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In This Lecture…

• A short review for maximum likelihood

• Expanding your linear models knowledge to models for 
outcomes that are not conditionally normally distributed

Ø A class of models called Generalized Linear Models

• A furthering of our Maximum Likelihood discussion: how 
knowledge of distributions and likelihood functions makes 
virtually any type of model possible (in theory)

• An example of generalized models for binary data using  
logistic regression
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REVIEWING MAXIMUM LIKELIHOOD
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Properties of Maximum Likelihood Estimators
• Provided several assumptions (“regularity conditions”) are met, 

maximum likelihood estimators have good statistical properties:

1. Asymptotic Consistency: as the sample size increases, the 
estimator converges in probability to its true value 

2. Asymptotic Normality: as the sample size increases, the 
distribution of the estimator is normal (with variance given by 
“information” matrix)

3. Efficiency: No other estimator will have a smaller standard error

• Because they have such nice and well understood properties, MLEs 
are commonly used in statistical estimation
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Things Involved in Maximum Likelihood Estimation
• (Marginal) Likelihood/Probability Density Functions:

Ø The assumed distribution of one observation’s data – following some type of probability 
density function that maps the sample space onto a likelihood

Ø The outcome can come from any distribution 

• (Joint) Likelihood Function: 
Ø The combination of the marginal likelihood functions (by a product when independence of 

observations is assumed)
Ø Serves as the basis for finding the unknown parameters that find the maximum point

• Log-Likelihood Function:
Ø The natural log of the joint likelihood function, used to make the function easier to work 

with statistically and computationally
Ø Typically the function used to find the unknown parameters of the model

• Function Optimization (finding the maximum):
Ø Initial values of the unknown parameters are selected and the log likelihood is calculated
Ø New values are then found (typically using an efficient search mechanism like Newton 

Raphson) and the log likelihood is calculated again
Ø If the change in log likelihoods is small, the algorithm stops (found the maximum); if not, the 

algorithm continues for another iteration of new parameter guesses
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Once the Maximum Is Found…

• Distribution of the Parameters:
Ø As sample size gets large, the parameters of the model follow a normal 

distribution (note, this is NOT the outcome)

• Standard Errors of Parameters:
Ø The standard errors of parameters are found by calculating the information 

matrix, which results from the matrix of second derivatives evaluated at the 
maximum value of the log likelihood function

Ø The asymptotic covariance matrix of the parameters comes from -1 times the 
inverse of the information matrix (contains variances of parameters 
along the diagonal)

Ø The standard error for each parameter is the square root of the variances
Ø The variances and covariances of the parameters are used in calculating linear 

combinations of the parameters, as in the glht() function of the multcomp
package in R
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Once the Maximum is Found…
• Likelihood Ratio/Deviance Tests:

Ø -2 times the log likelihood (at the maximum) provides what is often called a deviance statistic
Ø Nested models are compared using differences in -2*log likelihood, which follows a Chi-Square 

distribution with DF = difference in number of parameters between models
Ø Some software reports -2 log likelihood but some reports only the log likelihood
Ø Sometimes the anova() function does this test for you

• Wald Tests:
Ø (1 degree of freedom) Wald tests are typically formed by taking a parameter and dividing it by 

its standard error
Ø Typically these are used to evaluate fixed effects for ML estimates of GLMs

• Information Criteria
Ø The information criteria are used to select from non-nested models
Ø The model with the lowest value on a given criterion (i.e., AIC, BIC) is the preferred model
Ø This is not a hypothesis test: no p-values are given
Ø These aren’t used when models are nested (use likelihood ratio/deviance tests)
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AN INTRODUCTION TO GENERALIZED MODELS
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A World View of Models
• Statistical models can be broadly organized as:

Ø General (normal outcome) vs. Generalized (not normal outcome)
Ø One dimension of sampling (one variance term per outcome) vs. multiple 

dimensions of sampling (multiple variance terms)
w Fixed effects only vs. mixed (fixed and random effects = multilevel)

