# Simple, Marginal, and Interaction Effects in General Linear Models

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #3

- Centering and Coding Predictors
- Interpreting Parameters in the Model for the Means
- Main Effects Within Interactions
- GLM Example 1: "Regression" vs. "ANOVA"

### Today's Example: GLM as "Regression" vs. "ANOVA"

- Study examining effect of new instruction method (where New: 0=Old, 1=New) on test performance (% correct) in college freshmen vs. seniors (where Senior: 0=Freshmen, 1=Senior), n = 25 per group
- $Test_p = \beta_0 + \beta_1 Senior_p + \beta_2 New_p + \beta_3 Senior_p New_p + e_p$

| Test Mean<br>(SD), $\left[SE = \frac{SD}{\sqrt{n}}\right]$ | Freshmen      | Seniors       | Marginal<br>(Mean) |
|------------------------------------------------------------|---------------|---------------|--------------------|
| Old Method                                                 | 80.20         | 82.36         | 81.28              |
|                                                            | (2.60),[0.52] | (2.92),[0.59] | (2.95),[0.42]      |
| New Method                                                 | 87.96         | 87.08         | 87.52              |
|                                                            | (2.24),[0.45] | (2.90),[0.58] | (2.60),[0.37]      |
| Marginal                                                   | 84.08         | 84.72         | 84.40              |
| (Mean)                                                     | (4.60),[0.65] | (3.74),[0.53] | (4.18),[0.42]      |

## **CENTERING AND CODING PREDICTORS**

#### The Two Sides of a Model

$$y_p = \beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p + e_p$$

Our focus today

#### Model for the Means (Predicted Values):

- Each person's expected (predicted) outcome is a function of his/her values on x and z (and their interaction), each measured once per person
- Estimated parameters are called fixed effects (here,  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ , and  $\beta_3$ ); although they have a sampling distribution, they are not random variables
- The number of fixed effects will show up in formulas as *k* (so *k* = 4 here)

#### Model for the Variance:

- $e_p \sim N(0, \sigma_e^2) \rightarrow \text{ONE}$  residual (unexplained) deviation
- $e_p$  has a mean of 0 with some estimated constant variance  $\sigma_e^2$ , is normally distributed, is unrelated to x and z, and is unrelated across people (across all observations, just people here)
- Estimated parameter is the residual variance only (in the model above)

For now we focus entirely on the fixed effects in the model for the means...

#### **Representing the Effects of Predictor Variables**

- From now on, we will think carefully about exactly <u>how</u> the predictor variables are entered into the model for the means (i.e., by which a predicted outcome is created for each person)
- Why don't people always care? Because the scale of predictors:
  - > Does NOT affect the amount of outcome variance accounted for (R<sup>2</sup>)
  - Does NOT affect the outcomes values predicted by the model for the means (so long as the same predictor fixed effects are included)
- Why should this matter to us?
  - > Because the Intercept = expected outcome value when X = 0
  - > Can end up with nonsense values for intercept if X = 0 isn't in the data
  - We will almost always need to deliberately adjust the scale of the predictor variables so that they have 0 values that could be observed in our data
  - Is much bigger deal in models with random effects (MLM) or GLM once interactions are included (... stay tuned)

### Adjusting the Scale of Predictor Variables

- For continuous (quantitative) predictors, <u>we</u> will make the intercept interpretable by centering:
  - Centering = subtract a constant from each person's variable value so that the 0 value falls within the range of the new centered predictor variable
  - > Typical  $\rightarrow$  Center around predictor's mean: Centered  $X_1 = X_1 \overline{X_1}$ 
    - Intercept is then expected outcome for "average X<sub>1</sub> person"
  - > Better  $\rightarrow$  Center around meaningful constant C: Centered  $X_1 = X_1 C$ 
    - Intercept is then expected outcome for person with that constant (even 0 may be ok)
- For categorical (grouping) predictors, <u>either we or the program</u> will make the intercept interpretable by creating a reference group:
  - Reference group is given a 0 value on all predictor variables created from the original grouping variable, such that the intercept is the expected outcome for that reference group specifically
  - Accomplished via "dummy coding" or "reference group coding"
    - $\rightarrow$  Two-group example using *Gender*: 0 = Men, 1 = Women

