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In This Lecture…

• Models for binary outcomes: Logistic regression

• Converting parameters from logits to probability and odds

• Interpreting main effects, simple main effects, 
and interactions
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GENERALIZED LINEAR MODELS FOR 
BINARY DATA: LOGISTIC REGRESSION
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Today’s Data Example
• To help demonstrate generalized models for binary data, we borrow 

from an example listed on the UCLA ATS website:
https://stats.idre.ucla.edu/stata/dae/ordered-logistic-regression/

• Data come from a survey of 400 college juniors looking at factors 
that influence the decision to apply to graduate school:

Ø Y (outcome): student rating of likelihood he/she will apply to grad school – (0 = 
unlikely; 1 = somewhat likely; 2 = very likely)

w We will first look at Y for two categories (0 = unlikely; 1 = somewhat or very likely)  - this is to 
introduce the topic for you Y is a binary outcome

w You wouldn’t do this in practice (use a different distribution for 3 categories)
Ø ParentEd: indicator (0/1) if one or more parent has graduate degree
Ø Public: indicator (0/1) if student attends a public university
Ø GPA: grade point average on 4 point scale (4.0 = perfect)
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Descriptive Statistics for Data

Analysis Variable : GPA
N Mean Std Dev Minimum Maximum

400 2.998925 0.3979409 1.9 4

EPSY 905: Logistic Regression

Likelihood of Applying (1 = likely)
Lapply Frequency Percent Cumulative Cumulative

Frequency Percent
0 220 55 220 55
1 180 45 400 100

APPLY Frequency Percent Cumulative Cumulative
Frequency Percent

0 220 55 220 55
1 140 35 360 90
2 40 10 400 100

Parent Has Graduate Degree
parentGD Frequency Percent Cumulative Cumulative

Frequency Percent
0 337 84.25 337 84.25
1 63 15.75 400 100

Student Attends Public University
PUBLIC Frequency Percent Cumulative Cumulative

Frequency Percent
0 343 85.75 343 85.75
1 57 14.25 400 100
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Transforming Probabilities to Logits

Probability Logit
0.99 4.6

0.90 2.2

0.50 0.0

0.10 -2.2
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Can you guess what a 
probability of .01 would be 
on the logit scale?
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Nonlinearity in Prediction
• The relationship between X and the probability of response=1 

is “nonlinear” à an s-shaped logistic curve whose shape and 
location are dictated by the estimated fixed effects

Ø Linear with respect to the logit, nonlinear with respect to probability

• The logit version of the model will be easier to explain; the 
probability version of the prediction will be easier to show
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B0 = 0
B1 = 1

Predictor X Predictor X
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Putting it Together with Data: The Empty Model 
• The empty model (under GLM):

!" = $% + '"
where '" ∼ ) 0, ,-. / !" = $% and 0 !" = ,-.

• The empty model for a Bernoulli distribution with a logit link:
1 / !" = 23145 6 !" = 1 = 23145 8" = $%
8" = 6 !" = 1 = / !" = 19: $% = exp $%

1 + exp $%
0 !" = 8" 1 − 8"

• Note: many generalized LMs don’t list an error term in the linear predictor – is for 
the expected value and error usually has a 0 mean so it disappears

• We could have listed '" for the logit function
Ø '" would have a logistic distribution with a zero mean and variance ?

@

A = 3.29
Ø Variance is fixed – cannot modify variance of Bernoulli distribution after modeling the mean
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Linear Predictor
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LOGISTIC REGRESSION IN R
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The Ordinal Package
• The ordinal package is useful for modeling categorical 

dependent variables

• We will use the clm() function
Ø clm stands for cumulative linear models
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Unpacking clm() Function Syntax
• Example syntax below for empty model differs only slightly 

from lm() syntax we have already seen

• The dependent variable must be stored as a factor

• The formula and data arguments are identical to lm()

• The control argument is only used here to show iteration 
history of the ML algorithm
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Empty Model Output

• The empty model is estimating one parameter: !"
• However, for this package, the logistic regression is formed 

using a threshold (#") rather than intercept rather
Ø Here !" = −#"
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Interpretation of summary() Output

• !" = 0.2007, so…
• ," = −0.2007 (0.1005): interpreted as the predicted 

logit of yp =1 for an individual when all predictors are zero
Ø Because of the empty model, this becomes average logit for sample
Ø Note: exp(-.2007)/(1+exp(-.2007)) = .55 – the sample mean proportion

• The log-likelihood is -256.26
Ø Used for nested model comparisons

• The AIC is 552.51
Ø Used for non-nested model comparisons 
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Predicting Logits, Odds, & Probabilities: 
• Coefficients for each form of the model:

Ø Logit: Log(pp/1-pp) = β0
w Predictor effects are linear and additive like in regression, 

but what does a ‘change in the logit’ mean anyway?
w Here, we are saying the average logit is -.2007