• All models have fixed effects, and then:
Ø General Linear Models: conditionally normal distribution for data, fixed 

effects, no random effects 
Ø General Linear Mixed Models: conditionally normal distribution for data, fixed 

and random effects
Ø Generalized Linear Models: any conditional distribution for data, fixed effects 

through link functions, no random effects
Ø Generalized Linear Mixed Models: any conditional distribution for data, fixed 

and random effects through link functions

• “Linear” means the fixed effects predict the link-transformed DV in a linear 
combination of (effect*predictor) + (effect*predictor)…
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Unpacking the Big Picture

• Substantive theory: what guides your study

• Hypothetical causal process: what the statistical model is testing 
(attempting to falsify) when estimated

• Observed outcomes: what you collect and evaluate based on your theory
Ø Outcomes can take many forms: 

w Continuous variables (e.g., time, blood pressure, height)
w Categorical variables (e.g., likert-type responses, ordered categories, nominal categories)
w Combinations of continuous and categorical (e.g., either 0 or some other 

continuous number)
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The Goal of Generalized Models
• Generalized models map the substantive theory onto the 

sample space of the observed outcomes
Ø Sample space = type/range/outcomes that are possible

• The general idea is that the statistical model will not 
approximate the outcome well if the assumed distribution is 
not a good fit to the sample space of the outcome

Ø If model does not fit the outcome, the findings cannot be believed

• The key to making all of this work is the use of differing 
statistical distributions for the outcome

• Generalized models allow for different distributions for 
outcomes

Ø The mean of the distribution is still modeled by the model for the means 
(the fixed effects)

Ø The variance of the distribution may or may not be modeled 
(some distributions don’t have variance terms)
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What kind of outcome? Generalized vs. General
• Generalized Linear Models à General Linear Models whose 

residuals follow some not-normal distribution and in which a link-
transformed Y is predicted instead of Y

• Many kinds of non-normally distributed outcomes have some kind of 
generalized linear model to go with them:

Ø Binary (dichotomous)
Ø Unordered categorical (nominal)
Ø Ordered categorical (ordinal)
Ø Counts (discrete, positive values)
Ø Censored (piled up and cut off at one end – left or right)
Ø Zero-inflated (pile of 0’s, then some distribution after)
Ø Continuous but skewed data (pile on one end, long tail)
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Some Links/Distributions (from Wikipedia)
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3 Parts of a Generalized Linear Model
• Link Function (main difference from GLM):

Ø How a non-normal outcome gets transformed into something 
we can predict that is more continuous (unbounded)

Ø For outcomes that are already normal, general linear models 
are just a special case with an “identity” link function (Y * 1)

• Model for the Means (“Structural Model”):
Ø How predictors linearly relate to the link-transformed outcome
Ø New link-transformed Yp = β0 + β1Xp + β2Zp + β3XpZp

• Model for the Variance (“Sampling/Stochastic Model”):
Ø If the errors aren’t normally distributed, then what are they?
Ø Family of alternative distributions at our disposal that map onto what the 

distribution of errors could possibly look like
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Link Functions: How Generalized Models Work
• Generalized models work by providing a mapping of the 

theoretical portion of the model (the right hand side of the 
equation) to the sample space of the outcome (the left 
hand side of the equation)

Ø The mapping is done by a feature called a link function

• The link function is a non-linear function that takes the 
linear model predictors, random/latent terms, and 
constants and puts them onto the space of the outcome 
observed variables

• Link functions are typically expressed for the mean of the 
outcome variable (we will only focus on that)

Ø In generalized models, the variance is often a function of the mean
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Link Functions in Practice
• The link function expresses the conditional value of the mean 

of the outcome ! "# = "%# = &' (E stands for expectation)…

• …through a (typically) non-linear link function ( ⋅ (when used 
on conditional mean); or its inverse (*+(⋅) when used on 
predictors…

• …of the observed predictors (and their regression weights):
./ + .+1# + .23# + .41#3#