(or 0 = Women, 1 = Men)

### Adjusting the Scale of Predictor Variables

- For more than two groups, need: *dummy codes = #groups 1* 
  - Four-group example: Control, Treatment1, Treatment2, Treatment3  $\triangleright$
  - $d1=0, 1, 0, 0 \rightarrow$  difference between Control and T1 Variables:  $\triangleright$

Done for you in GLM software 🙂  $d2=0, 0, 1, 0 \rightarrow$  difference between Control and T2  $d3=0, 0, 0, 1 \rightarrow$  difference between Control and T3

### Potential pit-falls:

- All predictors representing the effect of group (e.g., d1, d2, d3) MUST be in  $\geq$ the model at the same time for these specific interpretations to be correct!
- Model parameters resulting from these dummy codes will not *directly* tell  $\geqslant$ you about differences among non-reference groups (...but stay tuned)
- Other examples of things people do to categorical predictors:
  - "Contrast/effect coding"  $\rightarrow$  Gender: -0.5 = Men, 0.5 = Women (or vice-versa)  $\geq$
  - Test other contrasts among multiple groups  $\rightarrow$  four-group example above:  $\triangleright$ Variable:  $contrast1 = -1, 0.33, 0.33, 0.34 \rightarrow Control vs. Any Treatment?$

#### **Categorical Predictors: Manual Coding**

- Model:  $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$ 
  - "Treatgroup" variable: Control=0, Treat1=1, Treat2=2, Treat3=3
  - > New variables<br/>to be created<br/>for the model: $d1=0, 1, 0, 0 \rightarrow$  difference between Control and T1<br/> $d2=0, 0, 1, 0 \rightarrow$  difference between Control and T2<br/> $d3=0, 0, 0, 1 \rightarrow$  difference between Control and T3
- How does the model give us all possible group differences?
   By determining each group's mean, and then the difference...

| Control Mean<br>(Reference) | Treatment 1 Mean         | Treatment 2 Mean         | Treatment 3<br>Mean       |  |
|-----------------------------|--------------------------|--------------------------|---------------------------|--|
| β <sub>0</sub>              | $\beta_0 + \beta_1 d1_i$ | $\beta_0 + \beta_2 d2_i$ | $\beta_0 + \beta_3 d_{i}$ |  |

 The model for the 4 groups directly provides 3 differences (control vs. each treatment), and indirectly provides another 3 differences (differences between treatments)

#### **Group** Differences from Dummy Codes

• Model:  $y_i = \beta_0 + \beta_1 d1_i + \beta_2 d2_i + \beta_3 d3_i + e_i$ 



#### **Estimating (Univariate) Linear Models in R**

|                              | Alt Group Ref Group                                                                                                                                   | Difference                                     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 1.                           | Control vs. T1 = $(\beta_0 + \beta_1) - (\beta_0)$                                                                                                    | $=\beta_1$                                     |
| 2.                           | Control vs. T2 = $(\beta_0 + \beta_2) - (\beta_0)$                                                                                                    | $=\beta_2$                                     |
| 3.                           | Control vs. T3 = $(\beta_0 + \beta_3) - (\beta_0)$                                                                                                    | $=\beta_3$                                     |
| 4.                           | T1 vs. T2 = $(\beta_0 + \beta_2) - (\beta_0 + \beta_1)$                                                                                               | $=\beta_2-\beta_1$                             |
| 5.                           | T1 vs. T3 = $(\beta_0 + \beta_3) - (\beta_0 + \beta_1)$                                                                                               | $=\beta_3-\beta_1$                             |
| 6.                           | T2 vs. T3 = $(\beta_0 + \beta_3) - (\beta_0 + \beta_2)$                                                                                               | $=\beta_3-\beta_2$                             |
| #R<br>#<br>lib<br>mod<br>sum | Syntax for Estimating 4-Group<br>For Predicting Y in data frame<br>rary(multcomp)<br>el01 = lm(y~d1+d2+d3,data=myda<br>mary(model01) # shows model re | Linear Model<br>called mydata<br>ta)<br>esults |
| mea                          | n1 = matrix(c(1,0,0,0),1); row                                                                                                                        | names(mean1) = c("Control Mean")               |
| mea                          | $n^2 = matrix(c(1,1,0,0),1)$ : row                                                                                                                    | names(mean2) = c("T1 Mean")                    |
| cu                           |                                                                                                                                                       |                                                |

```
mean2 = matrix(c(1,1,0,0),1); rownames(mean2) = c("T1 Mean")
mean3 = matrix(c(1,0,1,0),1); rownames(mean3) = c("T2 Mean")
mean4 = matrix(c(1,0,0,1),1); rownames(mean4) = c("T3 Mean")
contrast1 = mean2-mean1; rownames(contrast1) = c("Control vs. T1")
contrast2 = mean3-mean1; rownames(contrast2) = c("Control vs. T2")
contrast3 = mean4-mean1; rownames(contrast3) = c("Control vs. T3")
contrast4 = mean3-mean2; rownames(contrast4) = c("T1 vs. T2")
contrast5 = mean4-mean2; rownames(contrast5) = c("T1 vs. T3")
contrast6 = mean4-mean3; rownames(contrast6) = c("T2 vs. T3")
```

