ -3.57E - 7 & 3.56E - 7 \end{bmatrix}$$



# **Matrix Algebra Operations**

- $(\mathbf{A} + \mathbf{B}) + \mathbf{C} =$  $\mathbf{A} + (\mathbf{B} + \mathbf{C})$
- $\cdot \ \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- $c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$
- $(c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}$
- $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- $(cd)\mathbf{A} = c(d\mathbf{A})$
- $(c\mathbf{A})^T = c\mathbf{A}^T$
- $c(\mathbf{AB}) = (c\mathbf{A})\mathbf{B}$
- A(BC) = (AB)C

- A(B+C) = AB + AC
- $\cdot \ (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$
- For  $x_i$  such that  $Ax_i$  exists:  $\sum_{j=1} \mathbf{A}\mathbf{x}_j = \mathbf{A}\sum_{j=1} \mathbf{x}_j$  $\sum_{j} (\mathbf{A}\mathbf{x}_j) (\mathbf{A}\mathbf{x}_j)^T =$  $\mathbf{A}\left(\sum_{i=1}^{N}\mathbf{x}_{j}\mathbf{x}_{j}^{T}\right)\mathbf{A}^{T}$



# **ADVANCED MATRIX OPERATIONS**



# **Advanced Matrix Functions/Operations**

- We end our matrix discussion with some advanced topics
  - > All related to multivariate statistical analysis
- To help us throughout, let's consider the correlation matrix of our SAT data:

$$\mathbf{R} = \begin{bmatrix} 1.00 & 0.78\\ 0.78 & 1.00 \end{bmatrix}$$



 For a square matrix A with p rows/columns, the trace is the sum of the diagonal elements:

$$tr\mathbf{A} = \sum_{i=1}^{p} a_{ii}$$

- For our data, the trace of the correlation matrix is 2
  - For all correlation matrices, the trace is equal to the number of variables because all diagonal elements are 1

 The trace is considered the total variance in multivariate statistics

> Used as a target to recover when applying statistical models

### **Matrix Determinants**

• A square matrix can be characterized by a scalar value called a determinant:

 $\det \mathbf{A} = |\mathbf{A}|$ 

- Calculation of the determinant is tedious
  - > Our determinant was 0.3916
- The determinant is useful in statistics:
  - > Shows up in multivariate statistical distributions
  - Is a measure of "generalized" variance of multiple variables
- If the determinant is positive, the matrix is called **positive** definite → the matrix has an inverse
- If the determinant is not positive, the matrix is called nonpositive definite → the matrix does not have an inverse

# WRAPPING UP



EPSY 905: Matrix Algebra

# Much Ado About Matrices...

- Matrices show up nearly anytime multivariate statistics are used, often in the help/manual pages of the package you intend to use for analysis
- You don't have to do matrix algebra, but please do try to understand the concepts underlying matrices
- Your working with multivariate statistics will be better off because of even a small amount of understanding