• Meaning: 
! "# = "%# = &' = (*+ ./ + .+1# + .23# + .41#3# 

• The term ./ + .+1# + .23# + .41#3# is called the linear 
predictor

Ø Within the function, the values are linear combinations
Ø Model for the means (fixed effects)
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Normal GLMs in a Generalized Model Context
• Our familiar general linear model is actually a member of the generalized model 

family (it is subsumed)
Ø The link function is called the identity, the linear predictor is unchanged

• The normal distribution has two parameters, a mean ! and a variance "#
Ø Unlike most distributions, the normal distribution parameters are directly modeled by the GLM

• The expected value of an outcome from the GLM was 
$ %& = %(& = !) = *+, -. + -,0& + -#1& + -20&1&
= -. + -,0& + -#1& + -20&1& 

• In conditionally normal GLMs, the inverse link function is called the identity:
*+, ⋅ = 1 ∗ linear	predictor

Ø The identity does not alter the predicted values – they can be any real number 
Ø This matches the sample space of the normal distribution – the mean can be any real number
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And…About the Variance
• The other parameter of the normal distribution described the 

variance of an outcome – called the error variance

• We found that the model for the variance for the GLM was:
! "# = ! %& + %()# + %*+# + %,)#+# + -# = ! -# = ./*

• Similarly, this term directly relates to the variance of the outcome in 
the normal distribution

Ø We will quickly see distributions where this doesn’t happen
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GENERALIZED LINEAR MODELS 
FOR BINARY DATA
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Today’s Data Example
• To help demonstrate generalized models for binary data, we borrow 

from an example listed on the UCLA ATS website:
https://stats.idre.ucla.edu/stata/dae/ordered-logistic-regression/

• Data come from a survey of 400 college juniors looking at factors 
that influence the decision to apply to graduate school:

Ø Y (outcome): student rating of likelihood he/she will apply to grad school – (0 = 
unlikely; 1 = somewhat likely; 2 = very likely)

w We will first look at Y for two categories (0 = unlikely; 1 = somewhat or very likely)  - this is to 
introduce the topic for you Y is a binary outcome

w You wouldn’t do this in practice (use a different distribution for 3 categories)
Ø ParentEd: indicator (0/1) if one or more parent has graduate degree
Ø Public: indicator (0/1) if student attends a public university
Ø GPA: grade point average on 4 point scale (4.0 = perfect)
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Descriptive Statistics for Data

Analysis Variable : GPA
N Mean Std Dev Minimum Maximum

400 2.998925 0.3979409 1.9 4
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Likelihood of Applying (1 = likely)
Lapply Frequency Percent Cumulative Cumulative

Frequency Percent
0 220 55 220 55
1 180 45 400 100

APPLY Frequency Percent Cumulative Cumulative
Frequency Percent

0 220 55 220 55
1 140 35 360 90
2 40 10 400 100

Parent Has Graduate Degree
parentGD Frequency Percent Cumulative Cumulative

Frequency Percent
0 337 84.25 337 84.25
1 63 15.75 400 100

Student Attends Public University
PUBLIC Frequency Percent Cumulative Cumulative

Frequency Percent
0 343 85.75 343 85.75
1 57 14.25 400 100



What If We Used a Normal GLM for Binary Outcomes?

• If !" is a binary (0 or 1) outcome…

Ø Expected mean is proportion of people who have a 1 (or “p”, the probability of 

!" = 1 in the sample)

Ø The probability of having a 1 is what we’re trying to predict for each person, 

given the values of his/her predictors

Ø General linear model: Yp = β0 + β1xp + β2zp + ep

w β0 = expected probability when all predictors are 0

w βs = expected change in probability for a one-unit change in the predictor

w ep = difference between observed and predicted values

Ø Model becomes Yp = (predicted probability of 1) + ep
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A General Linear Model  Predicting Binary Outcomes?
• But if !" is binary, then #" can only be 2 things:

Ø #" = !" − !&"
w If !" = 0 then #" = (0 − predicted probability)
w If !" =1 then #" = (1 − predicted probability)

Ø The mean of errors would still be 0…by definition 

Ø But variance of errors can’t possibly be constant over levels of X like we 
assume in general linear models

w The mean and variance of a binary outcome are dependent! 
w As shown shortly, mean = p and variance = p*(1-p), so they are tied together
w This means that because the conditional mean of Y (p, the predicted probability