Note the order of the equations: the reference group mean *is subtracted from* the alternative group mean.

The ~ is the equals sign: to the left goes the DV. To the right go the IVs (a + indicates additive effects of IVs).

The values come from placeholder numbers put in the correct positions for the betas.

The ghlt function is from the multcomp package.

```
values = glht(model01,linfct=mycontrasts)
```

```
summary(values)
```

Interactions

The model for the means will describe what happens to the predicted outcome Y "as X increases" or "as Z increases" and so forth...



But you won't know what Y is actually supposed to be unless you know where the predictor variables are starting from!

Therefore, the **intercept** is the "YOU ARE HERE" sign in the map of your data... so it should be somewhere in the map\*!

\* There is no *wrong* way to center (or not), only *weird*...

Interactions

#### **Continuous Predictors**

- For continuous (quantitative) predictors, <u>we</u> (not R) will make the intercept interpretable by centering
  - Centering = subtract a constant (e.g., sample mean, other meaningful reference value) from each person's variable value so that the 0 value falls within the range of the new centered predictor variable
  - Predicted group means at specific levels of continuous predictors can be found using the same procedure (e.g., if X1 SD=5, means at ±1 SD):

## MAIN EFFECTS WITHIN INTERACTIONS

## Interactions: $Y_p = \beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p + e_p$

- Interaction = Moderation: the effect of a predictor depends on the value of the interacting predictor
  - > Either predictor can be "the moderator" (interpretive distinction only)
- Interactions can always be evaluated for any combination of categorical and continuous predictors, although traditionally...
  - > In "ANOVA": By default, all possible interactions are estimated
    - Software does this for you; oddly enough, nonsignificant interactions usually still are kept in the model (even if only significant interactions are interpreted)
  - > In "ANCOVA": Continuous predictors ("covariates") do not get to be part of interaction terms → make the "homogeneity of regression assumption"
    - There is no reason to assume this it is a testable hypothesis!
  - > In "Regression": No default effects of predictors are as you specify them
    - Requires most thought, but gets annoying because in regression programs you usually have to manually create the interaction as an observed variable:
    - e.g., XZinteraction = centeredX \* centeredZ

#### Main Effects of Predictors within Interactions in GLM

- Main effects of predictors within interactions should remain in the model regardless of whether or not they are significant
  - An interaction is an over-additive (enhancing) or under-additive (dampening) effect, so what it is additive to must be included
- The role of a two-way interaction is to adjust its main effects...
- However, the idea of a "main effect" no longer applies... each main effect is *conditional* on the interacting predictor = 0
- e.g., Model of Y = W, X, Z, X\*Z:
  - > The effect of W is still a "main effect" because it is not part of an interaction
  - > The effect of X is now the conditional main effect of X *specifically when Z=0*
  - > The effect of Z is now the conditional main effect of Z *specifically when X=0*
- The trick is keeping track of what 0 means for every interacting predictor, which depends on the way each predictor is being represented, as determined by you, or by the software without you!