Ø Odds:   (pp/1-pp) = exp(β0)
w A compromise: effects of predictors are multiplicative
w Here, we are saying the average odds of a applying to grad school 

is exp(-.2007) = .819

Ø Prob:   P(yp=1) =    exp(β0) 
1+ exp(β0)

w Effects of predictors on probability are nonlinear and 
non-additive (no “one-unit change” language allowed)

w Here, we are saying the average probability of applying to grad school is .550
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ADDING PREDICTORS TO THE EMPTY MODEL
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Adding Predictors to the Empty Model 
• Having examined how the logistic link function works and how 

estimation works, we can now add predictor variables to our model:
! " #$ = &'!() * #$ = 0 = &'!() ,$
= -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$

,$ = " #$ = !>0 -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$
= exp -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$
1 + exp -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$

C #$ = ,$ 1 − ,$
• Here PARED is Parent Education, PUBLIC is Public University, and 

GPA is Grade Point Average (centered at a value of 3)
• For now, we will omit any interactions (to simplify interpretation)
• We will also use the default parameterization (modeling Y = 0)
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Understanding R Input and Output

• First…the syntax

• The algorithm iteration history:
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Question #1: Does Conditional Model Fit Better than Empty Model 

• Question #1: does this model fit better than the empty model?
!": $% = $' = $( = 0

!%: At least one not equal to zero

• Likelihood Ratio Test Statistic = Deviance =
-2*(-275.26- -264.96) = 20.586

Ø -275.26 is log likelihood from empty model
Ø -264.96 is log likelihood from conditional model

• DF = 4 – 1 =3
Ø Parameters from empty model = 1
Ø Parameters from this model = 4

• P-value: * = .0001283
• Conclusion: reject !"; this model is preferred to empty model

EPSY 905: Logistic Regression 18



Interpreting Model Parameters from summary()
• Parameter Estimates:

• Intercept !" = −0.3382 (0.1187): this is the predicted 
value for the logit of yp = 1 for a person with: 3.0 GPA, 
parents without a graduate degree, and at a private 
university

Ø Converted to a probability: .417 – probability a student with 3.0 GPA, parents 
without a graduate degree, and at a private university is likely to apply to grad 
school (yp = 1)
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Interpreting Model Parameters

parentGD: !" = 1.0596 0.2974 ; . = .0004

The change in the logit of yp = 1 for every one-unit change in 
parentGD…or, the difference in the logit of yp = 1 for 
students who have parents with a graduate degree

Because logit of yp = 1 means a rating of “likely to apply” this 
means that students who have a parent with a graduate 
degree are more likely to rate the item with a “likely to 
apply”

EPSY 905: Logistic Regression 20



More on Slopes
• The quantification of how much less likely a student is to respond with 

“unlikely to apply” can be done using odds ratios or probabilities:

Odds Ratios: 
• Odds of “likely to apply” (Y=1) for student with parental graduate degree: 
exp $% + $' = 2.05

• Odds of “likely to apply” (Y=1) for student without parental graduate 
degree: exp $% = .713

• Ratio of odds = 2.88525 = exp $' - meaning, a student with parental 
graduate degree has almost 3x the odds of rating “likely to apply”

Probabilities:
• Probability of “likely to apply” for student with parental graduate degree: 

123 45647
'6123 45647

= .673
• Probability of “likely to apply” for student without parental graduate 

degree: 123 45
'6123 45

= .416
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Interpreting Model Parameters

PUBLIC: !" = −0.2006 0.3053 ; , = .5113: 

The change in the logit of yp = 1 for every one-unit change in 
GPA…

But, PUBLIC is a coded variable where 0 represents a student 
in a private university, so this is the difference in logits of the 
logit of yp = 1 for students in public vs private universities

Because logit of 1 means a rating of “likely to apply” this 
means that students who are at a public university are more 
unlikely to rate “likely to apply”
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More on Slopes

• The quantification of how much more likely a student is to 
respond with “likely to apply” can be done using odds 
ratios or probabilities:

• The odds are found by: exp $% + $'()*+

• The probability is found by: 
,-. /01/23456
71,-. /01/23456
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Public Logit Odds of 1 Prob = 1
1 -0.539 0.583 0.368
0 -0.338 0.713 0.416
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Interpreting Model Parameters

GPA3: !" = 0.5482 0.2724 ; , = .0442: 

The change in the logit of yp = 1 for one-unit change in GPA

Because logit of yp = 1 means a rating of “likely to apply” this 
means that students who have a higher GPA are more likely 
to rate “likely to apply”
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More on Slopes

• The quantification of how much more likely a student is to 
respond with “likely to apply” can be done using odds 
ratios or probabilities:

• The odds are found by: exp $% + $' ()*+ − 3

• The probability is found by: 
./0 12314 56789:
;3./0 12314 56789:
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GPA3 Logit Odds of 1 Prob = 1
1 0.210 1.234 0.552
0 -0.338 0.713 0.416
-1 -0.886 0.412 0.292
-2 -1.435 0.238 0.192
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Plotting GPA