Y= 1) is dependent on X, then so is the error variance
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A General Linear Model With Binary Outcomes?
• How can we have a linear relationship between X & Y? 
• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t bounded 
Ø Impossible values 

• Linear relationship needs to ‘shut off’ somehow à made nonlinear
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3 Problems with General* Linear Models Predicting Binary Outcomes

• *General = model for continuous, conditionally normal 

outcome

• Restricted range (e.g., 0 to 1 for binary item)
Ø Predictors should not be linearly related to observed outcome 

à Effects of predictors need to be ‘shut off’ at some point to 

keep predicted values of binary outcome within range

• Variance is dependent on the mean, and not estimated
Ø Fixed (àpredicted value) and random (error) parts are related

à So residuals can’t have constant variance

• Further, residuals have a limited number of possible values
Ø Predicted values can each only be off in two ways

à So residuals can’t be normally distributed
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The Binary Case: Bernoulli Distribution
For items that are binary (dichotomous/two options), a frequent distribution chosen is the 
Bernoulli distribution (the Bernoulli distribution is also called a one-trial binomial distribution):

Notation: !" ∼ $ %" (where % is the conditional probability of a 1 for person %)

Sample Space: !" ∈ {0,1} (!" can either be a 0 or a 1)

Probability Density Function (PDF):
, !" = %"

./ 1 − %"
12./

Expected value (mean) of Y: 3 !" = 4./ = %"

Variance of Y: 5 !" = 6./7 = %" 1 − %"

Note: %" is the only parameter – so we only need to provide a link function for it…
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Generalized Models for Binary Outcomes
• Rather than modeling the probability of a 1 directly, we need to transform it into a 

more continuous variable with a link function, for example:

Ø We could transform probability into an odds ratio:

w Odds ratio: (p / 1-p) à prob(1) / prob(0)

w If p = .7, then Odds(1) = 2.33; Odds(0) = .429

w Odds scale is way skewed, asymmetric, and ranges from 0 to +∞

– Nope, that’s not helpful

Ø Take natural log of odds ratio à called “logit” link
w LN (p / 1-p) à Natural log of (prob(1) / prob(0))

w If p = .7, then LN(Odds(1)) = .846; LN(Odds(0)) = -.846

w Logit scale is now symmetric about 0 à DING

Ø The logit link is one of many used for the Bernoulli distribution
w Names of others: Probit, Log-Log, Complementary Log-Log
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Turning Probability into Logits
• Logit is a nonlinear transformation of probability:

Ø Equal intervals in logits are NOT equal in probability
Ø The logit goes from ±∞ and is symmetric about prob = .5 (logit = 0)
Ø This solves the problem of using a linear model

w The model will be linear with respect to the logit, which translates into nonlinear 
with respect to probability (i.e., it shuts off as needed)
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Probability: p

Logit:
LN (p / 1-p)

Zero-point on 
each scale:

Prob = .5
Odds = 1
Logit = 0



Transforming Probabilities to Logits

Probability Logit
0.99 4.6

0.90 2.2

0.50 0.0

0.10 -2.2
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Transforming Logits to Probabilities: !(⋅) and !%&(⋅)
• In the terminology of generalized models, the link function for a logit

is defined by (log = natural logarithm):

' ( )* = log / )* = 1
1 − / )* = 1

= 23 + 256* + 278* + 296*8*

• A logit can be translated to a probability with some algebra:

exp log / )* = 1
1 − / )* = 1

= exp 23 + 256* + 278* + 296*8*

↔ 1 − / )* = 1 / )* = 1
1 − / )* = 1

= exp 23 + 256* + 278* + 296*8* 1 − / )* = 1
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Transforming Logits to Probabilities: !(⋅) and !%&(⋅)
• Continuing: 
' () = 1 = exp /0 + /23) + /45) + /63)5) 	− exp /0 + /23) + /45) + /63)5) ' () = 1