- Original:  $GPA_p = \beta_0 + (\beta_1 * Att_p) + (\beta_2 * Ed_p) + (\beta_3 * Att_p * Ed_p) + e_p$  $GPA_p = 30 + (1 * Att_p) + (2 * Ed_p) + (0.5 * Att_p * Ed_p) + e_p$
- Given any values of the predictor variables, the model equation provides predictions for:
  - > Value of outcome (model-implied intercept for non-zero predictor values)
  - > Any conditional (simple) main effects implied by an interaction term
  - > Simple Main Effect = what it is + what modifies it
- Step 1: Identify all terms in model involving the predictor of interest
   > e.g., Effect of Attitudes comes from: β<sub>1</sub>\*Att<sub>p</sub> + β<sub>3</sub>\*Att<sub>p</sub>\*Ed<sub>p</sub>
- Step 2: Factor out common predictor variable
  - > Start with  $[\beta_1^* Att_p + \beta_3^* Att_p^* Ed_i] \rightarrow [Att_p (\beta_1 + \beta_3^* Ed_p)] \rightarrow Att_p (new \beta_1)$
  - > Value given by ( ) is then the model-implied coefficient for the predictor
- Step 3: ESTIMATEs calculate model-implied simple effect and SE
  - Let's try it for a new reference point of attitude = 3 and education = 12

#### **Interactions: Why 0 Matters**

- Y = Student achievement (GPA as percentage grade out of 100)
   X = Parent attitudes about education (measured on 1-5 scale)
   Z = Father's education level (measured in years of education)
- Model:  $GPA_p = \beta_0 + \beta_1 * Att_p + \beta_2 * Ed_p + \beta_3 * Att_p * Ed_p + e_p$  $GPA_p = 30 + 2*Att_p + 1*Ed_p + 0.5*Att_p * Ed_p + e_p$
- Interpret  $\beta_0$ : Expected GPA for 0 attitude and 0 years of education
- Interpret  $\beta_1$ : Increase in GPA per unit attitude for 0 years of education
- Interpret  $\beta_2$ : Increase in GPA per year education for 0 attitude
- Interpret β<sub>3</sub>: Attitude as Moderator: Effect of education (slope) increases by .5 for each additional unit of attitude (more positive)

**Education** as Moderator: Effect of attitude (slope) increases by .5 for each additional year of education (more positive)

Predicted GPA for attitude of 3 and Ed of 12?
 66 = 30 + 2\*(3) + 1\*(12) + 0.5\*(3)\*(12)

#### **Interactions: Why 0 Matters**

- Y = Student achievement (GPA as percentage grade out of 100)
   X = Parent attitudes about education (still measured on 1-5 scale)
   Z = Father's education level (0 = 12 years of education)
- Model:  $GPA_p = \beta_0 + \beta_1 * Att_p + \beta_2 * Ed_p + \beta_3 * Att_p * Ed_p + e_p$
- Old Equation:  $GPA_p = 30 + 2*Att_p + 1*Ed_p 0 + 0.5*Att_p*Ed_p 0 + e_p$
- New Equation:  $GPA_p = 42 + 8*Att_p + 1*Ed_p 12 + 0.5*Att_p*Ed_p 12 + e_p$
- Why did  $\beta_0$  change? 0 = 12 years of education
- Why did  $\beta_1$  change? Conditional on Education = 12 (new zero)
- Why did  $\beta_2$  stay the same? Attitude is the same
- Why did β<sub>3</sub> stay the same? Nothing beyond to modify two-way interaction (effect is unconditional)
- Which fixed effects would have changed if we centered attitudes at 3 but left education uncentered at 0 instead?

#### Getting the Model to Tell Us What We Want...

- Model equation already says what Y (the intercept) should be...
  - Original Model:  $GPA_p = \beta_0 + \beta_1 * Att_p + \beta_2 * Ed_p + \beta_3 * Att_p * Ed_p + e_p$   $GPA_p = 30 + 2*Att_p + 1*Ed_p + 0.5*Att_p * Ed_p + e_p$ 
    - > The intercept is always conditional on when predictors = 0
- But the model also tells us any conditional main effect for any combination of values for the model predictors
  - > Using intuition: Main Effect = what it is + what modifies it
  - > Using calculus (first derivative of model with respect to each effect):

Effect of Attitudes =  $\beta_1 + \beta_3 * Ed_p = 2 + 0.5 * Ed_p$ Effect of Education =  $\beta_2 + \beta_3 * Att_p = 1 + 0.5 * Att_p$ Effect of Attitudes\*Education =  $\beta_3 = 0.5$ 

Now we can use these new equations to determine what the conditional main effects would be given other predictor values besides true 0...

