Review of Descriptive Statistics and Conceptualizations of Variance

EPSY 905: Multivariate Analysis
Online Lecture #1

Learning Objectives

- Univariate descriptive statistics
 - > Central tendency: Mean, median, mode
 - > Variation/spread: Standard deviation, variance, range

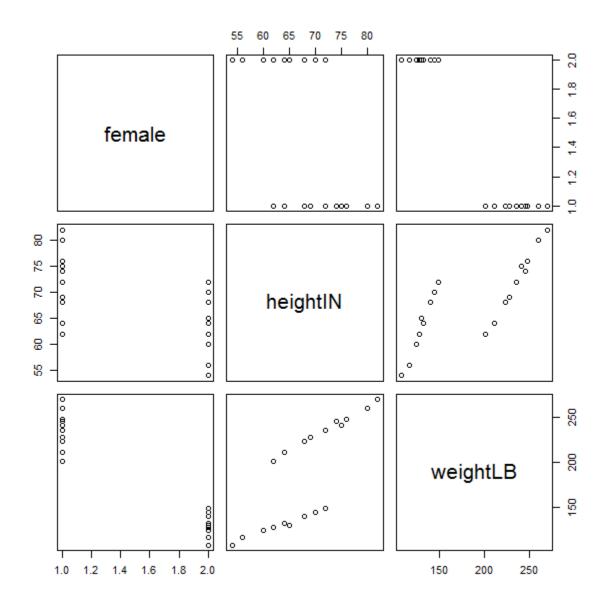
- Bivariate descriptive statistics
 - > Correlation
 - Covariance
- Types of variable distributions:
 - > Marginal
 - > Joint
 - > Conditional

Bias in estimators

Data for Today's Lecture

- To help demonstrate the concepts of today's lecture, we will be using a data set with three variables
 - Female (Gender): Male (=0) or Female (=1)
 - > Height in inches
 - > Weight in pounds
- The end point of our second lecture will be to build a linear model that predicts a person's weight
 - Linear model: a statistical model for an outcome that uses a linear combination (a weighted sum) of one or more predictor variables to produce an estimate of an observation's predicted value
- What you will learn is that models underlie all statistics

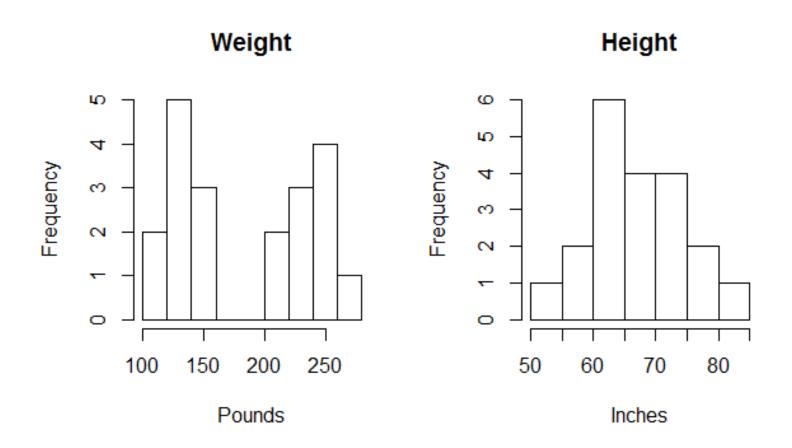
Visualizing the Data



EPSY 905: Basic Statistics

Histograms of Height and Weight

 The weight variable seems to be bimodal – should that bother you? (hint: it shouldn't...yet)



Descriptive Statistics

- We can summarize each variable marginally through a set of descriptive statistics
 - > Marginal: one variable by itself
- Common marginal descriptive statistics:
 - > Central tendency: *Mean*, Median, Mode
 - > Variability: Standard deviation (variance), range
- We can also summarize the joint (bivariate) distribution of two variables through a set of descriptive statistics:
 - > Joint distribution: more than one variable simultaneously

- Common bivariate descriptive statistics:
 - Correlation and covariance

Descriptive Statistics for Height/Weight Data

Variable	Mean	SD	Variance
Height	67.9	7.44	55.358
Weight	183.4	56.383	3,179.095
Female	0.5	0.513	0.263

Diagonal: Variance

Above Diagonal: Covariance

Correlation /Covariance	Height	Weight	Female
Height	55.358	334.832	-2.263
Weight	.798	3,179.095	-27.632
Female	593	955	.263

