Quantifying Reliability in Diagnostic Classification Models

Jonathan Templin
The University of Georgia

Robert Henson
The University of North Carolina at Greensboro
Talk Overview

• Reliability for latent variables
 - Item Response Model (IRT) Reliability
 - Diagnostic Classification Model (DCM) Reliability

• Comparing DCM reliability to IRT reliability
 - Attempt to characterize DCM estimates in an understandable way
 - Theoretical results
 - Unidimensional Rasch models
 - Simulation study
 - Varying dimensions and discrimination
 - Empirical application
 - Reliability for all models presented previously
 - Comparing unidimensional IRT and DCMs

• Implications for large scale testing
RELIABILITY IN IRT
Defining Reliability for Latent Variables

• DCMs are psychometric models with categorical latent variables
 ➢ The goal is classification
 • Scaling with a finite set of points

• Quantification of reliability must reflect categorical latent variables of DCMs
 ➢ Should characterize degree of precision in latent variable
 ➢ Can also be used to compare to other latent variable methods
Classical notions of reliability were based on test scores
- Not latent variables directly

Speaking of reliability in IRT, Lord (1980, p. 46):

“True score ξ and ability θ are the same thing expressed on different scales of measurement”

We focus on latent variable reliability in DCMs
- Easier to compare reliability between DCMs and IRT
Classical Reliability

- Defined as a consequence of classical true score theory:
 \[X_i = T_i + E_i \]
- \(X_i \) – observed test score; \(T_i \) – true score; \(E_i \) – error
 - \(T \) and \(E \) are independent, meaning:
 \[\sigma^2_X = \sigma^2_T + \sigma^2_E \]
- Reliability can be considered proportion of total variance accounted for by true score:
 \[\rho_\xi = \frac{\sigma^2_T}{\sigma^2_T + \sigma^2_E} \]
• For an examinee i, mapping IRT onto CTT theory:

$$\hat{\theta}_i = \theta_i + \varepsilon_i$$

- The estimated θ consists of the true value of an examinee’s $\theta (\theta_i)$ and measurement error (ε_i)
IRT Reliability

**True \(\theta \)\)

Population Mean

\[\theta_i = \mu_{\theta} + \phi_i \]

Deviation from Mean

\[E(\theta_i) = \mu_{\theta} \]

\[\text{Var}(\theta_i) = \sigma^2_{\theta} \]

\[\theta_i \sim N(\mu_{\theta}, \sigma^2_{\theta}) \]

Prior Distribution for \(\theta \)
IRT Reliability Derivation

- Placing the model for the true θ into our original equation:

$$\hat{\theta}_i = \theta_i + \varepsilon_i = \mu_\theta + \phi_i + \varepsilon_i$$

- Assuming independence of error terms and θ, the total variance of the estimate is then:

$$\sigma^2_{\hat{\theta}} = \sigma^2_\theta + \sigma^2_\varepsilon$$

- Here, error variance is the inverse of test information
 - Depends on the location of θ
 - Also known as the posterior variance of θ
 - Andrich (1982); Briggs & Wilson (2007); Green et al. (1984); Mislevy (1993)...
From CTT to IRT Reliability

- CTT Reliability:

\[\rho_{\xi} = \frac{\sigma_T^2}{\sigma_T^2 + \sigma_E^2} \]

- IRT Reliability

\[\rho_\theta = \frac{\sigma_\theta^2}{\sigma_\theta^2 + \bar{\sigma}_\varepsilon^2} \]

\[\bar{\sigma}_\varepsilon^2 = \frac{1}{N} \sum_{i=1}^{N} \sigma_{\varepsilon,i}^2 \]

Average Posterior Variance for \(\theta \)
RELIABILITY IN DCMS
Latent Variables in DCMs

- Unlike ξ in CTT and θ in IRT, DCMs have categorical latent variables, α_i
 - DCMs typically use two category levels
 - Mastery/Non-mastery
 - Proficient/Not Proficient
- For a single dimension, α_i follows a Bernoulli Distribution
 $$\alpha_i \sim B(p_\alpha)$$
- Here, p_α is the proportion of masters in the population
 - Typically estimated from data (can also be fixed)
- Therefore:
 $$\sigma^2_\alpha = p_\alpha (1 - p_\alpha)$$
As DCMs feature categorical latent variables, examinee estimates are reported in the form of Bernoulli variables.