...let's do so for a reference point of attitude = 3 and education = 12

#### Getting the Model to Tell Us What We Want...

Old Equation using uncentered predictors:

 $GPA_p = \beta_0 + \beta_1^*Att_p + \beta_2^*Ed_p + \beta_3^*Att_p^*Ed_p + e_p$  $GPA_p = 30 + 2^*Att_p + 1^*Ed_p + 0.5^*Att_p^*Ed_p + e_p$ 

New equation using centered predictors:

 $GPA_{p} = 66 + 8^{*}(Att_{p}-3) + 2.5^{*}(Ed_{p}-12) + .5^{*}(Att_{p}-3)^{*}(Ed_{p}-12) + e_{p}$ 

- $\beta_0$ : expected value of GPA when  $Att_p=3$  and  $Ed_p=12$  $\beta_0 = 66$
- β<sub>1</sub>: effect of Attitudes

 $\beta_1 = 2 + 0.5 \text{*} \text{Ed}_p = 2 + 0.5 \text{*} 12 = 8$ 

• β<sub>2</sub>: effect of Education

 $\beta_2 = 1 + 0.5^* \text{Att}_p = 1 + .5^* 3 = 2.5$ 

• β<sub>3</sub>: two-way interaction of Attitudes and Education:

$$\beta_{3} = 0.5$$

### **Testing the Significance of Model-Implied Fixed Effects**

- We now know how to calculate any conditional main effect:
   Effect of interest = what it is + what modifies it
   Effect of Attitudes = β<sub>1</sub> + β<sub>3</sub>\*Ed for example...
- But if we want to test whether that new effect is ≠ 0, we also need its standard error (SE needed to get Wald test *T*-value → *p*-value)
- Even if the conditional main effect is not *directly* given by the model, its estimate and SE are still *implied* by the model
- **3 options** to get the new conditional main effect estimate and SE (in order of least to most annoying):
- 1. Ask the software to give it to you using your original model (e.g., glht in R, ESTIMATE in SAS, TEST in SPSS, NEW in Mplus)

### **Testing the Significance of Model-Implied Fixed Effects**

- Re-center your predictors to the interacting value of interest (e.g., make attitudes=3 the new 0 for attitudes) and re-estimate your model; repeat as needed for each value of interest
- 3. Hand calculations (what the program is doing for you in option #1)

For example: Effect of Attitudes =  $\beta_1 + \beta_3 * Ed$ 

- SE<sup>2</sup> = sampling variance of estimate  $\rightarrow$  e.g., Var( $\beta_1$ ) = SE<sub> $\beta_1$ </sub><sup>2</sup>
- $SE_{\beta_1}^2 = Var(\beta_1) + Var(\beta_3) * Ed + 2Cov(\beta_1, \beta_3) * Ed$

Stay tuned for why

- Values come from "asymptotic (sampling) covariance matrix"
- Variance of a sum of terms always includes covariance among them
- Here, this is because what each main effect estimate could be is related to what the other main effect estimates could be
- Note that if a main effect is unconditional, its  $SE^2 = Var(\beta)$  only

## GLM EXAMPLE 1: "REGRESSION" VS. "ANOVA"

#### GLM via Dummy-Coding in "Regression"

#MODEL #1 -- Using 0/1 coding instead of factors
model1 = lm(Test~Senior+New+Senior\*New,data=data01)
summary(model1)