Below Diagonal: Correlation

Re-examining the Concept of Variance

- Variability is a central concept in advanced statistics
 - > In multivariate statistics, covariance is also central
- Two formulas for the variance (about the same when N is large):

Unbiased or "sample"

$$S_{Y_1}^2 = \frac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1)^2 \frac{\text{Biased/ML or "population"}}{\text{"population"}}$$

$$S_{Y_1}^2 = \frac{1}{N} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_1)^2$$

Here: p = person; 1 = variable number one

Interpretation of Variance

- The variance describes the spread of a variable in squared units (which come from the $(Y_{1p} \bar{Y}_1)^2$ term in the equation)
- Variance: the average <u>squared</u> distance of an observation from the mean
 - > Variance of Height: 55.358 inches squared
 - > Variance of Weight: 3,179.095 pounds squared
 - > Variance of Female not applicable in the same way!
- Because squared units are difficult to work with, we typically use the standard deviation – which is reported in units
- Standard deviation: the average distance of an observation from the mean
 - > SD of Height: 7.44 inches
 - > SD of Weight: 56.383 pounds

Variance/SD as a More General Statistical Concept

- Variance (and the standard deviation) is a concept that is applied across statistics – not just for data
 - > Statistical parameters have variance
 - e.g. The sample mean \overline{Y}_1 has a "standard error" (SE) of $S_{\overline{Y}} = \frac{S_Y}{\sqrt{N}}$
- The standard error is another name for standard deviation
 - > So "standard error of the mean" is equivalent to "standard deviation of the mean"
 - > Usually "error" refers to parameters; "deviation" refers to data
 - > Variance of the mean would be $S_{\bar{Y}}^2 = \frac{S_Y^2}{N}$

- More generally, variance = error
 - You can think about the SE of the mean as telling you how far off the mean is for describing the data

EPSY 905: Basic Statistics

Correlation of Variables

 Moving from marginal summaries of each variable to joint (bivariate) summaries, the Pearson correlation is often used to describe the association between a pair of variables:

$$r_{Y_1,Y_2} = \frac{\frac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \overline{Y}_1) (Y_{2p} - \overline{Y}_2)}{S_{Y_1} S_{Y_2}}$$

- The correlation is unitless as it ranges from -1 to 1 for continuous variables, regardless of their variances
 - Pearson correlation of binary/categorical variables with continuous variables is called a point-biserial (same formula)
 - Pearson correlation of binary/categorical variables with other binary/categorical variables has bounds within -1 and 1

More on the Correlation Coefficient

- The Pearson correlation is a biased estimator
 - > Biased estimator: the expected value differs from the true value for a statistic
 - Other biased estimators: Variance/SD when $\frac{1}{N}$ is used
- The unbiased correlation estimate would be:

$$r_{Y_1,Y_2}^U = r_{Y_1,Y_2} \left[1 + \frac{\left(1 - r_{Y_1,Y_2}^2\right)}{2N} \right]$$

- \succ As N gets large bias goes away; Bias is largest when $r_{Y_1,Y_2}=0$
- > Pearson is an underestimate of true correlation
- If it is biased, then why does everyone use it anyway?
 - > Answer: forthcoming when we talk about (ML) estimation

Covariance of Variables: Association with Units

 The numerator of the correlation coefficient is the covariance of a pair of variables:

$$S_{Y_{1},Y_{2}} = \frac{1}{N-1} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_{1})(Y_{2p} - \bar{Y}_{2}) \quad \text{Unbiased or "sample"}$$

$$S_{Y_{1},Y_{2}} = \frac{1}{N} \sum_{p=1}^{N} (Y_{1p} - \bar{Y}_{1})(Y_{2p} - \bar{Y}_{2}) \quad \text{Biased/ML or "population"}$$

- The covariance uses the units of the original variables (but now they are multiples):
 - > Covariance of height and weight: 334.832 inch-pounds
- The covariance of a variable with itself is the variance
- The covariance is often used in multivariate analyses because it ties directly into multivariate distributions
 - But...covariance and correlation are easy to switch between

Going from Covariance to Correlation

 If you have the covariance matrix (variances and covariances):

$$r_{Y_1,Y_2} = \frac{S_{Y_1,Y_2}}{S_{Y_1}S_{Y_2}}$$

 If you have the correlation matrix and the standard deviations:

$$S_{Y_1,Y_2} = r_{Y_1,Y_2} S_{Y_1} S_{Y_2}$$