' () = 1 1 − exp /0 + /23) + /45) + /63)5) = exp /0 + /23) + /45) + /63)5)

• Which finally gives us: 
' () = 1 = exp /0 + /23) + /45) + /63)5)

1 + exp /0 + /23) + /45) + /63)5)

• Therefore, the inverse logit (un-logit…or 9%2 ⋅ ) is: 
: () = 9%2 /0 + /23) + /45) + /63)5)
= exp /0 + /23) + /45) + /63)5)
1 + exp /0 + /23) + /45) + /63)5)
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Written Another Way…
• The inverse logit !"# ⋅ has another form that is sometimes used:

% &' = !"# )* + )#,' + )-.' + )/,'.'

= exp )* + )#,' + )-.' + )/,'.'
1 + exp )* + )#,' + )-.' + )/,'.'

= 1
1 + exp − )* + )#,' + )-.' + )/,'.'

= 1 + exp − )* + )#,' + )-.' + )/,'.'
"#
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Nonlinearity in Prediction
• The relationship between X and the probability of response=1 

is “nonlinear” à an s-shaped logistic curve whose shape and 
location are dictated by the estimated fixed effects

Ø Linear with respect to the logit, nonlinear with respect to probability

• The logit version of the model will be easier to explain; the 
probability version of the prediction will be easier to show
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Putting it Together with Data: The Empty Model 
• The empty model (under GLM):

!" = $% + '"
where '" ∼ ) 0, ,-. / !" = $% and 0 !" = ,-.

• The empty model for a Bernoulli distribution with a logit link:
1 / !" = 23145 6 !" = 1 = 23145 8" = $%
8" = 6 !" = 1 = / !" = 19: $% = exp $%

1 + exp $%
0 !" = 8" 1 − 8"

• Note: many generalized LMs don’t list an error term in the linear predictor – is for 
the expected value and error usually has a 0 mean so it disappears

• We could have listed '" for the logit function

Ø '" would have a logistic distribution with a zero mean and variance ?
@

A = 3.29
Ø Variance is fixed – cannot modify variance of Bernoulli distribution after modeling the mean
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LOGISTIC REGRESSION IN R
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The Ordinal Package
• The ordinal package is useful for modeling categorical 

dependent variables

• We will use the clm() function
Ø clm stands for cumulative linear models
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Unpacking clm() Function Syntax
• Example syntax below for empty model differs only slightly 

from lm() syntax we have already seen

• The dependent variable must be stored as a factor

• The formula and data arguments are identical to lm()

• The control argument is only used here to show iteration 
history of the ML algorithm
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Empty Model Output

• The empty model is estimating one parameter: !"
• However, for this package, the logistic regression is formed 

using a threshold (#") rather than intercept rather
Ø Here !" = −#"
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Interpretation of summary() Output

• !" = 0.2007, so…
• ," = −0.2007	(0.1005): interpreted as the predicted 

logit of yp =1 for an individual when all predictors are zero
Ø Because of the empty model, this becomes average logit for sample
Ø Note: exp(-.2007)/(1+exp(-.2007)) = .55 – the sample mean proportion

• The log-likelihood is -256.26
Ø Used for nested model comparisons

• The AIC is 552.51
Ø Used for non-nested model comparisons 
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Predicting Logits, Odds, & Probabilities: 
• Coefficients for each form of the model:

Ø Logit: Log(pp/1-pp) = β0
w Predictor effects are linear and additive like in regression, 

but what does a ‘change in the logit’ mean anyway?
w Here, we are saying the average logit is -.2007

Ø Odds:   (pp/1-pp) = exp(β0)
w A compromise: effects of predictors are multiplicative
w Here, we are saying the average odds of a applying to grad school 

is exp(-.2007) = .819

Ø Prob:   P(yp=1) =    exp(β0) 
1+ exp(β0)

w Effects of predictors on probability are nonlinear and 
non-additive (no “one-unit change” language allowed)

w Here, we are saying the average probability of applying to grad school is .550
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MAXIMUM LIKELIHOOD ESTIMATION OF 
GENERALIZED MODELS 
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Maximum Likelihood Estimation of Generalized Models
• The process of ML estimation in Generalized Models is 

similar to that from the GLM, with two exceptions:
Ø The error variance is not estimated
Ø The fixed effects do not have closed form equations (so are now part of the 

log likelihood function search)