Coefficients:

|             | Estimate | Std. Error | t value | Pr(> t ) |     |
|-------------|----------|------------|---------|----------|-----|
| (Intercept) | 80.2000  | 0.5364     | 149.513 | < 2e-16  | *** |
| Senior      | 2.1600   | 0.7586     | 2.847   | 0.00539  | **  |
| New         | 7.7600   | 0.7586     | 10.229  | < 2e-16  | *** |
| Senior:New  | -3.0400  | 1.0728     | -2.834  | 0.00561  | **  |

```
#MODEL #1 - ANOVA Table
anova(model1)
```

```
Analysis of Variance Table

Response: Test

Df Sum Sq Mean Sq F value Pr(>F)

Senior 1 10.24 10.24 1.4235 0.235762

New 1 973.44 973.44 135.3253 < 2.2e-16 ***

Senior:New 1 57.76 57.76 8.0297 0.005609 **

Residuals 96 690.56 7.19
```

Note: these ANOVA table is displaying marginal tests for the main effects. Marginal tests are for the main effect only and are not conditional on any interacting variables.

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

#### **Getting Each of the Means as a Contrast**

mean1 = matrix(c(1,0,0,0),1); rownames(mean1)="Freshman-Old"

mean2 = matrix(c(1,0,1,0),1); rownames(mean2)="Freshman-New"

```
mean3 = matrix(c(1,1,0,0),1); rownames(mean3)="Senior-Old"
```

```
mean4 = matrix(c(1,1,1,1),1); rownames(mean4)="Senior-New"
```

```
meansvec = rbind(mean1,mean2,mean3,mean4)
means = glht(model1,linfct=meansvec)
```

Simultaneous Tests for General Linear Hypotheses

summary(means)

Fit: lm(formula = Test ~ Senior + New + Senior \* New, data =
data01)

Linear Hypotheses:

|                   | Estimate | Std. Error | t value | Pr(> t ) |     |
|-------------------|----------|------------|---------|----------|-----|
| Freshman-Old == 0 | 80.2000  | 0.5364     | 149.5   | <2e-16   | *** |
| Freshman-New == 0 | 87.9600  | 0.5364     | 164.0   | <2e-16   | *** |
| Senior-Old == 0   | 82.3600  | 0.5364     | 153.5   | <2e-16   | *** |
| Senior-New == 0   | 87.0800  | 0.5364     | 162.3   | <2e-16   | *** |

#### glht requests predicted outcomes from model for the means:

 $\widehat{Test}_{p} = \beta_{0} + \beta_{1}Senior_{p} + \beta_{2}New_{p} + \beta_{3}Senior_{p}New_{p}$ 

- Freshmen-Old:  $Test_p = \beta_0 + \beta_1 0 + \beta_2 0 + \beta_3 0 * 0$
- Freshmen-New:  $Test_p = \beta_0 + \beta_1 0 + \beta_2 1 + \beta_3 0 * 0$
- Senior-Old:  $Test_p = \beta_0 + \beta_1 1 + \beta_2 0 + \beta_3 1 * 0$
- Senior-New:  $Test_p = \beta_0 + \beta_1 1 + \beta_2 1 + \beta_3 1 * 1$

### **Dummy-Coded "Regression": Mapping Results to Data**

| <b>glht</b> table          |          |                   | FIXED EFFECTS   |          |                   |         |         |
|----------------------------|----------|-------------------|-----------------|----------|-------------------|---------|---------|
| Parameter                  | Estimate | Standard<br>Error | Parameter       | Estimate | Standard<br>Error | t Value | Pr >  t |
| Intercept for Freshmen-Old | 80.20    | 0.54              | Intercept (β0)  | 80.20    | 0.54              | 149.51  | <.0001  |
| Intercept for Freshmen-New | 87.96    | 0.54              | Senior (β1)     | 2.16     | 0.76              | 2.85    | 0.0054  |
| Intercept for Senior-Old   | 82.36    | 0.54              | New (β2)        | 7.76     | 0.76              | 10.23   | <.0001  |
| Intercept for Senior-New   | 87.08    | 0.54              | Senior*New (β3) | -3.04    | 1.07              | -2.83   | 0.0056  |

| Test Mean [SE] | Freshmen                       | Seniors                     | Marginal     |
|----------------|--------------------------------|-----------------------------|--------------|
| Old Method     | β <sub>0</sub><br>80.20 [0.52] | <sup>3</sup> 1 82.36 [0.59] | 81.28 [0.42] |
| New Method     | β₂                             | 87.08 <i>[0.58]</i>         | 87.52 [0.37] |
| Marginal       | 84.08 [0.65]                   | 84.72 [0.53]                | 84.40 [0.42] |