For an examinee i, $\hat{\alpha}_i \sim B\left(\hat{p}_\alpha\right)$

- Here \hat{p}_α is the (posterior) probability of mastery for the attribute.

Therefore, the error variance associated with $\hat{\alpha}_i$ is:

$$\sigma^2_\varepsilon = \hat{p}_\alpha \left(1 - \hat{p}_\alpha\right)$$
From IRT to DCM Reliability

• IRT Reliability

\[\rho_\theta = \frac{\sigma_\theta^2}{\sigma_\theta^2 + \overline{\sigma_\varepsilon}^2} \]

\[\overline{\sigma_\varepsilon}^2 = \frac{1}{N} \sum_{i=1}^{N} \sigma_{\varepsilon,i}^2 \]

Average Posterior Variance for \(\theta \)

• DCM Reliability

\[\rho_\alpha = \frac{\sigma_\alpha^2}{\sigma_\alpha^2 + \overline{\sigma_\varepsilon}^2} \]

\[\overline{\sigma_\varepsilon}^2 = \frac{1}{N} \sum_{i=1}^{N} \sigma_{\varepsilon,i}^2 \]

Average Posterior Variance for \(\alpha \)
COMPARING DCM
AND IRT RELIABILITY
To investigate the properties of reliability in DCMs, we present results from three studies:

- Theoretical comparisons
 - IRT: Rasch Model; DCM: Analogous Rasch Model

- Simulation study
 - Generated 100 tests per condition with IRT
 - Varied number of dimensions (1 or 3), and number of items per dimension (5, 10, or 15).

- Empirical results
 - Large scale end-of-grade reading test
Overall Summary of Findings

• Using our metric of reliability:
 ➢ DCM reliability was uniformly higher than IRT reliability
 ➢ DCM reliability was \textit{never} lower than IRT reliability

• Questions remain:
 ➢ Is our metric appropriate?
 ➢ Is it an accurate way to characterize latent variables?
 ➢ Are comparisons valid?

• Results shown try to highlight implications of \textit{this} reliability metric
Theoretical Rasch Model Reliability

<table>
<thead>
<tr>
<th>Reliability Level</th>
<th>DCM</th>
<th>IRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>8 Items</td>
<td>34 Items</td>
</tr>
<tr>
<td>0.85</td>
<td>10 Items</td>
<td>48 Items</td>
</tr>
<tr>
<td>0.90</td>
<td>13 Items</td>
<td>77 Items</td>
</tr>
</tbody>
</table>
Simulation Study Results

Reliability vs. Items Per Dimension for 1D, 3D, DCM, and IRT models.
Empirical Results

Reliability

Dimensional Model

1-Dimension

2-Dimension

BiFactor

DCM

IRT

DCM

IRT

DCM

IRT
Unidimensional Example

- Estimated a unidimensional DCM:
 - Two, three, four, and five categories
 - Category levels represent proficiency standards categories
 - Two categories: proficient/not proficient
 - Five categories: match state

- Constructed tests with 3-73 items
 - Best items based on estimated DCM parameters

- Calculated the reliability for α
 - Compared to estimated 2PL reliability of 0.87 for θ
Constructing Shorter Tests

2PL $\rho_\theta = .87$

Reliability

Number of Items

2 Category: 24 Items
3 Category: 42 Items
4 Category: 50 Items
5 Category: 54 Items

2 Category
3 Category
4 Category
5 Category
CONCLUDING REMARKS
Concluding Remarks

• In this talk we:
 - Defined a reliability coefficient for DCMs
 - Showed how DCMs had higher reliability than IRT models

• Ramifications of DCM reliability:
 - Reliable measurement of multiple dimensions is possible
 - Two-attribute DCM application to empirical data:
 - Reliabilities of 0.95 and 0.90 (compared to 0.72 and 0.70 for IRT)
 - Shorter unidimensional tests
 - Two-category unidimensional DCM application to empirical data:
 - Test needed only 24 items to have same reliability as IRT with 73 items

• Questions remain about approach
 - Would other metrics be better?
Concluding Remarks

• Paradox of DCMs:
 - Sacrifice fine-grained measurement of θ for only several categories of α
 - Increased ability to measure ability multidimensionally

• Practical implications:
 - Multidimensional proficiency standards
 - Students must demonstrate proficiency on multiple latent attributes to be considered proficient for an overall content area
 - “Teaching to the test” would therefore represent covering more curricular content to best prepare students