• We will describe this process for the previous analysis, 
using our grid search

• Here, each observation has a Bernoulli distribution where 
the “height” of the curve is given by the PDF: 

! "# = %#
&' 1 − %#

*+&'

• The generalized linear model then models 

, "# = %# =
exp 01

1 + exp 01EPSY 905: Intro to Generalized 42



From One Observation…To The Sample

• The likelihood function shown previously was for one 
observation, but we will be working with a sample

Ø Assuming the sample observations are independent and identically 
distributed, we can form the joint distribution of the sample

! "#|%&, … , %) = ! "#|%& ×! "#|%, ×⋯×! "#|%)
=./ %0

)

01&
=.20

34 1 − 20
&734

)

01&

=. exp "#
1 + exp "#

34
1 − exp "#

1 + exp "#

&734)

01&
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Multiplication comes from independence assumption:
Here,! "#|%0 is the Bernoulli PDF for %0 using a logit link for "#



The Log Likelihood Function

• The log likelihood function is found by taking the natural 
log of the likelihood function:

log $ %&|(), … , (, = log $ %&|() ×$ %&|(/ ×⋯×$ %&|(,

= 1 log $ %& (2
,

23)
= 1 log 42

56 1 − 42
)956

,

23)

= 1(2log 42 + 1 − (2 log 1 − 42
,

23)

= 1(2log
exp %&

1 + exp %&
+ 1 − (2 log 1 − exp %&

1 + exp %&

,

23)
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Grid Search of the Log Likelihood Function

• Just like we did for the normal distribution, we can plot the 
log likelihood function for all possible values of !"	
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Iteration History from clm()

• We can show the history of iterations, where the “value” 
column is -1 times the log-likelihood
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At the Maximum…

• At the maximum (!" = −0.2007) we now assume that the 
parameter !" has a normal distribution

Ø Only the data Y have a Bernoulli distribution

• Putting this into statistical context:
!" ∼ * !+", -. !+"

/

• This says that the true parameter !"	has a mean at our 
estimate and has a variance equal to the square of the 
standard error of our estimate
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ADDING PREDICTORS TO THE EMPTY MODEL
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Adding Predictors to the Empty Model 
• Having examined how the logistic link function works and how 

estimation works, we can now add predictor variables to our model:
! " #$ = &'!() * #$ = 0 = &'!() ,$
= -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$

,$ = " #$ = !>0 -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$
= exp -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$
1 + exp -. + -0*12"3$ + -4 5*1$ − 3 + -8*9:;<=$

C #$ = ,$ 1 − ,$
• Here PARED is Parent Education, PUBLIC is Public University, and 

GPA is Grade Point Average (centered at a value of 3)
• For now, we will omit any interactions (to simplify interpretation)
• We will also use the default parameterization (modeling Y = 0)
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Understanding R Input and Output

• First…the syntax

• The algorithm iteration history:
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Question #1: Does Conditional Model Fit Better than Empty Model 

• Question #1: does this model fit better than the empty model?
!": $% = $' = $( = 0

!%: At least one not equal to zero

• Likelihood Ratio Test Statistic = Deviance =
-2*(-275.26- -264.96) = 20.586

Ø -275.26 is log likelihood from empty model
Ø -264.96 is log likelihood from conditional model

• DF = 4 – 1 =3
Ø Parameters from empty model = 1
Ø Parameters from this model = 4

• P-value: * = .0001283
• Conclusion: reject !"; this model is preferred to empty model
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Interpreting Model Parameters from summary()
• Parameter Estimates:

• Intercept !" = −0.3382	(0.1187): this is the predicted 
value for the logit of yp = 1 for a person with: 3.0 GPA, 
parents without a graduate degree, and at a private 
university