#### Dummy-Coded "Regression": *Model-Implied* Main Effects

```
effect1 = matrix(c(0,1,0,0),1); rownames(effect1) = "Senior Effect: Old"
effect2 = matrix(c(0,1,0,1),1); rownames(effect2) = "Senior Effect: New"
effect3 = matrix(c(0,0,1,0),1); rownames(effect3) = "New Effect: Freshmen"
effect4 = matrix(c(0,0,1,1),1); rownames(effect4) = "New Effect: Seniors"
effectsvec = rbind(effect1,effect2,effect3,effect4)
                                                    Simultaneous Tests for General Linear Hypotheses
effects = glht(model1,linfct=effectsvec)
summary(effects)
                                        Fit: lm(formula = Test \sim Senior + New + Senior * New, data = data01)
                                        Linear Hypotheses:
                                                                 Estimate Std. Error t value Pr(>|t|)
                                        Senior Effect: Old == 0
                                                                   2.1600
                                                                                      2.847
                                                                              0.7586
                                                                                              0.0194 *
                                        Senior Effect: New == 0
                                                                  -0.8800
                                                                              0.7586 -1.160
                                                                                              0.5939
                                        New Effect: Freshmen == 0 7.7600
                                                                             0.7586 10.229
                                                                                              <0.001 ***
                                        New Effect: Seniors == 0
                                                                   4.7200
                                                                              0.7586
                                                                                      6.222
                                                                                              <0.001 ***
                                        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                        (Adjusted p values reported -- single-step method)
```

glht requests conditional main effects from model for the means:

Model for the Means:  $\widehat{Test}_p = \beta_0 + \beta_1 Senior_p + \beta_2 New_p + \beta_3 Senior_p New_p$ 

#### Main Effect = what it is + what modifies it

- Senior Effect for Old Method:  $\beta_1 + \beta_3 * 0$
- Senior Effect for New Method:  $\beta_1 + \beta_3 * 1$
- New Method Effect for Freshmen:  $\beta_2 + \beta_3 * 0$
- New Method Effect for Seniors:  $\beta_2 + \beta_3 * 1$

#### **Dummy-Coded "Regression":** *Model-Implied* Main Effects

| glht commands table  |          |                   |            | FI)        | KED EFFI        | E <b>CTS</b> tab | le                |            |            |
|----------------------|----------|-------------------|------------|------------|-----------------|------------------|-------------------|------------|------------|
| Parameter            | Estimate | Standard<br>Error | t<br>Value | Pr ><br> t | Parameter       | Estimate         | Standard<br>Error | t<br>Value | Pr ><br> t |
| Senior Effect: Old   | 2.16     | 0.76              | 2.85       | 0.0054     | Intercept (β0)  | 80.20            | 0.54              | 149.51     | <.0001     |
| Senior Effect: New   | -0.88    | 0.76              | -1.16      | 0.2489     | Senior (β1)     | 2.16             | 0.76              | 2.85       | 0.0054     |
| New Effect: Freshmen | 7.76     | 0.76              | 10.23      | <.0001     | New (β2)        | 7.76             | 0.76              | 10.23      | <.0001     |
| New Effect: Seniors  | 4.72     | 0.76              | 6.22       | <.0001     | Senior*New (β3) | -3.04            | 1.07              | -2.83      | 0.0056     |

#### Effect of Senior for New: $\beta_1 + \beta_3$ (New<sub>p</sub>); Effect of New for Seniors: $\beta_2 + \beta_3$ (Senior<sub>p</sub>)

| Test Mean [SE] | Freshmen                                         | Seniors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marginal     |
|----------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Old Method     | β <sub>0</sub><br>80.20 [0.52]                   | <sup>B1</sup> 82.36 [0.59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.28 [0.42] |
| New Method     | β <sub>2</sub><br>87.96 [0.45]<br>β <sub>1</sub> | $\beta_3 = \beta_2 + \beta_3 = \beta_2 + \beta_3 = \beta_3 $ | 87.52 [0.37] |
| Marginal       | 84.08 [0.65]                                     | 84.72 [0.53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84.40 [0.42] |