• Because GPA is an unconditional main effect, we can plot 
values of it versus probabilities of rating “likely to apply”
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Interpretation In General

• In general, the linear model interpretation that you have 
worked on to this point still applies for generalized models, 
with some nuances

• For logistic models with two responses:
Ø Regression weights are now for LOGITS
Ø The direction of what is being modeled has to be understood (Y = 0 or = 1)
Ø The change in odds and probability is not linear per unit change in the IV, but 

instead is linear with respect to the logit
w Hence the term “linear predictor”

Ø Interactions will still 
w Will still modify the conditional main effects
w Simple main effects are effects when interacting variables = 0
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ADDING AND INTERPRETING INTERACTIONS
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Adding Interactions 
• To show how interactions work in logistic models, I will 

add the interaction of GPA3 and PARED to the model:

• We can use anova() to see if the interaction provides a 
significant improvement in model fit:
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Summary of Model Parameter Estimates
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Investigating Unconditional Main Effects
• Because PUBLIC is not part of the interaction, its effect 

applies to everyone

• Lets build some predicted values to show how it works
Ø We can use glht() like we did with lm() 

• First, what is the predicted value (in logits) for someone 
who is:

Ø At a private university (PUBLIC=0)
Ø With no parents holding graduate degrees (PARED=0)
Ø With a GPA of 3 (GPA3=0)
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Coding glht(): Remember the Threshold
!"#$% &' = 1 =

−+, + ./01234 + .5067!89 + .:;013 +
.=01234 ∗ ;013

• Starting with the model above, we plug in the values for 
our prediction

Ø NOTE: we have to use -1 for the first spot as ., = −+,
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Results: All in Logits
• The results are all in logits (log odds of Y=1)

• This comes from the sum of −"# + %&
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Converting Logits to Probabilities
• Logits are hard to interpret, but for predictions, we can use 

probabilities (note: only for predictions; any differences 
make probabilities not useful)

• We can also create the odds from this:
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Mean Differences: Work the Same in Logits
• To compare the mean difference between PUBLIC=0 and 

PUBLIC=1, we start with the predicted logit for PUBLIC=1
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Probabilities and Odds Are Also The Same for Predictions

• As we are working with a prediction, we can do the same 
conversion for probabilities (and odds)

• What is the odds ratio? 
Odds(Apply|PUBLIC=1)/Odds(Apply|PUBLIC=0)
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But: Probabilities Depend on Other Predictors
• Whatever difference in probabilities we observe is always 

conditional on the values of other predictors
Ø Here, we will try PARED=1 and GPA=3

• Odds (not odds ratios) also depend on other predictors
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Odds Ratios: Stay the Same
• Odds ratios are the same regardless of predictors

• Part of the reason odds ratios get used to describe effects
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Interpreting the Interaction: Mean Difference
• Let’s start by looking at the difference in mean logits for 

PARED=0 vs PARED=0 when GPA3 = 0 (GPA=3)
Ø This is a simple main effect

• Beginning with the model
!"#$% &' = 1 =

−+, + ./01234 + .5067!89 + .:;013 +
.=01234 ∗ ;013

• The predicted logit for PARED=0 and GPA3=0:
−+, + ./01234

• The predicted logit for PARED=1 and GPA3=0:
−+, + ./01234 + .5

• The predicted mean logit difference: 
.5
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Results
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Next: What is Difference in Slope for GPA3
• We next want to compare the difference in slope for GPA3 

for PARED=0 and PARED=1
• Beginning with the model

!"#$% &' = 1 =
−+, + ./01234 + .5067!89 + .:;013 +

.=01234 ∗ ;013
• The slope for GPA3 when PARED=0:

.:;013
• The slope for GPA3 when PARED=1:

.:;013 + .=;013 = .: + .= ;013
• The slope difference: 

.:
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Results
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Changes in Mean Difference
• We can express the mean difference for any level of GPA
• Beginning with the model

!"#$% &' = 1 =
−+, + ./01234 + .5067!89 + .:;013 +

.=01234 ∗ ;013
• The mean for PARED=0:

−+, + .5067!89 + .:;013
• The mean for PUBLIC=1:

−+, + ./ + .5067!89 + .: + .= ;013
• The general mean difference: 

./ + .=;013
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Results for GPA3 +1 
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Results for Varying GPA3
• Mean difference for PUBLIC is only significant at GPA=3
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WRAPPING UP
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Wrapping Up
• Generalized linear models are models for outcomes with 

distributions that are not necessarily normal

• The estimation process is largely the same: maximum 
likelihood is still the gold standard as it provides estimates 
with understandable properties

• Learning about each type of distribution and link 
takes time:

Ø They all are unique and all have slightly different ways of mapping outcome 
data onto your model 

• Logistic regression is one of the more frequently used 
generalized models – binary outcomes are common
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