Ø Converted to a probability: .417 – probability a student with 3.0 GPA, parents 
without a graduate degree, and at a private university is likely to apply to grad 
school (yp = 1)
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Interpreting Model Parameters

parentGD: !" = 1.0596	 0.2974 ; / = .0004

The change in the logit of yp = 1 for every one-unit change in 
parentGD…or, the difference in the logit of yp = 1 for 
students who have parents with a graduate degree

Because logit of yp = 1 means a rating of “likely to apply” this 
means that students who have a parent with a graduate 
degree are more likely to rate the item with a “likely to 
apply”
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More on Slopes
• The quantification of how much less likely a student is to respond with 

“unlikely to apply” can be done using odds ratios or probabilities:

Odds Ratios: 
• Odds of “likely to apply” (Y=1) for student with parental graduate degree: 
exp $% + $' = 2.05	

• Odds of “likely to apply” (Y=1) for student without parental graduate 
degree: exp $% = .713

• Ratio of odds = 2.88525 = exp $' - meaning, a student with parental 
graduate degree has almost 3x the odds of rating “likely to apply”

Probabilities:
• Probability of “likely to apply” for student with parental graduate degree: 

234 56758
'7234 56758

= .673
• Probability of “likely to apply” for student without parental graduate 

degree: 
234 56
'7234 56

= .416

EPSY 905: Intro to Generalized 54



Interpreting Model Parameters

PUBLIC: !" = −0.2006	 0.3053 ; - = .5113: 

The change in the logit of yp = 1 for every one-unit change in 
GPA…

But, PUBLIC is a coded variable where 0 represents a student 
in a private university, so this is the difference in logits of the 
logit of yp = 1 for students in public vs private universities

Because logit of 1 means a rating of “likely to apply” this 
means that students who are at a public university are more 
unlikely to rate “likely to apply”
EPSY 905: Intro to Generalized 55



More on Slopes

• The quantification of how much more likely a student is to 

respond with “likely to apply” can be done using odds 

ratios or probabilities:

• The odds are found by: exp $% + $'()*+

• The probability is found by: 
,-. /01/23456
71,-. /01/23456
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Public Logit Odds of 1 Prob = 1
1 -0.539 0.583 0.368

0 -0.338 0.713 0.416



Interpreting Model Parameters

GPA3: !" = 0.5482	 0.2724 ; - = .0442: 

The change in the logit of yp = 1 for one-unit change in GPA

Because logit of yp = 1 means a rating of “likely to apply” this 
means that students who have a higher GPA are more likely 
to rate “likely to apply”
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More on Slopes

• The quantification of how much more likely a student is to 

respond with “likely to apply” can be done using odds 

ratios or probabilities:

• The odds are found by: exp $% + $' ()*+ − 3

• The probability is found by: 
./0 12314 56789:
;3./0 12314 56789:
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GPA3 Logit Odds of 1 Prob = 1
1 0.210 1.234 0.552

0 -0.338 0.713 0.416

-1 -0.886 0.412 0.292

-2 -1.435 0.238 0.192



Plotting GPA

• Because GPA is an unconditional main effect, we can plot 
values of it versus probabilities of rating “likely to apply”
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Interpretation In General

• In general, the linear model interpretation that you have 
worked on to this point still applies for generalized models, 
with some nuances

• For logistic models with two responses:
Ø Regression weights are now for LOGITS
Ø The direction of what is being modeled has to be understood (Y = 0 or = 1)
Ø The change in odds and probability is not linear per unit change in the IV, but 

instead is linear with respect to the logit
w Hence the term “linear predictor”

Ø Interactions will still 
w Will still modify the conditional main effects
w Simple main effects are effects when interacting variables = 0
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WRAPPING UP
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Wrapping Up
• Generalized linear models are models for outcomes with 

distributions that are not necessarily normal

• The estimation process is largely the same: maximum 
likelihood is still the gold standard as it provides estimates 
with understandable properties

• Learning about each type of distribution and link takes 
time:

Ø They all are unique and all have slightly different ways of mapping outcome 
data onto your model 

• Logistic regression is one of the more frequently used 
generalized models – binary outcomes are common
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