#### GLM via "ANOVA" instead – in R with Factors

- So far we've used "regression" to analyze our 2x2 design:
  - > We manually dummy-coded the predictors
  - > SAS treats them as "continuous" predictors, so it uses our variables as is
- More commonly, a factorial design like this would use an ANOVA approach to the GLM
  - > It is the \*same model\* accomplished with less code

```
#MODEL #2 -- Using factors (R coded)
model2 = lm(Test~SeniorF+NewF+SeniorF*NewF,data=data01)
summary(model2)
anova(model2)
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
               80.2000
                          0.5364 149.513 < 2e-16 ***
SeniorF1
               2.1600
                          0.7586 2.847 0.00539 **
           7.7600
                          0.7586 10.229 < 2e-16 ***
NewF1
SeniorF1:NewF1 -3.0400
                          1.0728 -2.834 0.00561 **
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table
Response: Test
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
             1 10.24 10.24 1.4235 0.235762
SeniorF
             1 973.44 973.44 135.3253 < 2.2e-16 ***
NewF
SeniorF:NewF 1 57.76 57.76
                               8.0297 0.005609 **
            96 690.56
                        7.19
Residuals
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Interactions

#### 2 Kinds of "Conditional" Main Effects

#### "Simple" conditional main effects

- Specifically for a "0" value in the interacting predictor, where the meaning of "0" is usually chosen deliberately with the goal of inferring about a particular kind of person (or group of persons)
- e.g., the "simple" main effect of Education for Attitudes = 3 the "simple" main effect of Attitudes for Education = 12 years
- e.g., the "simple" effect of Old vs. New Instruction for Seniors the "simple" effect of Freshman vs. Senior for New Instruction
- > These are given in the summary() function output of R

#### "Marginal" (omnibus) main effects

- > What is done for you without asking in ANOVA! The fixed effects solution is not given by default (and not often examined at all); the omnibus *F*-tests are almost always used to interpret "main effects" instead
- > Tries to produce the "average" main effect in the sample, marginalizing over other predictors
- > Consequently, a "0" person may not even be logically possible...
- > These are given in the anova() function output of R

## **SUMMARY**

- To examine exactly what we can learn from our model output
  - > Meaning of estimated fixed effects; how to get model-implied fixed effects
  - > Interpretation of omnibus significance tests
- To understand why results from named GLM variants may differ:
  - > Regression/ANOVA/ANCOVA are all the same GLM
    - Linear model for the means + and a normally-distributed residual error term
    - You can fit main effects and interactions among any kind of predictors; whether they should be there is always a testable hypothesis in a GLM
- When variants of the GLM provide different results, it's because:
  - > Your predictor variables are being recoded (if using CLASS/BY statements)
  - Simple conditional main effects and marginal conditional main effects do not mean the same thing (so they will not agree when in an interaction)
  - > By default your software picks your model for the means for you:
    - "Regression" = whatever you tell it, exactly how you tell it
    - "ANOVA" = marginal main effects + all interactions for categorical predictors
    - "ANCOVA" = marginal main effects + all interactions for categorical predictors; continuous predictors only get to have main effects

#### SAS vs. SPSS for General Linear Models

 Analyses using least squares (i.e., any GLM) can be estimated equivalently in SAS PROC GLM or SPSS GLM ("univariate")...

| How do I tell it                                                 | R                                                                                                             |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| What my DV is                                                    | The first command in Im(Y~X): Before the ~                                                                    |
| I have continuous predictors<br>(or to leave them alone!!)       | Assumed by default (can tell if you use<br>class(data\$variable)) function and find predictors<br>are numeric |
| I have categorical predictors<br>(and to dummy-code them for me) | class(data\$variable) function says factor                                                                    |
| What fixed effects I want                                        | glht() function from multcomp package                                                                         |
| To show me my fixed effects solution (Est, SE, t-value, p-value) | summary() function applied to Im() object                                                                     |
| To give me means per group                                       | glht() function or use factor type                                                                            |
| To estimate model-implied effects                                | glht() function                                                                                               |